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Big Question

What does society want to do with 

robots?

Informally, what is the “killer 

app” of robotics?

Note: not the “killer robot app”



Big Question
What does society want to do with 

robots?

Problems:

Society has little idea what 

robots can do

Programming robots requires 

significant technical expertise

Chicken-egg problem -> scifi 

notions disparate from reality



One Possible Answer

Program robots from human demonstration

Research Problems:

Algorithms: learn policy from data 

(exper., exprl., guidance, etc)

Data collection: “lifelong” human 

supervision and robot performance

Usability by humans; interruptions



Course Structure

Group project for entire class 

Cover research papers in robot 

learning and object manipulation

cover 2-3 papers per class

student paper presentations     

(20 mins max, minus questions)

everyone must summarize each paper



Group Project
Massive-scale learning from demonstration 

Implement in ROS; do Create tutorial:

http://code.google.com/p/brown-ros-pkg/

Learn three tasks from demonstration

Create robot soccer
Nao magneto assembly
PR2 intern challenge

One learning alg, one infrastructure box

Human subjects study
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WHY ROBOT LEARNING?

“Any controller that has been learned could 
have been programmed in less time and 
performed better”

              - anonymous big name in robotics
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A GOAL FOR ROBOTICS
Collaborators for human endeavors

• Robot ! tool for user 
productivity

• path of least resistance for 
doing physical tasks

• user-developed applications 
through learning

 
• critical path tasks?

• societal utility?
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Personal
Computing

Research Novelty tech Pervasive tools

ENIAC Apple II Laptop OLPC

“technology exponentials”, e.g., Moore’s Law;
mentioned by Brooks and others
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Personal
Computing

Internet

Graphics

ENIAC Apple II Laptop OLPC

ARPAnet Mosaic Gmail YouTube

Sketchpad Tron
Final Fantasy Madden

Research Novelty tech Pervasive tools
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Personal
Computing

Internet

Graphics

Robotics ?????

ENIAC Apple II Laptop OLPC

ARPAnet Mosaic Gmail YouTube

Sketchpad Tron
Final Fantasy Madden

Shakey Roomba

Research Novelty tech Pervasive tools
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Personal
Computing

Internet

Graphics

Robotics ?????

ENIAC Apple II Laptop OLPC

ARPAnet Mosaic Gmail YouTube

Sketchpad Tron
Final Fantasy Madden

Shakey Roomba

Currently

“Personal Robotics 
Revolution”

Research Novelty tech Pervasive tools
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DISTINCT CHALLENGES

Other exponentials predicated on 
deterministic manipulation of state

Enables “write local, run global” development

Variance and uncertainty in tasks, users, and 
environments limits this model for robotics
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WHY ROBOT LEARNING?

When does learning make sense compared to 
teleop or manual programming?

• Discovery of controllers difficult to 
phrase analytically

• Enabling non-technical users to express 
robot controllers

14
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WHY ROBOT LEARNING?

Either way, expression of computing required: 
FSMs, MDPs, objective functions, likelihoods etc.

• Discovery of controllers difficult to 
phrase analytically

• Enabling non-technical users to express 
robot controllers

15

Trained users fluent in expressing models of computing 

Non-technical users might not gain such programming fluency
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BROADER VIEW

Casted in FSMs, learn as a whole:

1) Policies for states/primitives

2) Transitions between states

3) State pre/postconditions

16
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INFLAMMATORY STATEMENT:
Computational models learned for robots are significantly 

more limited than handcoded models
b/c learning focuses on individual issues above
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BROADER VIEW

Casted in FSMs, learn as a whole:

1) Policies for states/primitives

2) Transitions between states

3) State pre/postconditions
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Our use of pairwise kernels to learning primitives from human demonstration
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BEGINNINGS:
ROBOT IMITATION

Embodiment
Sensing/Actuation

Perception

Decision
Making

Motion
Control

Embodiment
Sensing/Actuation

Perception

Decision
Making

Motion
Control

Estimate a robot policy
that matches observed

human behavior

[Fod, Mataric, Jenkins 2002]
[Jenkins, Mataric 2004]

"
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Motion
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Motion
Control

Estimate a robot policy
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Motion 
Primitives

Linear basis for human motion
(Neuro-inspired)

D(x,u) = !i ui Bi(x)

[Fod, Mataric, Jenkins 2002]
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Embodiment
Sensing/Actuation

Perception

Decision
Making

Motion
Control

Embodiment
Sensing/Actuation

Perception

Decision
Making

Motion
Control

Estimate a robot policy
that matches observed

human behavior

Motion 
Primitives

Linear basis for human motion
(Neuro-inspired)

D(x,u) = !i ui Bi(x)

Spinal FieldsMirror Neurons

Motion Dynamics

[Fod, Mataric, Jenkins 2002]
[Jenkins, Mataric 2004]BEGINNINGS:

ROBOT IMITATION

20
[Giszter et al][Rizzolatti et al]
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Embodiment
Sensing/Actuation

Perception

Decision
Making

Motion
Control

Embodiment
Sensing/Actuation

Perception

Decision
Making

Motion
Control

Estimate a robot policy
that matches observed

human behavior

Motion 
Primitives

D(x,u) = !i ui Bi(x)

Spinal FieldsMirror Neurons Predict human motionClassify human motion

Linear basis for human motion
(Neuro-inspired)

Motion Dynamics

[Fod, Mataric, Jenkins 2002]
[Jenkins, Mataric 2004]BEGINNINGS:

ROBOT IMITATION
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LEARNING FSMS FROM 
DEMONSTRATION?
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Basic robot soccer attack move

(a) Rotate (b) Align (c) Approach (d) Kick

Figure 2: Unimap soccer scorer policy. The robot maintains sight of the ball and goal.

(a) Approach (b) Trap (c) Aim (d) Kick

Figure 3: Multimap soccer scorer policy. The robot ‘remembers’ the ball and goal locations when not visible.

4 and shown in figure 1. It consists of the robot acquir-
ing control of the ball (very important for soccer) and can
logically be decomposed into two subtasks: First, the robot
must locate and walk towards the ball, dropping the head
to keep the ball in view (seek). Second, when the robot
is close enough, it should stop walking and execute a trap
maneuver, to bring the ball securely under its chin (trap).

2.1 Data Generation
Our platform, pictured in figure 5, is a commercially avail-
able robot platform, the Sony Aibo robot dog. We have
equipped it with a rudimentary vision system, consisting of
color segmentation and blobbing. That is, all perceived col-
ors are binned into one of six categories (black, orange, blue,
yellow, green, white) and each color is treated as a blob. The
x and y locations (in image coordinates) and blob size (pixel
count) of each color serve as input to our learning system.

Algorithm 1 Unimap Goal Scorer

Require: Perceptual variables BALL and GOAL
Ensure: Action output ACTION

loop
Update BALL and GOAL
if isLinedUp(BALL,GOAL) then

if isKickable(BALL) then
ACTION ← “kick”

else
ACTION ← “approach ball”

else if isVisible(BALL) AND isVisible(GOAL) then
ACTION ← “sidestep”

else if isVisible(BALL) then
ACTION ← “circle”

else
ACTION ← “spin”

In addition we take as input the motor pose of the four mo-
tors in the head (tilt, pan, neck and mouth), for a total of
22 inputs.

Our platform also has a basic walk gait generation system.
Taking in a desired walk speed in the lateral and perpen-
dicular directions, as well as a turning rate, it generates leg
motor positions for the robot. These 3 parameters, along
with new pose information for the head motors, plus a kick
potential, form the 8 dimensional output space. When the
kick potential rises above 0.5, a prerecorded kicking motion
is performed. All inputs and outputs are normalized to lie
in the range [-1,1], although each dimension may not use the
entire range.

We have written a hand-coded controller to perform the AQ
task and used it to collect 1000 datapoints (∼30 seconds)
worth of autonomous behavior for analysis here. In addition,

Figure 4: The multimodal goal-scoring task as a fi-
nite state machine. We examine further the ball-
acquire subtask.

Attacker FSM

[Grollman, Jenkins 09]
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PERCEPTUAL ALIASING
Standard attack is 2 overlapping policies

• distinguished by latent context variable
Unimodal attacker is much less efficient

23

Standard offensive move:
acquire ball, find goal, shoot

Unimodal attacker:
line up ball and goal, then shoot

assume only camera in nose and prioprioception
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•Consider y = sqrt(x)•averaging outputs will be incorrect•2 regressors needed for pos. and neg.

SQUARE ROOT EXAMPLE
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Learning multi-objective robot control policies from demonstration

Daniel H Grollman and Odest Chadwicke Jenkins
Department of Computer Science, Brown University

Providence, RI 02906
{dang,cjenkins}@cs.brown.edu
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Figure 1:
√

x learned with a functional regression algo-
rithm (LWPR). The multiple outputs are averaged.

When demonstrating unknown robot tasks via teleop-
eration, human users may leverage information, latent in
their mind, that is not observable to the robot. Such in-
formation may include user preferences as to how a task
should be performed, state information observable to the
human but not the robot, or task structure information
such as subtask objectives. Such a user may perform a
different action in what the robot perceives to be the same
state. Thus, the resulting mapping from perceived state
to actions π : ŝ → a, as seen by the robot may be a
one-to-many multimap, instead of a one-to-one function.

Our interactive learning from demonstration architec-
ture [1] performs learning from teleoperative demonstra-
tion via direct policy approximation (regression). How-
ever, functional regression algorithms are not appropriate
for learning multimap policies (see Fig. 1). Instead, we
have developed ROGER (Realtime Overlapping Gaussian
Regression Experts), a multimap regression algorithm for
interactive learning from demonstration (Fig 2).

ROGER is based on the Infinite Mixture of Gaussian
Processes model [2]. Interactivity with a human user is
achieved by reformulating it as a particle filter and using
the Sparse Online Gaussian Process formulation [3]. Cur-
rent work focuses on improving the algorithm’s sparse and
realtime properties and applying it to real robot tasks.

Whilst learning a multimap in this manner, the overall
task is decomposed into a collection of overlapping, func-
tional, experts. In a multi-objective setting these experts
correspond to the subtask decomposition. Properly se-
lecting an expert, or subtask, at run time can be seen as
learning a finite-state machine describing the transitions
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Figure 2:
√

x learned with ROGER, a multimap learning
algorithm. Learned experts shown by color.

between the subtasks.
Each datapoint in the human demonstration can be

labeled with the expert (or possible experts) that gener-
ated it. From the resulting expert trace, we can learn
pre- and post-conditions for each expert, as in [4]. These
conditions can be used when the robot is behaving au-
tonomously to switch experts appropriately, and perform
the task correctly.

Further, as each expert is a single-objective functional
mapping from states to actions, they can be improved to
perform better than the human demonstrator. Specif-
ically, using techniques such as inverse reinforcement
learning [5], the underlying objective for each expert can
be deduced. The function for that expert can then be
optimized with respect to its objective, resulting in im-
proved performance.
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to actions π : ŝ → a, as seen by the robot may be a
one-to-many multimap, instead of a one-to-one function.

Our interactive learning from demonstration architec-
ture [1] performs learning from teleoperative demonstra-
tion via direct policy approximation (regression). How-
ever, functional regression algorithms are not appropriate
for learning multimap policies (see Fig. 1). Instead, we
have developed ROGER (Realtime Overlapping Gaussian
Regression Experts), a multimap regression algorithm for
interactive learning from demonstration (Fig 2).

ROGER is based on the Infinite Mixture of Gaussian
Processes model [2]. Interactivity with a human user is
achieved by reformulating it as a particle filter and using
the Sparse Online Gaussian Process formulation [3]. Cur-
rent work focuses on improving the algorithm’s sparse and
realtime properties and applying it to real robot tasks.

Whilst learning a multimap in this manner, the overall
task is decomposed into a collection of overlapping, func-
tional, experts. In a multi-objective setting these experts
correspond to the subtask decomposition. Properly se-
lecting an expert, or subtask, at run time can be seen as
learning a finite-state machine describing the transitions

0 0.2 0.4 0.6 0.8 1
!1

!0.5

0

0.5

1

 

 

input

expert 1

expert 2

Figure 2:
√

x learned with ROGER, a multimap learning
algorithm. Learned experts shown by color.

between the subtasks.
Each datapoint in the human demonstration can be

labeled with the expert (or possible experts) that gener-
ated it. From the resulting expert trace, we can learn
pre- and post-conditions for each expert, as in [4]. These
conditions can be used when the robot is behaving au-
tonomously to switch experts appropriately, and perform
the task correctly.

Further, as each expert is a single-objective functional
mapping from states to actions, they can be improved to
perform better than the human demonstrator. Specif-
ically, using techniques such as inverse reinforcement
learning [5], the underlying objective for each expert can
be deduced. The function for that expert can then be
optimized with respect to its objective, resulting in im-
proved performance.

References

[1] Daniel H Grollman and Odest Chadwicke Jenkins. Dogged
learning for robots. In ICRA 2007.

[2] Edward Meeds and Simon Osindero. An alternative infi-
nite mixture of gaussian process experts. In NIPS, pages
883–890, 2006.
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Locally Weighted Projection Regression
or Gaussian Process Regression

Multimap Regression
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INFINITE MIXTURES OF EXPERTS

p(X, Y, Z) ∝ p(Z)p(X|Z)p(Y |X, Z)
Z: space of 

mixture 
models

predict 
output 

given input
cluster inputs 
into models

regressor 
for each 
model

prior over 
models

mixture
model

[Grollman, Jenkins 09]

Given

π : X → Y
(xi, yi)i=1..t

Infer
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INFINITE MIXTURES OF EXPERTS
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CAREER: Robot Learning from Multivalued Demonstration
Project Description

1 Motivation
Through robot learning from demonstration (LfD), our long-term goal is to provide typical users
of consumer technology a medium for realizing their intended behavior into autonomous robot
control policies. Specifically, given the same situation awareness1, a robot controller (representing
a decision making policy) should make decisions similar to those of its user (the creator of the
policy). While several paradigms exist for user’s to express robot policies2, we remain confronted
by a human-robot divide. This divide refers to the disparity between the diverse needs and ideas
of users across society and their ability to instantiate robot control to meet their desired ends.

We claim this human-robot divide is related to the expected personal robotics revolution [18]
where robots become ubiquitous tools of use for society. The impact of personal computing over
the past decades centered on the ability of users to reliably manipulate virtual domains through
the storage and processing of digital information, such as in spreadsheets, web authoring, and
virtual worlds. Analogously, the potential impact for robotics rests upon enabling human users
to manipulate physical domains by crafting and interacting with autonomous robot controllers.
However, the evolution from personal computing to robotics faces several challenges imposed by
the physical world. In particular, the “write local, run global” model may not be appropriate for
robotics. The performance of autonomous robots (in terms of functionality and reliability) is often
sensitive to variations in physical environments, capabilities of robot platforms, and the nature of
user-desired tasks. Such sensitivity highlights the need for adaptation of robot behavior to their
local environment and robot platform as well as unknown tasks, not originally programmed on a
robot and known only to a user.

Robot LfD [20, 22, 11, 4, 1, 44, 19, 35, 13, 6, 51, 2, 9] offers one compelling direction for
implicitly affecting robot decision making without explicitly modifying its control executable. In
Robot LfD, robots are programmed implicitly from user demonstration by estimating a policy
from collected demonstration data. This approach to crafting controllers is data-driven and sits in

1i.e., the perception of its state in an environment
2e.g., teleoperation, text-based and visual programming, speech and gesture instructions, and optimization/search

Figure 1: Learning robot soccer from demonstration. One of our goals is to learn basic robot soccer
control from demonstration using video game style interfaces (left). Experiences from deployment of this
system to users across our department (right) has indicated there are multiple valid approaches to goal
scoring. Many of which are multivalued mappings from perceived robot state to action outputs.

1

User demonstration

[Grollman, Jenkins 09]

Given

π : X → Y
(xi, yi)i=1..t

Infer
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local environment and robot platform as well as unknown tasks, not originally programmed on a
robot and known only to a user.

Robot LfD [20, 22, 11, 4, 1, 44, 19, 35, 13, 6, 51, 2, 9] offers one compelling direction for
implicitly affecting robot decision making without explicitly modifying its control executable. In
Robot LfD, robots are programmed implicitly from user demonstration by estimating a policy
from collected demonstration data. This approach to crafting controllers is data-driven and sits in

1i.e., the perception of its state in an environment
2e.g., teleoperation, text-based and visual programming, speech and gesture instructions, and optimization/search

Figure 1: Learning robot soccer from demonstration. One of our goals is to learn basic robot soccer
control from demonstration using video game style interfaces (left). Experiences from deployment of this
system to users across our department (right) has indicated there are multiple valid approaches to goal
scoring. Many of which are multivalued mappings from perceived robot state to action outputs.
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outputs (T)

User demonstration

[Grollman, Jenkins 09]
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Sparse (Pairwise)
Gaussian Process Regression
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User demonstration

[Grollman, Jenkins 09]
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from collected demonstration data. This approach to crafting controllers is data-driven and sits in

1i.e., the perception of its state in an environment
2e.g., teleoperation, text-based and visual programming, speech and gesture instructions, and optimization/search

Figure 1: Learning robot soccer from demonstration. One of our goals is to learn basic robot soccer
control from demonstration using video game style interfaces (left). Experiences from deployment of this
system to users across our department (right) has indicated there are multiple valid approaches to goal
scoring. Many of which are multivalued mappings from perceived robot state to action outputs.
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prior over the experts allows us to have a potentially infinite number of them, freeing us from having
to choose a number a priori. Inputs from each region are gated to a Gaussian process expert, which
operates as described above.

Previous work in this area has focused on batch algorithms (Gibbs sampling), while we require
an incremental formulation for our learning scenario. Thus, we have developed an sequential Monte-
Carlo (or particle filter) technique for use in this model [64]. We describe here our model and
algorithm, ROGER (Realtime Overlapping Gaussian Expert Regression), an incremental multimap
regressor.

A ROGER model is Bayesian, and involves estimating a distribution over possible mappings. It
has an infinite Gaussian mixture model (IGMM) as an input gating mechanism [31] which stochas-
tically “gates” each input to one of an infinite number of Sparse Gaussian process experts. The
indicator variables (z) indicating which local expert gave rise to a particular input/output pair are
generated by a Chinese restaurant process (CRP) [50] with concentration parameter α. The concen-
tration parameter specifies how uniform the assignment of input/output pairs to experts is thought
to be a priori (large α implies many experts). The CRP prior

P (zi = k|z−i) =

{
mk

N+α−1 , k ≤ K+

α
N+α−1 , k = K+ + 1

(4.3)

can be described as a sequential process that generates sequences of integers where the probability
that the next integer in the sequence is k is proportional to the number of times k has already
appeared in the sequence. The probability that the next integer takes on a new value of k is
proportional to α. Here mk =

∑N
i=1 I(zi = k) is the number of times k appears in the sequence

(I() is the indicator function), K+ is the number of unique integers that appear, and N is the total
sequence length.

For each of the K+ classes there is an expert consisting of a multivariate-normal input model
and GP regressor. In other words, there are K+ multivariate-normal classes that generate input
points, and a GP expert for each class which is responsible for generating outputs given the inputs.
Each input space model has mean parameter µk and covariance parameter Σk. These input class

Figure 4.2: A toy example illustrating when averaging observed control signals may not lead to
correct behavior
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CAREER: Robot Learning from Multivalued Demonstration
Project Description

1 Motivation
Through robot learning from demonstration (LfD), our long-term goal is to provide typical users
of consumer technology a medium for realizing their intended behavior into autonomous robot
control policies. Specifically, given the same situation awareness1, a robot controller (representing
a decision making policy) should make decisions similar to those of its user (the creator of the
policy). While several paradigms exist for user’s to express robot policies2, we remain confronted
by a human-robot divide. This divide refers to the disparity between the diverse needs and ideas
of users across society and their ability to instantiate robot control to meet their desired ends.

We claim this human-robot divide is related to the expected personal robotics revolution [18]
where robots become ubiquitous tools of use for society. The impact of personal computing over
the past decades centered on the ability of users to reliably manipulate virtual domains through
the storage and processing of digital information, such as in spreadsheets, web authoring, and
virtual worlds. Analogously, the potential impact for robotics rests upon enabling human users
to manipulate physical domains by crafting and interacting with autonomous robot controllers.
However, the evolution from personal computing to robotics faces several challenges imposed by
the physical world. In particular, the “write local, run global” model may not be appropriate for
robotics. The performance of autonomous robots (in terms of functionality and reliability) is often
sensitive to variations in physical environments, capabilities of robot platforms, and the nature of
user-desired tasks. Such sensitivity highlights the need for adaptation of robot behavior to their
local environment and robot platform as well as unknown tasks, not originally programmed on a
robot and known only to a user.

Robot LfD [20, 22, 11, 4, 1, 44, 19, 35, 13, 6, 51, 2, 9] offers one compelling direction for
implicitly affecting robot decision making without explicitly modifying its control executable. In
Robot LfD, robots are programmed implicitly from user demonstration by estimating a policy
from collected demonstration data. This approach to crafting controllers is data-driven and sits in

1i.e., the perception of its state in an environment
2e.g., teleoperation, text-based and visual programming, speech and gesture instructions, and optimization/search

Figure 1: Learning robot soccer from demonstration. One of our goals is to learn basic robot soccer
control from demonstration using video game style interfaces (left). Experiences from deployment of this
system to users across our department (right) has indicated there are multiple valid approaches to goal
scoring. Many of which are multivalued mappings from perceived robot state to action outputs.
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prior over the experts allows us to have a potentially infinite number of them, freeing us from having
to choose a number a priori. Inputs from each region are gated to a Gaussian process expert, which
operates as described above.

Previous work in this area has focused on batch algorithms (Gibbs sampling), while we require
an incremental formulation for our learning scenario. Thus, we have developed an sequential Monte-
Carlo (or particle filter) technique for use in this model [64]. We describe here our model and
algorithm, ROGER (Realtime Overlapping Gaussian Expert Regression), an incremental multimap
regressor.

A ROGER model is Bayesian, and involves estimating a distribution over possible mappings. It
has an infinite Gaussian mixture model (IGMM) as an input gating mechanism [31] which stochas-
tically “gates” each input to one of an infinite number of Sparse Gaussian process experts. The
indicator variables (z) indicating which local expert gave rise to a particular input/output pair are
generated by a Chinese restaurant process (CRP) [50] with concentration parameter α. The concen-
tration parameter specifies how uniform the assignment of input/output pairs to experts is thought
to be a priori (large α implies many experts). The CRP prior

P (zi = k|z−i) =

{
mk

N+α−1 , k ≤ K+

α
N+α−1 , k = K+ + 1

(4.3)

can be described as a sequential process that generates sequences of integers where the probability
that the next integer in the sequence is k is proportional to the number of times k has already
appeared in the sequence. The probability that the next integer takes on a new value of k is
proportional to α. Here mk =

∑N
i=1 I(zi = k) is the number of times k appears in the sequence

(I() is the indicator function), K+ is the number of unique integers that appear, and N is the total
sequence length.

For each of the K+ classes there is an expert consisting of a multivariate-normal input model
and GP regressor. In other words, there are K+ multivariate-normal classes that generate input
points, and a GP expert for each class which is responsible for generating outputs given the inputs.
Each input space model has mean parameter µk and covariance parameter Σk. These input class

Figure 4.2: A toy example illustrating when averaging observed control signals may not lead to
correct behavior
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Why robot learning?

Learning from demonstration

• Human motion primitives through 
dimension reduction

• Decision making primitives through 
infinite mixtures of experts

Learning ! the path of least resistance?
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Group Project
Massive-scale learning from demonstration 

Implement in ROS; do Create tutorial:

http://code.google.com/p/brown-ros-pkg/

Learn three tasks from demonstration

Create robot soccer
Nao magneto assembly
PR2 intern challenge

One learning alg, one infrastructure box

Human subjects study



Create CS148 Task

Robot Soccer



Create: Current Status

Goal scoring with regression

single objective 

possible, but

multiple 

objectives 

remains problem



PR2 Intern Challenge

Serving Drinks



PR2: Current Status

Getting a PR2 at Brown! 

Applying for PR2 Beta Program

PR2 simulator (Gazebo) 

running on maria/rlab

issues: experimental setup, 

code interface



issues: teleoperation 

interface, object 

recognition

Nao: Current Status



Create: Current Status

Teleop interface with ARtags

pics from tjay,

issues: arintegration, 

localization


