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Big Question

% What does society want to do with
robots? |

® Informally, what is the “killer
app” of robotics?.

® Note: not the “killer robot app”




B1g Question

8 What does society want to do with
robots?

® Problems:

® Society has little idea what
robots can do

% Programming robots requires
significant technical expertise

® Chicken-egg problem -> scifi
notions disparate from reality




One Possible Answer

® Program robots from human demonstration
% Research Problems:

5‘Algorithms: learn policy from data
(exper., exprl., guidance, etc)

® Data collection: “lifelong” human
supervision and robot performance

8 Usability by humans; interruptions




Course Structure

® Group project for entire class

8 Cover research papers in robot
learning and object manipulation

® cover 2-3 papers per class

® student papér' presentations
(20 mins max, minus questions)

® everyone must summarize each paper




Group Project

® Massive-scale learning from demonstration

8 Implement in ROS; do Create tutorial :

® http://code. google com/p/brown—ros—pkg/

2 Learn three tasks from demonstratlon
"Create robot soccer
> Nao magneto dssembly
> PR2 1ntern challenge

® One learning alg, one infrastructure box

® Human subjects study




WHY ROBOT LEARNING!?

“Any controller that has been learned could
have been programmed in less time and
performed better”

- anonymous big name in robotics
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A GOAL FOR ROBOTICS

Collaborators for human endeavors

e Robot — tool for user
productivity

e path of least resistance for
doing physical tasks

e user-developed applications
through learning

e critical path tasks!?
* societal utility?
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Personal
Computing

“technology exponentials™, e.g., Moore’s Law;
mentioned by Brooks and others
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Personal

Computing

Diet Coke + Mentos

Sketchpad g

Final Fantasy
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Personal

Computing

Research
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Roomba

Novelty tech




Personal

Computing

“Personal Robotics
Revolution”

Novelty tech i
12

Research
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DISTINCT CHALLENGES

Other exponentials predicated on
deterministic manipulation of state

Enables “write local, run global” development

Variance and uncertainty in tasks, users, and
environments limits this model for robotics
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WHY ROBOT LEARNING!?

When does learning make sense compared to
teleop or manual programming!?

* Discovery of controllers difficult to
phrase analytically

* Enabling non-technical users to express
robot controllers

)

LAg
Jenkins - Learning Motion Primitives - 14 &%




WHY ROBOT LEARNING?

Either way, expression of computing required:

FSMs, MDPs, objective functions, likelihoods etc.

* Discovery of controllers difficult to
phrase analytically

Trained users fluent in expressing models of computing

* Enabling non-technical users to express
robot controllers

Non-technical users might not gain such programming fluency
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BROADER VIEW

Casted in FSMs, learn as a whole:
|) Policies for states/primitives
2) Transitions between states

3) State pre/postconditions

INFLAMMATORY STATEMENT:
Computational models learned for robots are significantly

more limited than handcoded models
b/c learning focuses on individual issues above
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BROADER VIEW

Casted in FSMs, learn as a whole: @

|) Policies for states/primitives QO

Our use of pairwise kernels to learning primitives from human demonstration

2) Transitions between states

3) State pre/postconditions
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BEGINNINGS:
ROBOT IMITATION

Perception Estimate a robot policy
that matches observed
human behavior

Decision
Embodiment Making

Sensing/Actuation

Motion
Control
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[Fod, Mataric, Jenkins 2002]
[Jenkins, Mataric 2004]

Decision
Making

Motion
Control




[Fod, Mataric, Jenkins 2002]
B EG I N N I N G S‘ [Jenkins, Mataric 2004]

ROBOT IMITATION o

human behavior

Linear basis for human motion
(Neuro-inspired)
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Sensing/Actuation

Perception - Perception

Motion D(X’u) = Zi U; Bi(x) Motion
Control Control
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[Fod, Mataric, Jenkins 2002]
B EG I N N I N G S‘ [Jenkins, Mataric 2004]

ROBOT IMITATION o

human behavior

Linear basis for human motion
(Neuro-inspired)
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Sensing/Actuation 5 MOtlon Dynamlcs \ 5 Sensing/Actuation

Motion D(X u Z U; B Motion
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Mirror Neurons fl§ Spinal Fields
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[Fod, Mataric, Jenkins 2002]
B EG I N N I N G S‘ [Jenkins, Mataric 2004]

ROBOT IMITATION o

human behavior

Linear basis for human motion
(Neuro-inspired)

~ S P A
~ o
Y Motion g
% Primitives S
Decision i Decision
Embodiment Makin Makin Embodiment
Sensing/Actuation 5 MOtlon Dynamlcs \ 5 Sensing/Actuation

Motion D(X u Z U; B Motion
Control Control

Classify human motion | Mirror Neurons @ Spinal Fields Predict human motion
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[Grollman, Jenkins 09]

LEARNING FSMs FROM
DEMONSTRATION?

Ball -
Acquire !

NE

Attacker FSM

Basic robot soccer attack move
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PERCEPTUAL ALIASING

Standard attack is 2 overlapping policies

e distinguished by latent context variable
Unimodal attacker is much less efficient




SQUARE ROOT EXAMPLE

e Consider y = sqrt(x)
e averaging outputs will be incorrect
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Locally Weighted Projection Regressmn

Multimap Regression
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or Gaussian Process Regression

e 2 regressors needed for pos. and neg.
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INFINITE MIXTURES OF EXPERTS

T X Y
(2, e
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Z: space of

mixture
models

cluster inputs
into models

predict
output
given input

Ww(X|Z)p(Y|X, Z)

prior over |l mixture
models model

regressor

for each
model
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INFINITE MIXTURES OF EXPERTS

predict
cluster inputs output
into models given input

p(X,Y, Z) (X |Z)p(Y|X, Z)

Z: space of prior over | mixture regressor
mixture models model for each

models

model

User demonstration
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INFINITE MIXTURES OF EXPERTS

T X Y
{0g, )

p(X,Y,7) x

Z: space of

mixture
models

User demonstration
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predict
cluster inputs output
into models given input

(X|Z2)p(Y|X, Z)
prior over | mixture regressor
models model for each

model

Sparse (Pairwise)
Gaussian Process Regression

outputs (T)
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INFINITE MIXTURES OF EXPERTS

predict
Infer i X — Y cluster inputs output

. into models given input
@iyidi=te  p(X,Y,2) o« p(Z)p(X|2)p(Y|X, Z)

Z: space of prior over |l mixture regressor
mixture models model for each

models model

User demonstration

Sparse (Pairwise)
Gaussian Mixture Model ST Gaussian Process Regression
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INFINITE MIXTURES OF EXPERTS

e X — Y cluster inputs Eﬁ?ﬁ:
. into models given input
(@ovidi=1e  p(X,Y,2) x p(Z)p(X|2)p(Y|X, 2)

Z: space of prior over |l mixture regressor
mixture models model for each
models model

User demonstration

Sparse (Pairwise)
Gaussian Mixture Model ST Gaussian Process Regression

Chinese Restaurant Process
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INFINITE MIXTURES OF EXPERTS

T X Y
{0g, )

User demonstration

Chinese Restaurant Process
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predict
cluster inputs output
into models given input
p(X,Y, Z) x p(Z)p(X|Z)p(Y|X, Z)

Z: space of prior over |l mixture regressor
mixture models model for each
models model

Sparse incremental inference
with particle filter
Sparse (Pairwise)
Gaussian Mixture Model BiRpUes (5 Gaussian Process Regression




LEARNED GOAL SCORER
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OVERVIEW

Why robot learning!?

Learning from demonstration

* Human motion primitives through
dimension reduction

* Decision making primitives through
infinite mixtures of experts

Learning — the path of least resistance!

Jenkins - Learning Motion Primitives - 32

LAy,
Vit




Group Project

® Massive-scale learning from demonstration

8 Implement in ROS; do Create tutorial :

® http://code. google com/p/brown—ros—pkg/

2 Learn three tasks from demonstratlon
"Create robot soccer
> Nao magneto dssembly
> PR2 1ntern challenge

® One learning alg, one infrastructure box

® Human subjects study




Create (S148 Task

Robot Soccer




Create: Current Status
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single objective
possible, but

multiple
objectives
remains problem

Goal scoring with regression




PRZ2 Intern Challenge
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PRZ2: Current Status

PR2 simulator (Gazebo)
running on maria/rlab

T o 1ssues: experimental setup,
e i code 1nterface

PR2 Beta Program:

Call for Proposals

Getting a PRZ2 at Brown!
Applying for PRZ2 Beta Program




Nao: Current Status

1ssues: teleoperation
interface, object

recognition




Create: Current Status
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1ssues: arintegration,
localization

Teleop interface with ARtags




