CS295-Z: Robot Learning and Autonomy

Chad Jenkins - Spring 2010 Brown Computer Science

http://www.cs.brown.edu/courses/csci2950-z.html

Big Question

What does society want to do with robots?

Informally, what is the "killer app" of robotics?

Note: not the "killer robot app"

Big Question

What does society want to do with robots?

Problems:

Society has little idea what robots can do

Programming robots requires significant technical expertise

Chicken-egg problem -> scifi notions disparate from reality

One Possible Answer

Program robots from human demonstration
Research Problems:

Algorithms: learn policy from data (exper., exprl., guidance, etc)

Data collection: "lifelong" human supervision and robot performance

Usability by humans; interruptions

Course Structure

Group project for entire class Cover research papers in robot learning and object manipulation cover 2-3 papers per class student paper presentations (20 mins max, minus questions) everyone must summarize each paper

Group Project

Massive-scale learning from demonstration

- Implement in ROS; do Create tutorial:
 - http://code.google.com/p/brown-ros-pkg/
- Learn three tasks from demonstration
 Create robot soccer
 - Nao magneto assembly
 BR2 intern challenge
 - PR2 intern challenge
- One learning alg, one infrastructure box
- Human subjects study

WHY ROBOT LEARNING?

"Any controller that has been learned could have been programmed in less time and performed better"

- anonymous big name in robotics

A GOAL FOR ROBOTICS

Collaborators for human endeavors

- Robot → tool for user productivity
- path of least resistance for doing physical tasks
- user-developed applications through learning
- critical path tasks?
- societal utility?

"technology exponentials", e.g., Moore's Law; mentioned by Brooks and others

Laptop

Novelty tech

Pervasive tools

OLPC

DISTINCT CHALLENGES

Other exponentials predicated on deterministic manipulation of state

Enables "write local, run global" development

Variance and uncertainty in tasks, users, and environments limits this model for robotics

WHY ROBOT LEARNING?

When does learning make sense compared to teleop or manual programming?

- Discovery of controllers difficult to phrase analytically
- Enabling non-technical users to express robot controllers

WHY ROBOT LEARNING?

Either way, expression of computing required: FSMs, MDPs, objective functions, likelihoods etc.

 Discovery of controllers difficult to phrase analytically

Trained users fluent in expressing models of computing

Enabling non-technical users to express robot controllers

Non-technical users might not gain such programming fluency

BROADER VIEW

Casted in FSMs, learn as a whole:

I) Policies for states/primitives

2) Transitions between states

3) State pre/postconditions

INFLAMMATORY STATEMENT:

Computational models learned for robots are significantly more limited than handcoded models b/c learning focuses on individual issues above

BROADER VIEW

Casted in FSMs, learn as a whole:

I) Policies for states/primitives

Our use of pairwise kernels to learning primitives from human demonstration

2) Transitions between states

3) State pre/postconditions

[Fod, Mataric, Jenkins 2002] [Jenkins, Mataric 2004]

BEGINNINGS: ROBOT IMITATION

BEGINNINGS: ROBOT IMITATION

[Fod, Mataric, Jenkins 2002] [Jenkins, Mataric 2004]

Estimate a robot policy that matches observed human behavior

BEGINNINGS: ROBOT IMITATION

[Fod, Mataric, Jenkins 2002] [Jenkins, Mataric 2004]

Estimate a robot policy that matches observed human behavior

BEGINNINGS: ROBOT IMITATION

[Fod, Mataric, Jenkins 2002] [Jenkins, Mataric 2004]

Estimate a robot policy that matches observed human behavior

LEARNING FSMs FROM DEMONSTRATION?

Basic robot soccer attack move

PERCEPTUAL ALIASING

Standard attack is 2 overlapping policies

distinguished by latent context variable
 Unimodal attacker is much less efficient

Standard offensive move: acquire ball, find goal, shoot

Unimodal attacker: line up ball and goal, then shoot

Jenkins - Learning Motion Passume only camera in nose and prioprioception

SQUARE ROOT EXAMPLE

- Consider y = sqrt(x)
 - averaging outputs will be incorrect
 - 2 regressors needed for pos. and neg.

INFINITE MIXTURES OF EXPERTS

Infer $\pi: X \to Y$ Given $(x_i, y_i)_{i=1..t}$

predict cluster inputs output into models given input $p(X, Y, Z) \propto p(Z)p(X|Z)p(Y|X, Z)$

Z: space of mixture models prior over models mixture model regressor for each model

INFINITE MIXTURES OF EXPERTS

Infer $\pi: X \to Y$ Given $(x_i, y_i)_{i=1..t}$

User demonstration

cluster inputs output into models given input $p(X, Y, Z) \propto p(Z)p(X|Z)p(Y|X, Z)$

Z: space of mixture models prior over models

mixture model regressor for each model

predict

LEARNED GOAL SCORER

MULTIMAP GOAL SCORING: LEARNED

OVERVIEW

Why robot learning?

Learning from demonstration

- Human motion primitives through dimension reduction
- Decision making primitives through infinite mixtures of experts

Learning → the path of least resistance?

Group Project

Massive-scale learning from demonstration

- Implement in ROS; do Create tutorial:
 - http://code.google.com/p/brown-ros-pkg/
- Learn three tasks from demonstration
 Create robot soccer
 - Nao magneto assembly
 BR2 intern challenge
 - PR2 intern challenge
- One learning alg, one infrastructure box
- Human subjects study

Create CS148 Task

Robot Soccer

Create: Current Status

single objective
possible, but

multiple
objectives
remains problem

Goal scoring with regression

PR2 Intern Challenge

Serving Drinks

PR2: Current Status

PR2 simulator (Gazebo) running on maria/rlab

Getting a PR2 at Brown! Applying for PR2 Beta Program

Nao: Current Status

issues: teleoperation
interface, object
recognition

Create: Current Status

Eile Edit View History Bookmarks Tools Help

🔃 🌵 👻 😂 🕒 📥 📳 http://localhost:8080/--obot/wir/

@ Wir @ Wir404

M Gmail - Inbox - trevorjay@g... 💢 🐻 Wir 🛛 🕱 🕸

Highlight all 🗌 Match case

issues: arintegration, localization

Teleop interface with ARtags