
CS251 - Online bribery Claire Mathieu(claire)

Online bribery
In the online bribery problem, there is a hidden value, a positive integer x, and you ask a

sequence of questions q1, q2, . . . until you find one that is greater than x. What you pay is the sum
of your bids,

∑
i qi. If you knew everything ahead of time, you would know x and simply ask x.

Thus the competitive ratio objective is to design an algorithm minimizing
∑

qi/x.
The doubling algorithm asks the sequence of questions qi = 2i.

Theorem 1 The doubling algorithm is a 2-approximation. This is optimal for deterministic algo-
rithms.

If you stop with qn, then your cost is about 2qn and x is at least qn−1 = qn/2, hence the
4-approximation.

For the lower bound, consider any sequence and assume that it’s an a approximation for a < 4.
Let sn =

∑
qi, yn = sn+1/sn. If the adversary picks x just above qn, we must have sn+1/qn < a for

all n. Rewrite, do the algebra, and deduce that at some point sn+1 < sn, a contradiction. Hence
the theorem.

Here is a randomized algorithm: pick a random number u drawn uniformly in [0, 1], and let
qi = 2i+u (rounded). To analyze it, observe that for any x, the competitive ratio will be 2qn/x. But
the fractional part of log2(qi/x) is independent of i, so even for the final question, it is distributed
as the fractional part of log2(q0/x), namely, uniformly in [0, 1]. So in expectation it qn/x is

∫ 1
0 2udu.

This determines the competitive ratio.

Exercise (due Wednesday): do the same using the natural logarithm, i.e. qi = ei+u. What is
the competitive ratio of this randomized algorithm?


