Online bribery

In the online bribery problem, there is a hidden value, a positive integer x, and you ask a sequence of questions q_{1}, q_{2}, \ldots until you find one that is greater than x. What you pay is the sum of your bids, $\sum_{i} q_{i}$. If you knew everything ahead of time, you would know x and simply ask x. Thus the competitive ratio objective is to design an algorithm minimizing $\sum q_{i} / x$.

The doubling algorithm asks the sequence of questions $q_{i}=2^{i}$.
Theorem 1 The doubling algorithm is a 2-approximation. This is optimal for deterministic algorithms.

If you stop with q_{n}, then your cost is about $2 q_{n}$ and x is at least $q_{n-1}=q_{n} / 2$, hence the 4-approximation.

For the lower bound, consider any sequence and assume that it's an a approximation for $a<4$. Let $s_{n}=\sum q_{i}, y_{n}=s_{n+1} / s_{n}$. If the adversary picks x just above q_{n}, we must have $s_{n+1} / q_{n}<a$ for all n. Rewrite, do the algebra, and deduce that at some point $s_{n+1}<s_{n}$, a contradiction. Hence the theorem.

Here is a randomized algorithm: pick a random number u drawn uniformly in $[0,1]$, and let $q_{i}=2^{i+u}$ (rounded). To analyze it, observe that for any x, the competitive ratio will be $2 q_{n} / x$. But the fractional part of $\log _{2}\left(q_{i} / x\right)$ is independent of i, so even for the final question, it is distributed as the fractional part of $\log _{2}\left(q_{0} / x\right)$, namely, uniformly in $[0,1]$. So in expectation it q_{n} / x is $\int_{0}^{1} 2^{u} d u$. This determines the competitive ratio.

Exercise (due Wednesday): do the same using the natural logarithm, i.e. $q_{i}=e^{i+u}$. What is the competitive ratio of this randomized algorithm?

