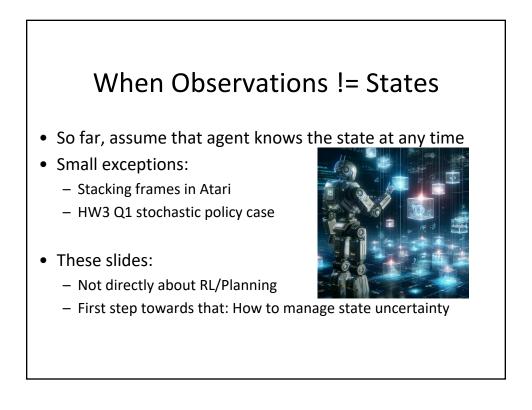
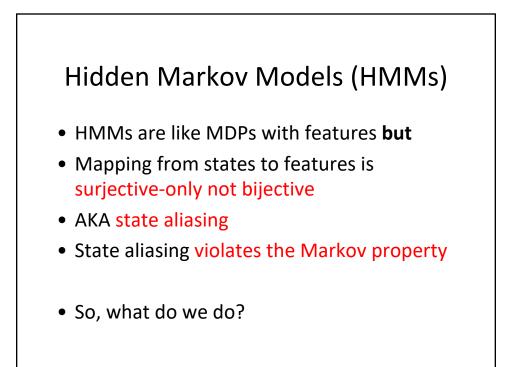
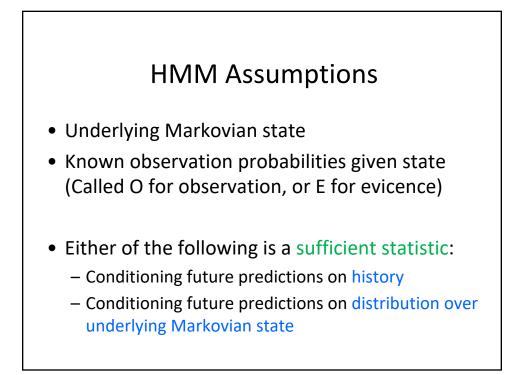
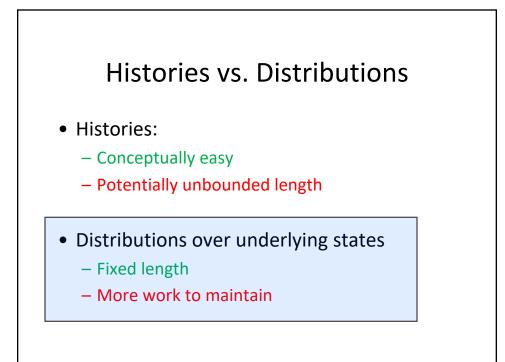
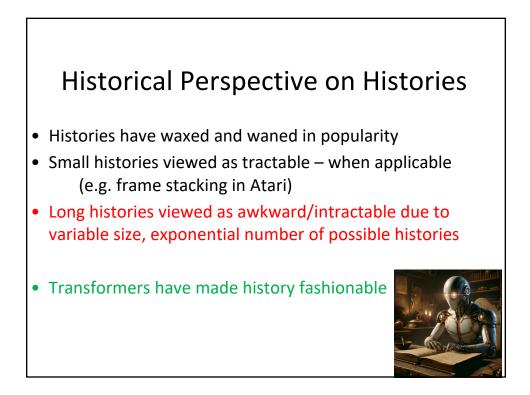
HMMs CSCI 2951-F Ronald Parr Brown University

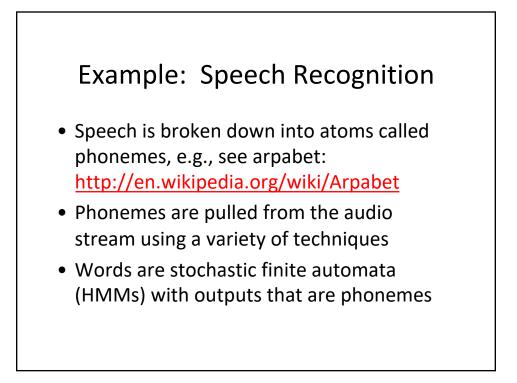


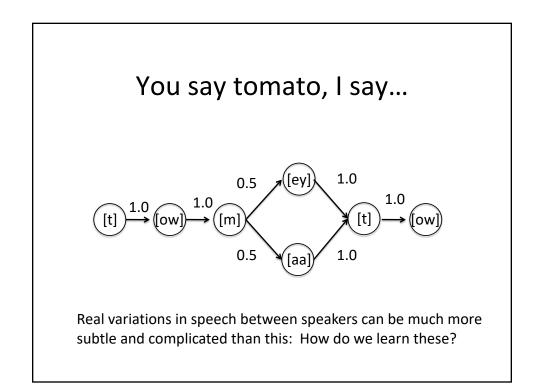




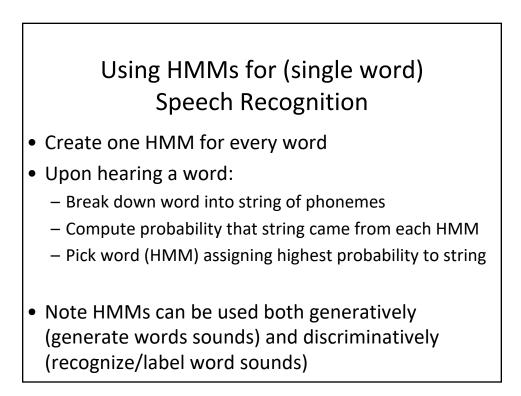






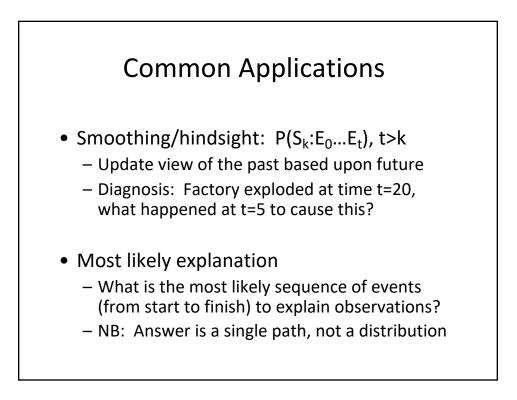


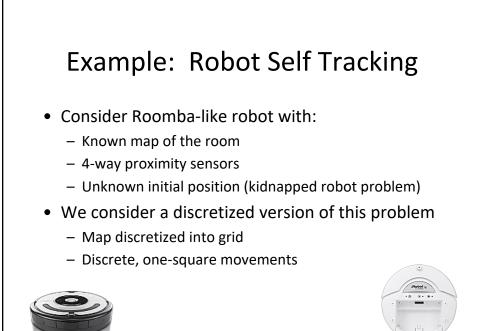
Phoneme Fun on Mac OS • say tomato • say "[inpt PHON]] tUXmAAtOW [[inpt TEXT]] " • say "[[inpt PHON]] tUXmEYtOW [[inpt TEXT]] " (Sadly, appears to be broken in latest MacOS release, but try ta'ma:tao and ta'mer,too here: http://ipa-reader.xyz)



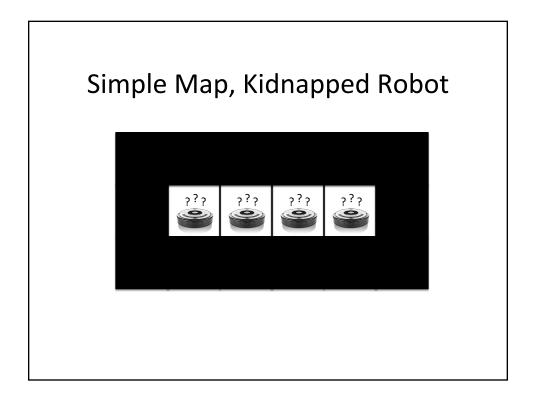
Common Applications

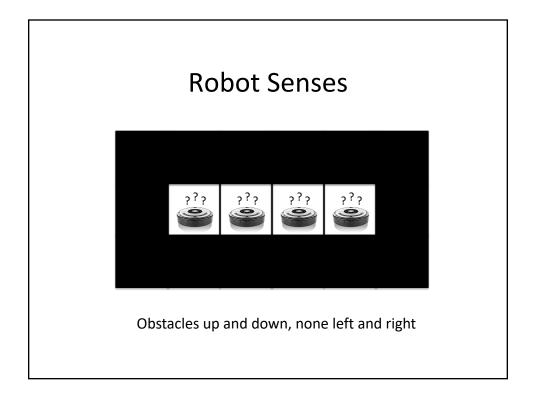
- Monitoring/Filtering: P(St:E0...Et)
 - S is the current status of the patient/factory
 - E is the current measurement
- Prediction: P(S_t:E₀...E_k), t>k
 - S is the current/future position of an object
 - E are our past observations
 - Project S into the future

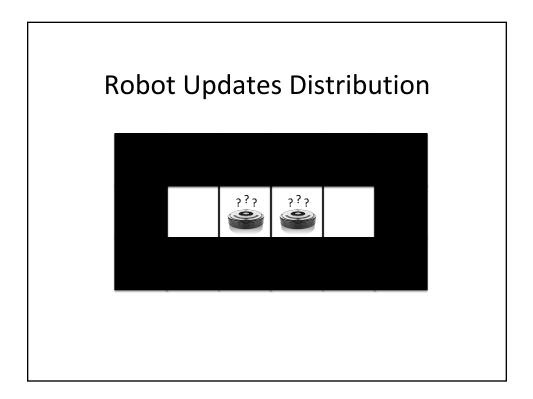


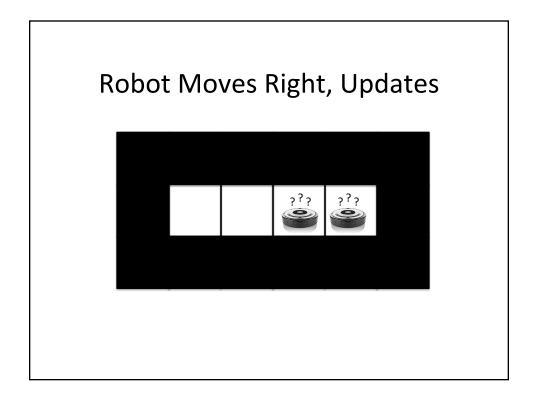


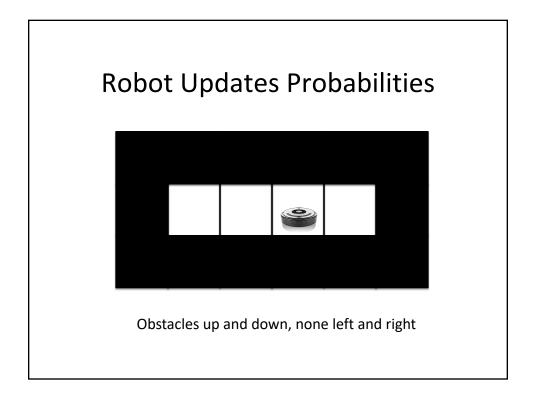
(Images from iRobot's web page)

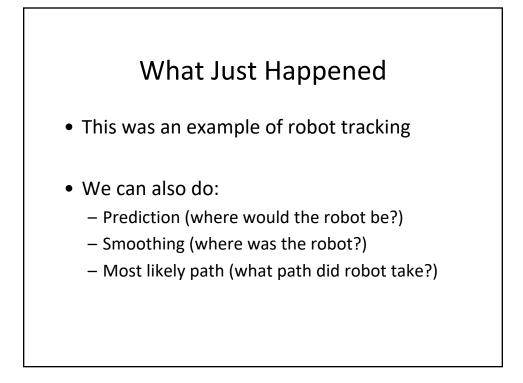




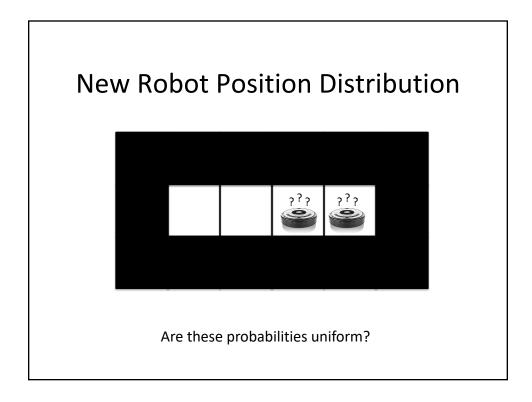


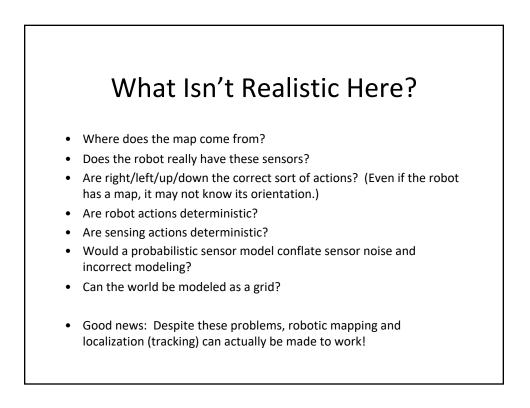


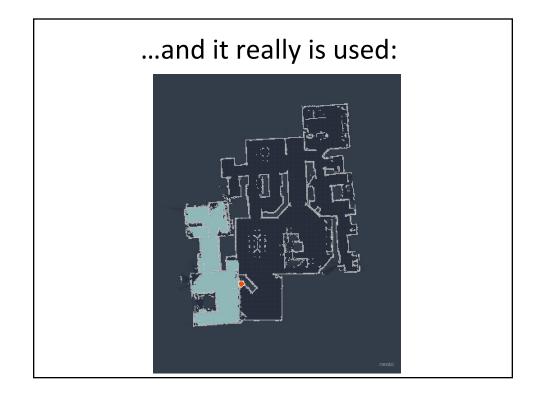


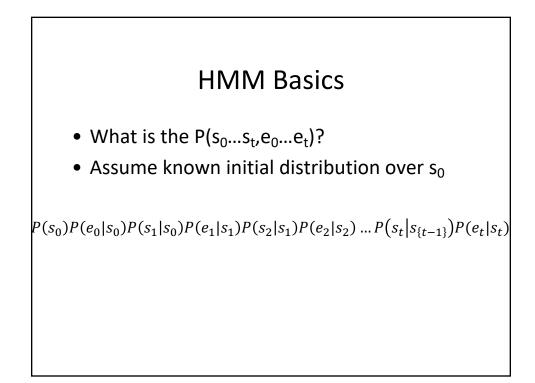






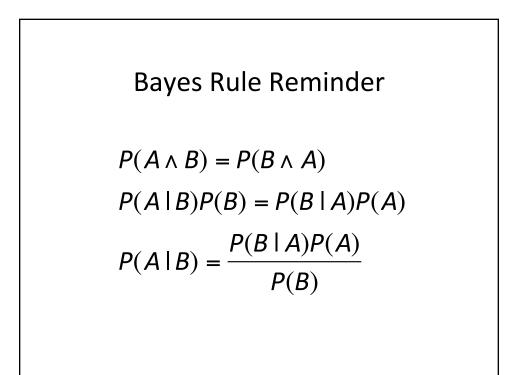


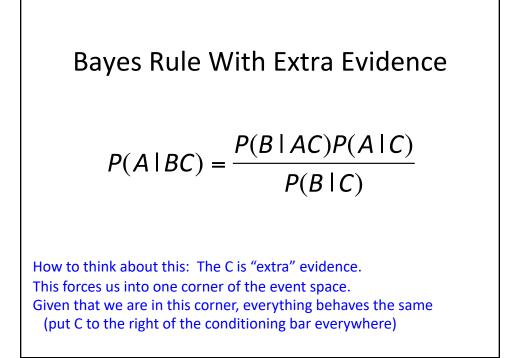


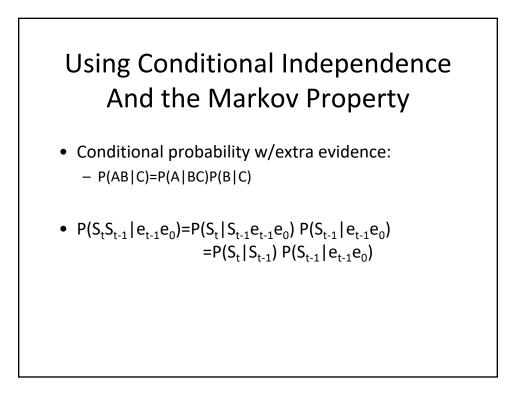


Conditional Probability with Extra Evidence

- Recall: P(AB)=P(A|B)P(B)
- Add extra evidence C (can be a set of variables)
- P(AB|C)=P(A|BC)P(B|C)





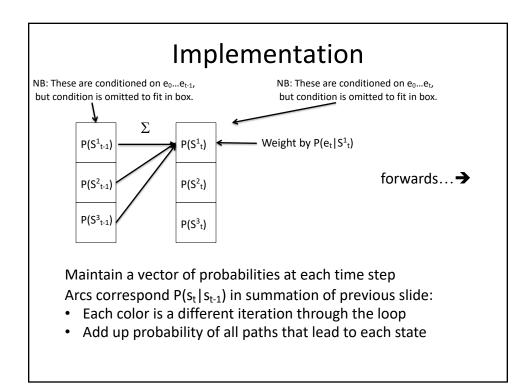


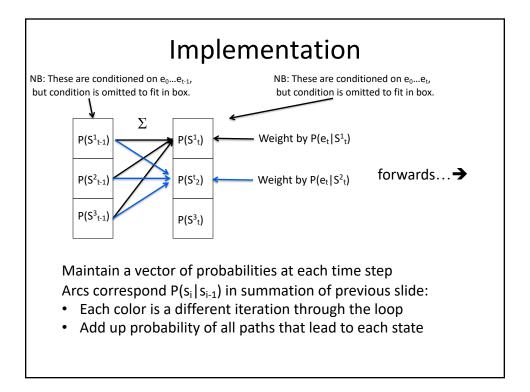
Monitoring

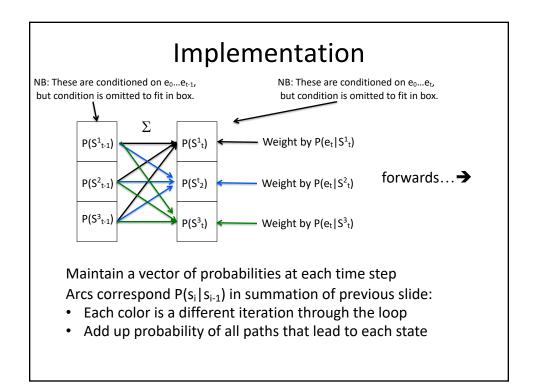
We want: $P(S_t | e_t ... e_0)$

$$P(S_{t} | e_{t} .. e_{0}) = \frac{P(e_{t} | S_{t}, e_{t-1} .. e_{0})P(S_{t} | e_{t-1} .. e_{0})}{P(e_{t} | e_{t-1} .. e_{0})}$$

= $\alpha P(e_{t} | S_{t} e_{t-1} .. e_{0})P(S_{t} | e_{t-1} .. e_{0})$
= $\alpha P(e_{t} | S_{t})P(S_{t} | e_{t-1} .. e_{0})$
= $\alpha P(e_{t} | S_{t})\sum_{S_{t-1}} P(S_{t} | S_{t-1})P(S_{t-1} | e_{t-1} .. e_{0})$
Recursive



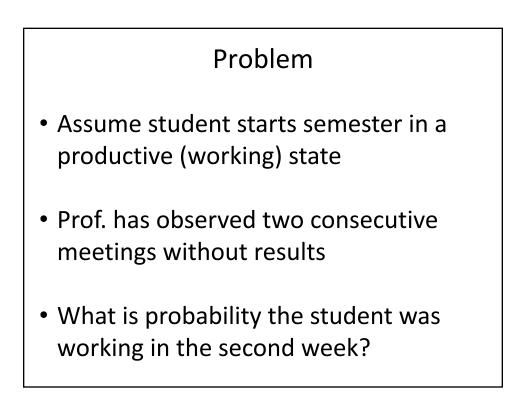




Example

- W = grad student is working
- R = student has produced results
- Advisor observes whether student has produced results
- Infer whether student is working given observations

$$P(w_{t+1} | w_t) = 0.8$$
$$P(w_{t+1} | \overline{w}_t) = 0.3$$
$$P(r | w) = 0.6$$
$$P(r | \overline{w}) = 0.2$$



Let's Do The Math $P(w_{t+1} | w_t) = 0.8$ $P(w_{t+1} | \overline{w}_t) = 0.3$ P(r | w) = 0.6 $P(r | \overline{w}) = 0.2$ $P(W_2 | \overline{r_2 r_1}) = \alpha_1 P(\overline{r_2} | W_2) \sum_{W_1} P(W_2 | W_1) P(W_1 | \overline{r_1})$ $P(W_1 | \overline{r_1}) = \alpha_2 P(\overline{r_1} | W_1) \sum_{W_0} P(W_1 | W_0) P(W_0)$ $P(w_1 | \overline{r_1}) = \alpha_2 0.4 (0.8 * 1.0 + 0.3 * 0.0) = \alpha_2 0.32$ $P(\overline{w_1} | \overline{r_1}) = \alpha_2 0.8 (0.2 * 1.0 + 0.7 * 0.0) = \alpha_2 0.16$ $P(w_1 | \overline{r_1}) = 0.67, P(\overline{w_1} | \overline{r_1}) = 0.33$

$$P(w_{t+1} | w_t) = 0.8$$

$$P(w_{t+1} | \bar{w}_t) = 0.3$$

$$P(r | w) = 0.6$$

$$P(r | \bar{w}) = 0.2$$

$$P(w_1 | \bar{r}_1) = 0.67$$

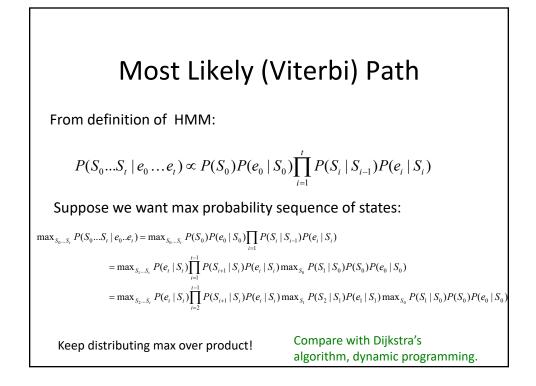
$$P(\bar{w}_1 | \bar{r}_1) = 0.33$$

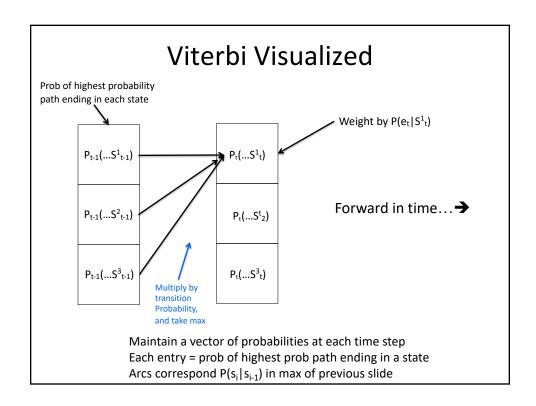
$$P(W_2 | \bar{r}_2 \bar{r}_1) = \alpha_1 P(\bar{r}_2 | W_2) \sum_{W_1} P(W_2 | W_1) P(W_1 | \bar{r}_1)$$

$$P(w_2 | \bar{r}_2 \bar{r}_1) = \alpha_1 0.4 (0.8 * 0.67 + 0.3 * 0.33) = \alpha_1 0.25$$

$$P(\bar{w}_2 | \bar{r}_2 \bar{r}_1) = \alpha_1 0.8 (0.2 * 0.67 + 0.7 * 0.33) = \alpha_1 0.292$$

$$P(w_2 | \bar{r}_2 \bar{r}_1) = 0.46, P(\bar{w}_2 | \bar{r}_2 \bar{r}_1) = 0.54$$

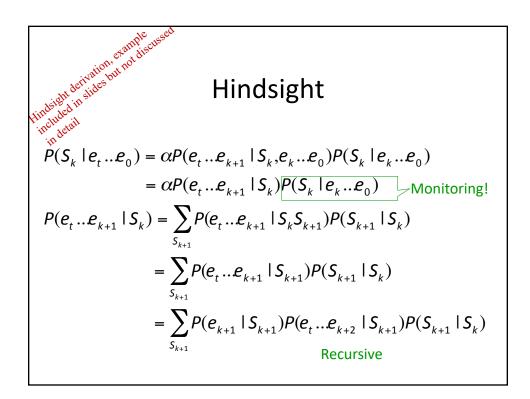


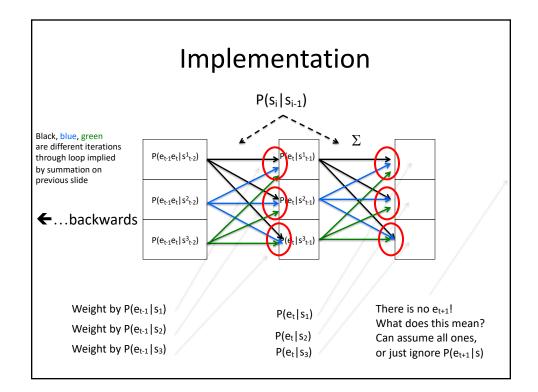


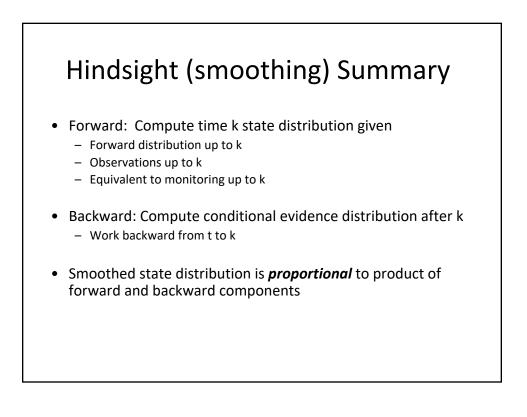
Implementing the Viterbi Algorithm (forward part)

- P₀=initial distribution
- For t=1 to T
 - $-P_{t} = [0...0]$
 - For NextS = 1 to n
 - For PrevS = 1 to n
 - $P_t[NextS] = max{P_t[NextS], P_{t-1}[PrevS]*P(NextS|PrevS)}$
 - P_t[NextS] = P_t[NextS]*P(e_t|NextS)

What is is needed: Store argmax, reconstruct path in backward pass (compare with reconstructing the path in search)

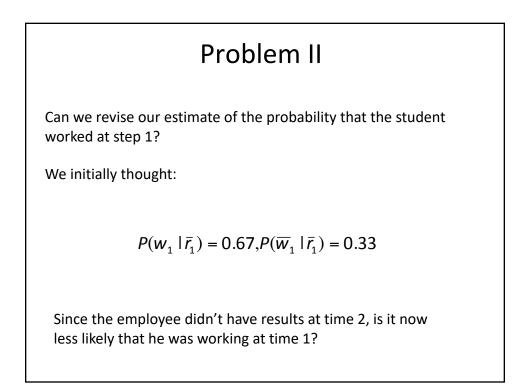


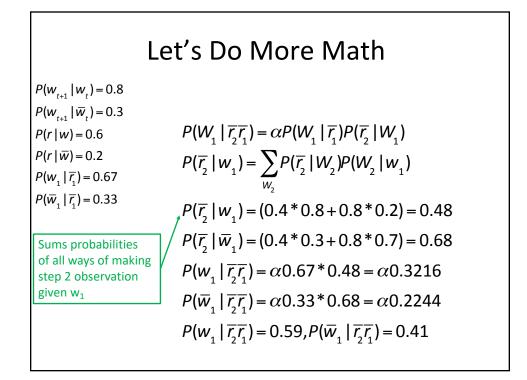


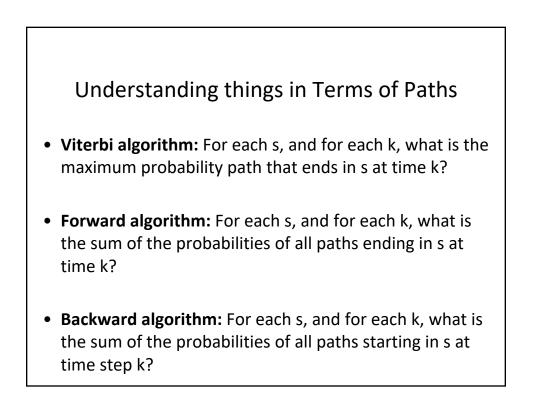


Implementation Sanity Checks

- Make sure you never double count observations: Any *path* through the HMM should multiply by each P(e_i|s_i) exactly once (think of forward/backward as summing probabilities of paths, weighted by observations)
- Make sure you handle base cases
 - Forward message starts with initial distribution at time 0
 - Observations beyond the horizon can be ignored (or assume first backwards message is all ones)

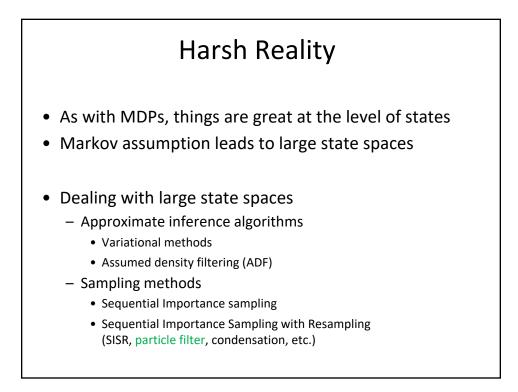


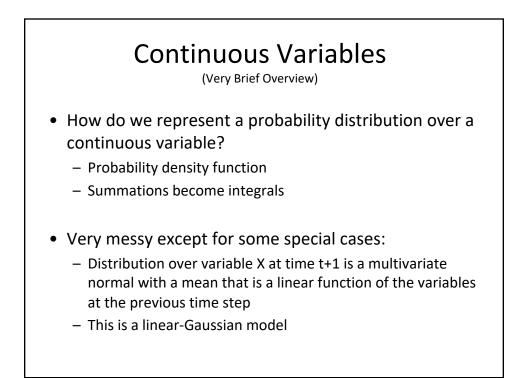


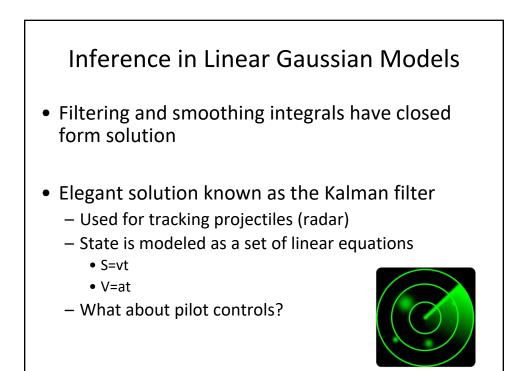


Checkpoint

- Done: Forward Monitoring and Backward Smoothing
- Monitoring is recursive from the past to the present
- Backward smoothing requires two recursive passes (forward then backward)
- Implemented as two loops (not recursively)
- Called the forward-backward algorithm
 - Independently discovered many times throughout history
 - Was classified for many years by US Govt.







HMM Conclusion

- Elegant algorithms for temporal reasoning over discrete atomic events, Gaussian continuous variables (many practical systems are approximately such)
- Approximations required for large/complex/continuous systems