Experiments in Adjustable Autonomy

Prototype

Humans have meta-level control.
Levels of robot autonomy

Fully autonomous
Goal-biased autonomy
Waypoints and heuristics
Intelligent teleoperation
Dormant

The Neglect Curve

Time Delays and Neglect

Neglect is analogous to time delay.
Laptop and robot: ~0.5 seconds
Earth and moon: ~5 seconds
Earth and Mars: 45 minutes
As the level of neglect changes, an autonomy mode must be chosen that compensates for such neglect.

Teleoperation <-----> Fully autonomous
 min. neglect <-----> max. neglect

Fully autonomous

Ideal when time delay or neglect is significant.
 Simple tasks

 Creating local map of its surrounding environment
 Low efficiency

Goal-Biased Autonomy

Biased autonomous behavior (no direct control)
More user-specified tasks
Better efficiency
Lower level of acceptable neglect

Waypoints and Heuristics

More complicated tasks
Improved efficiency
More involved human operator

Intelligent Teleoperation

Intelligent?

Satisficing (Satisfy + Suffice) decision potentials
 Modulated human operator command

Most efficient Minimal time delay Minimal neglect

Difficulties: situation awareness, etc.

Intelligent Teleoperation

Interfaces

Single human operator, multiple robots
Single robot, multiple human operators
Multiple human operators, multiple robots

How to design such interfaces?
Intuitive, easy to use
User-level practice and cooperation is required

Multiple operators on a single robot

Conclusions

Adjustable Autonomy is an important aspect to consider when designing complex robot operating interfaces.
Improved efficiency comparing to single autonomous mode.