
CS251 - Randomized paging algorithms Claire Mathieu(claire)

Randomized paging algorithms
You have a fast memory (cache) of size k and a large slow memory. Given a sequence of page

requests, serving a request r is done at cost 0 of the page is in the cache and at cost 1 if the page
is not there: it has to be brought into the cache. The goal is to design an algorithm to minimize
the number of page faults (requests that incur a cost). The algorithm chooses which page to evict
from the cache to make room for the current request. The algorithm is online is its choice is done
without knowledge of future requests.

Theorem 1 No deterministic algorithm can be better than k-competitive.

Proof: stay tuned.

Consider the following randomized algorithm called MARKING: when a request r arrives, if
the page is in memory then mark it, and if it is not in memory, evict a random unmarked page
from the cache, fetch r and mark it. When we need to do an eviction but all pages are marked,
first we unmark all pages.

Theorem 2 MARKING is 2Hk-competitive

Fix a sequence of n pages requests. Decompose into phases as follows. Phase 1 starts with
request σ1. A phase starting with requests σi ends just before request σj such that the set of pages
requested at times {i, . . . , j − 1} has size k but the set of pages requested at times {i, . . . , j} has
size k + 1. In each phase, it is easy to see that MARKING starts by unmarking every page, and
ends with all pages marked. Consider the ith phase, and say that a request is old if the pages had
already been requested in phase i − 1, new otherwise; let mi be the new requests and k − mi be
the old requests.

During phase i, the expected number of page faults of MARKING is maximized if the new
requests precede the old requests. Each new requests induces a page fault, for a total of mi. The
request to the jth distinct old page induces a page fault if and only if the page requested is not
within the remaining k − mi − (j − 1) pages still in the cache and still unmarked at this point.
These pages are a random subset of the k − (j − 1) pages of phase i − 1 that have not yet been
requested, so the fault probability is 1 − (k − mi − (j − 1))/(k − (j − 1)). From this it is easy to
deduce that the expected cost of MARKING is at most

∑
i miHk.

In phase i−1 and phase i, in total k+mi distinct pages are requested, so the optimal algorithm
must pay at least mi. Summing and taking the double counting into account, OPT must pay at
least (1/2)

∑
i mi.

Hence the theorem.

Theorem 3 No randomized algorithm can be better than Hk-competitive.

Proof: next time. (Basically, a universe of size k + 1, pj is the probability that the algorithm
does not have page j in the cache, and build a sequence by requesting the page such that pj is
maximum.)


