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Value function approximation

• Markov assumption, “curse of dimensionality” -> big state spaces
• Often impractical to run value iteration/policy iteration
• Classical approach:
• Use an over-simplified model, designed by hand
• Gives correct answer to the “wrong” question.

• Increasingly popular approach (though has classical roots)
• Use function approximation to represent value function
• Not obviously/theoretically better but has had some practical success
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Living with imperfect value functions

• How reassuring is this?
• Does this worst case hold in practice?

𝑉 − 𝑇𝑉 ! ≤ 𝜖 → 𝑉 − 𝑉∗ ! ≤
𝜖

1 − 𝛾
T is the Bellman operator

Fitted value iteration (model-based)

• Assume:
• Very large state space - can’t represent the value function as a vector
• Generic machine learning “fit” operator that fits a continuous function based upon a 

set of training points
• Fitted VI algorithm:

• Randomly initialize approximate value function V0
• i=0
• Repeat until done*

• Sample states S=s1…sm
• Fit Vi+1 on TVi(s1)…TVi(sm).
• i=i+1

• Shorthand: Vi+1=fit(TVi)
• How do we define “done”?

T is the Bellman operator
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How to compute TV(s) in approximate VI

• Challenges:
• V is not a vector, but some other representation
• TV involves an expectation over next states, next states which may not be in 

original sample set S, i.e. off-sample extrapolation is likely required

• If number of next states is large and/or no model is available
• Sample next states too
• Evaluate expected next state value by Monte Carlo

• Generate many next states for each state
• Possible if model/simulator can be easily reset 

Properties of Fitted VI (FVI) – part I

• Properties of FVI depend upon properties of Fit function
• Recall that Bellman operator “T” is a contraction in max norm, i.e., 
||𝑉# − 𝑉$||! < 𝜖 → ||𝑇𝑉# − 𝑇𝑉$||! < 𝛾𝜖, 0 ≤ 𝛾 < 1
• If two operators, F and G are contractions (i.e. for any value function 

FV and GV are contractions) then F(GV) is a contraction
• Non-expansion: If H is a non-expansion in max norm, then: 

||𝑉# − 𝑉$||! < 𝜖 → ||𝐻𝑉# −𝐻𝑉$||! ≤ 𝛾𝜖
• If one of F or G is a non-expansion in max norm, and the other is a 

contraction, the F(GV) is a contraction
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Properties of Fitted VI (FVI) – part II

• Follows from previous slide that if Fit is a non-expansion in max norm, 
then fitted VI is a contraction in max norm
• What choices of Fit are non-expansions?
• Most common examples are averagers, e.g., interpolation

• Fitted VI with interpolation:
• Pick S=s1…sm to be a grid of points
• Implementing Fit:

• For points in S, store TV(s) exactly
• For points outside of S, use a distance-weighted average of nearest neighbors

Properties of Fitted VI with averagers

• It converges!

• But to what?

• Suppose e = largest approximation error introduced at any iteration

• Total error is bounded by e/(1-g)
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Is this good news?

• Good news:
• Convergence yay! J
• In some cases it may be possible to estimate e

• Bad news:
• Averagers do not scale well
• Keeping e small requires dense S
• Achieving dense S is exponentially expensive in dimension of space

Beyond Averagers

• Moving beyond averagers requires more powerful function 
approximation

• Linear approximation is more powerful than averagers because it can 
extrapolate beyond points in S=s1…sm

(For averagers, any point not in s1…sm has value > min(V(s1)…V(sm)) and < max(V(s1)…V(sm))

• Non-linear approximation (e.g. neural networks) is even more 
powerful than linear approximation
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Linear Value Function Approximation
• |S| typically quite large
• Pick linearly independent features F=(f1…fk) 

(basis functions)
• Desire weights w=w1…wk, s.t.
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W is a kx1 column vector
F is an mxk matrix
(m is number of states sampled)

Why is linear regression so important?

• Averagers interpolate (weak, resource hungry approximation)
• Regression extrapolates (potentially more powerful)

• Linear regression = special case of most other methods
• Neural networks
• Kernel methods

• If regression fails, not much optimism on other methods
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Linear Fixed Point
• PFV=projection of V into span(F)

• If we converge, we have:

span(F)

FFwT

Π!TΦw Φw

Π#TΦw= Φw

Example: Stability Problem [Tsitsiklis & Van Roy 1996]

Problem:  Convergence not guaranteed

s2s1

No rewards, g = 0.9: V* = 0

Consider linear approx. w/ single feature f with weight w. 

)()(ˆ swsV f×= Optimal w = 0
since V*=0
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Example: Stability Problem

From iteration i, Belman equation gives

Can’t be represented in our space so find wi+1 that gives 
least-squares approx. to exact backup

After some math linear fit gives us:  wi+1 = 1.2 wi 

What does this mean? 

iii wsVsVT 8.1)(ˆ)](ˆ[ 21 == g
iii wsVsVT 8.1)(ˆ)](ˆ[ 22 == g

s2s1f(s1)=1
 Vi(s1) = wi 

f(s2)=2
 Vi(s2) = 2wi

Example: Stability Problem

1 2

Iteration #

S

V(x)

0V̂

3V̂
2V̂

1V̂

Each iteration of approximation makes things worse!
Even for this simple problem fitted VI diverges.
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Van Roy’s Result

• Bellman operator fixed policy is a contraction in the weighted L2 norm
• Weights come from the stationary distribution of P
• Linear regression in the weighted L2 norm is non expansive in the 

weighted L2 norm
• Understanding this:
• Weighted norm redefines distance function so that different dimensions in the 

original space have different importance 
• Equivalent scaling the dimensions of the space

• Combined Regression-Bellman operator is a contraction!

To what does it converge?

• r is the stationary distribution of Pp
• k is the effective contraction rate (≤ g)

𝑉# − #𝑉# $,& ≤
'
'()%

𝑉# − Π𝑉# $,&
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Q-iteration: Generalization of Value Iteration

• ∀𝑠, 𝑎: 𝑄 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾Σ&'𝑃 𝑆' 𝑠, 𝑎 𝑉(𝑠')
• 𝑉 𝑠' = max

("
𝑄(𝑠', 𝑎')

• Q-iteration has similar convergence properties to value iteration

Application to stopping

• What about optimization?
• How to think about Bellman operator with max
• Define T*Q as the Q-iteration operator
• T*Q is a contraction is Max Norm

• Is T*Q  a non-expansion in weighted L2?
• No. L
• But… It is non-expansion if max is always done with a constant
• Optimal stopping: Should I continue or stop and receive a payout?



2/13/24

11

Financial application

• Want to assign a price to an asset with following properties:
• Can be held by owner for an arbitrary amount of time
• Can cash out at some future time and receive a state-dependent reward

• Want to compute present value of this asset

• Features:
• Variables relevant to immediate value of asset
• Variables relevant to future value of the asset

• Supposedly used by some financial institutions to price assets

Perspective: Is weighted L2 reasonable?

• In many ways more reasonable than Max norm
• Worst case over entire state space hard to evaluate
• Sampling methods can never provide guarantees without additional 

assumptions

• How do you achieve weighted L2 in practice? 
(Sample from “real world” states)

• Weighted L2 gives lower weight to less frequently occurring states
• Common cases get the most weight
• Rare events may be wrong but that is forgivable(?)
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Q-iteration in general

• What if “Fit” is a neural network?
• Linear value function approximation is a special case of this
• (Lack of) convergence guarantees from linear VFA apply to neural 

networks, but…

• If approximation error introduced at each step can be bounded by a 
constant, then overall approximation error is low 

(Note: this is false for the Van Roy counterexample.)
• Is this a reasonable assumption? (discuss)

Properties of approximate VI methods

• Convergence not guaranteed, except in special cases

• Success has traditionally required very carefully chosen features 
and/or dense coverage to achieve low error

• Deep learning, which “automatically” learns feature representations, 
and uses massive numbers of samples, partially overcomes this 


