
CS251 - Deterministic paging algorithms Claire Mathieu(claire)

Deterministic paging algorithms
You have a fast memory (cache) of size k and a large slow memory. Given a sequence of page

requests, serving a request r is done at cost 0 of the page is in the cache and at cost 1 if the page
is not there: it has to be brought into the cache. The goal is to design an algorithm to minimize
the number of page faults (requests that incur a cost). The algorithm chooses which page to evict
from the cache to make room for the current request. The algorithm is online is its choice is done
without knowledge of future requests.

Some popular online heuristics: LRU (Least recently used), FIFO (First in first out), CLOCK
(1-bit version of LRU), LIFO (Last in first out), LFU (Least frequently used). One well-known
offline heuristic: LFD (Longest forward distance).

Theorem 1 LFD is optimal.

Fix a sequence of n page requests. For all i, let C
(i)
0 denote the state of the cache after request

i is served for the some particular sequence of page evictions, and let C0 = (C
(i)
0 )1≤i≤n.

Let Ct = (C
(i)
t )i be defined inductively as follows: up to and including time t, use LFD to

choose which page to evict when there is a page fault. This determines the state of the cache at
each timestep until time t. Then, follow the choice of evictions of Ct−1 for all times > t except one
defined as follows: assume that at time t algorithm Ct−1 evicts page u whereas LFD evicts page v.
Let t′ be the first time when, either Ct−1 evicts page v, or Ct−1 brings page u back into the cache
(by evicting some page u′), whichever comes first. In the first case, at time t′ Ct will evict page u,
and in the second case, at time t′ Ct will evict page u′. Either way, after serving request at time t′

the state of the cache is the same for Ct−1 and for Ct. By definition of LFD, between time t and
time t′ there can be no request for page v, so Ct is well-defined and incurs no more pages faults
than Ct−1.

By induction Ct is at least as good as C0. For t = n, Cn is exactly LFD, so LFD is at least as
good as C0. This was for an arbitrary C0, so LFD is optimal.

The reader may wish to try this construction on an example, say for k = 3 and n = 15.

Definition 1 An online algorithm ALG is c-competitive if there exists a b such that for every n

and every sequence σ = (σ1, σ2, . . . , σn), ALG(σ) ≤ cOPT(σ)+b, where ALG(σ) is the cost of ALG

on sequence σ and OPT(σ) is the optimal offline cost on σ.

Theorem 2 LRU is k-competitive.

Fix a sequence of n pages requests. Decompose into phases as follows. Phase 1 starts with
request σ1. A phase starting with requests σi ends just before request σj such that the set of pages
requested at times {i, . . . , j − 1} has size k but the set of pages requested at times {i, . . . , j} has
size k + 1. In each phase, it is easy to see that LRU pays at most k pages faults. For each phase
{i . . . , j − 1}, observing that the cache must contain page σi right after serving request i, it is easy
to infer that OPT has to incur at least one page fault to serve requests {i + 1, . . . , j}. Hence the
theorem.


