Value Function Approximation

CSCI 2951-F Ron Parr Brown University

Value function approximation

- Markov assumption, "curse of dimensionality" -> big state spaces
- Often impractical to run value iteration/policy iteration
- Classical approach:
 - Use an over-simplified model, designed by hand
 - Gives correct answer to the "wrong" question.
- Increasingly popular approach (though has classical roots)
 - Use function approximation to represent value function
 - Not obviously/theoretically better but has had some practical success

How to compute TV(s) in approximate VI

• Challenges:

- V is not a vector, but some other representation
- TV involves an expectation over next states, next states which may not be in original sample set S, i.e. off-sample extrapolation is likely *required*
- If number of next states is large and/or no model is available
 - Sample next states too
 - Evaluate expected next state value by Monte Carlo
 - Generate many next states for each state
 - Possible if model/simulator can be easily reset

Is this good news? Good news: Convergence yay! ^(a) In some cases it may be possible to estimate ε Bad news: Averagers do not scale well Keeping ε small requires dense S Achieving dense S is exponentially expensive in dimension of space

Beyond Averagers

- Moving beyond averagers requires more powerful function approximation
- Linear approximation is more powerful than averagers because it can extrapolate beyond points in S=s¹...s^m (For averagers, any point not in s¹...s^m has value > min(V(s¹)...V(s^m)) and < max(V(s¹)...V(s^m))
- Non-linear approximation (e.g. neural networks) is even more powerful than linear approximation

Van Roy's Result Bellman operator *fixed policy* is a contraction in the weighted L₂ norm Weights come from the stationary distribution of P Linear regression in the weighted L₂ norm is non expansive in the weighted L₂ norm Understanding this: Weighted norm redefines distance function so that different dimensions in the original space have different importance Equivalent scaling the dimensions of the space Combined Regression-Bellman operator is a contraction!

To what does it converge? $\left\|V^{\pi} - \widehat{V^{\pi}}\right\|_{2,\rho} \leq \frac{1}{\sqrt{1-\kappa^2}} \|V^{\pi} - \Pi V^{\pi}\|_{2,\rho}$ • ρ is the stationary distribution of P_{π} • κ is the effective contraction rate ($\leq \gamma$)

Q-iteration: Generalization of Value Iteration

•
$$\forall s, a: Q(s, a) \leftarrow R(s, a) + \gamma \Sigma'_s P(S'|s, a) V(s')$$

•
$$V(s') = \max_{a'} Q(s', a')$$

• Q-iteration has similar convergence properties to value iteration

Application to stopping

- What about optimization?
- How to think about Bellman operator with max
 - Define T^*_{Q} as the Q-iteration operator
 - ${\rm T*}_{\rm Q}$ is a contraction is Max Norm
- Is T^*_{Q} a non-expansion in weighted L₂?
- No. 送
- But... It is non-expansion if max is always done with a constant
- Optimal stopping: Should I continue or stop and receive a payout?

Financial application Want to assign a price to an asset with following properties: Can be held by owner for an arbitrary amount of time Can cash out at some future time and receive a state-dependent reward Want to compute present value of this asset Features: Variables relevant to immediate value of asset Variables relevant to future value of the asset Supposedly used by some financial institutions to price assets

Q-iteration in general What if "Fit" is a neural network? Linear value function approximation is a special case of this (Lack of) convergence guarantees from linear VFA apply to neural networks, but... If approximation error introduced at each step can be bounded by a constant, then overall approximation error is low (Note: this is false for the Van Roy counterexample.) Is this a reasonable assumption? (discuss)

Properties of approximate VI methods

- Convergence not guaranteed, except in special cases
- Success has traditionally required very carefully chosen features and/or dense coverage to achieve low error
- Deep learning, which "automatically" learns feature representations, and uses massive numbers of samples, partially overcomes this