
CS251 - LRU is optimal on tree access graphs Claire Mathieu(claire)

LRU is optimal on tree access graphs

Theorem 1 The competitive ratio of LRU on a tree G equals the maximum, over subtrees T of G
with at most k + 1 nodes, of `(T )− 1, where `(T ) denotes the number of leaves of T .

The lower bound has been proved for any deterministic algorithm, so that includes LRU. For
the upper bound, we track OPT and LRU in parallel during the sequence of requests.

Consider the page rt requested at time t, plus the set of pages present in LRU’s cache right
before the request is served. This consists of k or k + 1 nodes (depending on whether or not there
is a page fault) forming a subtree of G. Call this treet(LRU). Note that if LRU has a fault on rt,
then rt must be a leaf of treet(LRU).

If OPT has a fault on page rt then we place token on nodes of T = treet(LRU) as follows: for
each leaf of T other than rt (which may or may not be a leaf), follow the path from v to rt and
place a token on the first node that does not yet have a token.

The theorem follows as a corollary of the following two lemmas:

Lemma 1 When OPT has a fault, at most `(T )− 1 tokens are placed on T = treet(LRU)

To prove the first lemma, we first observe that the it is obvious if rt is a leaf of T , so let’s assume
that rt is an internal node of T . Then LRU must not have a fault on rt, so rt is in the cache of
LRU. Moreover, since rt is internal it has degree at least 2 in T and so it partitions T into at least
2 subtrees.

Consider the page rt, plus the set of pages present in OPT’s cache right before the request is
served. This consists of k or k+1 nodes (depending on whether or not there is a page fault) forming
a subtree of G. Call this treet(OPT).

Say that a page is lonely for LRU if it is in the cache of LRU but not in the cache of OPT.
At time t, page rt is lonely. By the tree structure of G and of treet(OPT), and by the fact that
rt is an internal node of T , it follows that some subtree of T rooted at rt is entirely absent from
the cache of OPT, and so there is a path from some leaf v of T to rt such that every node on that
path is lonely. By the claim below, every lonely page has a token, so when OPT has a fault on rt

no additional token is placed on the path from v to rt, and so the lemma holds.

Claim 1 Every lonely page has a token.

The claim is proved by induction over time. Initially (right after the first k distinct pages have
been requested in the sequence) OPT and LRU have the same cache contents, so there is no lonely
page and the claim holds.

For the inductive step, consider how a page u becomes lonely for LRU: It must have been in
the cache of LRU and of OPT, and have been evicted by OPT to make room for some request rt.
Upon that eviction, if u is a leaf of treet(LRU) then u receives a token and the claim holds, so let’s
assume that u is an internal node of T = treet(LRU).

By the tree structure of G and of treet(OPT), and by the fact that u is an internal node of T ,
it follows that some subtree S of T rooted at u is entirely absent from the cache of LRU, so every
node on S is lonely. But they were all already lonely right before, so by induction on time every



CS251 - LRU is optimal on tree access graphs Claire Mathieu(claire)

node in S already has a token, and so, if we take any leaf v of subtree S, the token-placement rule
will consider the path from v to rt and place a token on u. This proves the claim.

Lemma 2 When LRU has a fault, resulting in the eviction of some page u, u has a token.

To prove the second lemma, let u be the page evicted by LRU at time t, let t1 < t be the time
when u became the least recently used page, and let t0 < t1 be the last time u was requested.
Consider T = treet1(LRU).Since the next change to T will be the eviction of u, and since evictions
always happen to leaves, u is a leaf of T . Assume that u does not have a token. (By the contra-
positive of the claim, this implies that u is not lonely, so u is present in the cache of OPT at that
time).

What happens between t1 and t? If OPT has a fault then a token is placed on leaves of T ,
including u, and we are done. So let’s assume that OPT has no faults in (t1, t]. So the request rt

at time t is on a page which is in the cache of OPT but not in the cache of LRU: it is lonely for
OPT.

Consider the graph G as rooted at node rt1 and let T (u) denote the subtree rooted at u: since
T is a tree containing rt1 and u is a leaf of T , it must be that the nodes of T (u)−{u} are all absent
from the cache of LRU. Those which are present in the cache of OPT are therefore all lonely for
OPT. The following claim gives a converse.

Claim 2 The pages that are lonely for OPT are all in T (u).

The claim implies that page rt, lonely for OPT, is in T (u). From time t1 to time t, the sequence
of requests performs a walk. Because of the tree structure of G, the sequence has to go through a
request to page u: contradiction. So it only remains to prove the claim.

The number of pages that, at time t1, are lonely for OPT equals the number of pages that, at
time t1, are lonely for LRU.

By definition of LRU, if we look at the walk performed by the sequence of requests during the
time interval I from time t0 to time t1, the walk must visit every node of T and no other node (so
that u becomes the least recently used page). By definition of OPT, at time t0 the cache of OPT
contains T , except perhaps for some nodes of T that have never been requested before (and each of
those will result in a fault when they are requested during I). Thus: the number of pages of T (u)
that are in the cache of OPT at time t0 is at least the number of OPT faults during I.

That number can be decomposed in the faults causing eviction of the page of T (u) from the
cache of OPT, and the faults result in some other eviction from the cache of OPT. Now, any page
that at time t1 is lonely for LRU was requested during I, so it was in the cache of OPT at that
time, so it must have been evicted by OPT during I. So:

The number of OPT faults during I is at least the number of pages that, at time t1, are lonely
for LRU, plus the number of pages of T (u) evicted by OPT during I.

Combining and rearranging, we deduce that the number of pages that, at time t1, are lonely for
LRU, is at most the number of pages of T (u) that are in the cache of OPT at time t0 minus the
number of pages of T (u) evicted by OPT during I, in other words, the number of pages of T (u)
that are in the cache of OPT at time t1.

This proves the claim.


