Lower bounds for paging

Theorem 1 No deterministic algorithm can be better than k-competitive.
Proof: let A be a deterministic algorithm. Take a universe of size $k+1$. Define your sequence inductively: at time t, given the sequence so far, consider the current set of the cache, and request next the one item that is not in the cache. This defines a sequence.
A has a page fault on every request.
Partition the sequence into phases as usual. Each phase has length at least k and in each phase OPT, which is LFD, has only one page fault, hence the bound.

Theorem 2 Let y be a distribution on input sequences σ_{y} such that for every deterministic algorithm A, the expectation over y of the number of pages faults of A is at least $\alpha E\left(O P T\left(\sigma_{y}\right)\right)+c$. Then no randomized marking algorithm can be better than α-competitive.

Let R be a randomized algorithm. R is nothing else than a distribution x over deterministic algorithms A_{x}. For each A_{x},

$$
E_{y}\left(\operatorname{cost}\left(A_{x}, \sigma_{y}\right)\right) \geq \alpha E_{y}\left(O P T\left(\sigma_{y}\right)\right)+c
$$

so that's also true on average over x :

$$
E_{x} E_{y}\left(\operatorname{cost}\left(A_{x}, \sigma_{y}\right)\right) \geq \alpha E_{y}\left(O P T\left(\sigma_{y}\right)\right)+c
$$

By Fubini's theorem we can exchange the order of expectations and write

$$
\begin{gathered}
E_{y} E_{x}\left(\operatorname{cost}\left(A_{x}, \sigma_{y}\right)\right) \geq \alpha E_{y}\left(O P T\left(\sigma_{y}\right)\right)+c \\
E_{y}\left(E_{x}\left(\operatorname{cost}\left(A_{x}, \sigma_{y}\right)\right)-\alpha E_{y}\left(O P T\left(\sigma_{y}\right)\right)-c\right) \geq 0
\end{gathered}
$$

By the probabilistic method, there exists a y such that

$$
E_{x}\left(\operatorname{cost}\left(A_{x}, \sigma_{y}\right)\right)-\alpha O P T\left(\sigma_{y}\right)-c \geq 0
$$

and therefore algorithm R has competitive ratio at least α.
Theorem 3 No randomized algorithm can be better than H_{k}-competitive.
Here is a distribution over sequences: the universe has size $k+1$, and at each step we pick a page uniformly at random among the $k+1$ pages.

Let A be a deterministic algorithm. the expected number of faults of A, averaged over σ_{y} 's, is $m /(k+1)$ because at each step there is a page fault with probability $1 /(k+1)$.

As for OPT, its number of faults is the number of phases in the sequence. In expectation, by independence (and finite expectation) and the elementary renewal theorem, that's m divided by the expected length of a phase. How long does a phase take? As long as it takes to see every page at least once. That's a coupon collector problem and it is easy to see (and well-known) that it's $(k+1) H_{k+1}$.

Hence the ratio.

