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k-server
In the k server problem, given a graph (discrete metric space with associated distance d(·, ·))

and k servers placed on graph vertices, service a sequence of requests. Each request is a graph
vertex and is served by bring a server over to that node, at cost equal to the distance traveled by
the server.

A state is a subset of k of the n graph vertices (possibly with repetitions) describing the positions
of the servers. Let A0 be the initial state and rt be the request at time t.

For any state X, let wt(X) denote the minimum cost of starting from A0, serving requests
r1, r2, . . . , rt, and ending in state X.

The working set algorithm, given the current state At−1, serves the next request rt by moving
a server from a ∈ At−1 to rt, changing the state into At = At−1 − a + rt, where a is chosen so as
to minimize wt−1(At) + d(a, rt).

Theorem 1 The working set algorithm for k-server is (2k − 1)-competitive.

Proof:

1. Reduction to potential function analysis. Up to an additive constant change in the total
cost, we can always assume that our algorithm and OPT both start and end in the same state.
Then we may use a telescoping sum and write the cost of OPT as

∑
t(wt(At) − wt−1(At−1)). Let

the extended cost of serving request t be: d(a, rt) + (wt(At)−wt−1(At−1)). We will prove that the
total extended cost is at most 2k times OPT. hence the theorem.

We can always assume that the adversary picks a request sequence s.t. rt is never in At1 .
To analyze the extended cost, first note that:

Lemma 1 wt(X) = minx∈X(wt−1(X − x + rt) + d(rt, x))

Thus since rt ∈ At, by Lemma 1 wt(At) = wt−1(At). By the algorithm’s definition of At and
Lemma 1, wt−1(At) = wt(At−1)− d(rt, a). Substituting yields that the extended cost is:

wt(At−1)− wt−1(At−1) ≤ max
X

{wt(X)− wt−1(X)}.

Note that the expression on the right hand side no longer depends on the algorithm but only
on the work function.

Given a work function w and a vertex a, we say that a state A is a minimizer with respect to
w, a if A minimizes the expression mw,a = minA(w(A) −

∑
x∈A d(x, a)). Given a work function w

we define a potential function,

Φ(w) = min
U
{kw(U) +

∑
u∈U

mw,u}.

The crux of the proof is to argue that

max
X

{wt(X)− wt−1(X)} ≤ Φ(wt)− Φ(wt−1),

hence the total extended cost is less than Φ(wf ) − Φ(w0), which is easily seen to be at most
2kwf (Af ) + c, hence the theorem.
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2. Reduction to proving Lemmas 5 and 6. So, we now focus on Φ(wt)−Φ(wt−1). We easily
observe:

Lemma 2 wt(X) = minx∈X(wt(X − x + rt) + d(x, rt)).

from which, using the triangle inequality, with a short calculation we can infer:

Lemma 3 We can assume that the U minimizing Φ(wt) is such that rt ∈ U .

Let U be that set, let Bu be the minimizer for wt, u for each u ∈ U, u 6= rt, and let A be the
minimizer for wt, rt. By definition of Φ(wt−1) we have

Φ(wt−1) ≤ kwt−1(U) +
∑

u∈U,u 6=rt

(wt−1(Bu)−
∑
b∈B

d(b, u)) + mwt−1,rt .

Clearly,

Lemma 4 The work function wt is monotone in t: for any X, wt(X) ≥ wt−1(X).

Applying this to U and to the Bu’s, we deduce that

Φ(wt)− Φ(wt−1) ≥ mwt,rt −mwt−1,rt .

The following lemma is a big step forward.

Lemma 5 If A is a minimizer for wt−1, rt then A is also a minimizer for wt, rt.

So we can take the same A as a minimizer for both, and so

mwt,rt −mwt−1,rt = wt(A)− wt−1(A).

Finally, the other big step:

Lemma 6 If A is a minimizer with respect to wt−1, rt then

wt(A)− wt−1(A) = max
X

{wt(X)− wt−1(X)}.

So we are done.

Proving Lemmas 5 and 6. Both proofs can be done by a few well-chosen algebraic manipula-
tions relying on the following “quasi-convexity” property of the work function.

Lemma 7 Fix t and states A and B. For any a ∈ A there exists b ∈ B such that

wt(A) + wt(B) ≥ wt(A− a + b) + wt(A− b + a).

Lemma 7 is proved by induction over time and appealing to Lemma 1.


