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HMMs

CSCI 2951-F

Ronald Parr
Brown University

When Observations != States

• So far, assume that agent knows the state at any time
• Small exceptions:

– Stacking frames in Atari
– HW3 Q1 stochastic policy case

• These slides:
– Not directly about RL/Planning
– First step towards that: How to manage state uncertainty



2

Hidden Markov Models (HMMs)

• HMMs are like MDPs with features but
• Mapping from states to features is 

surjective-only not bijective
• AKA state aliasing
• State aliasing violates the Markov property

• So, what do we do?

HMM Assumptions

• Underlying Markovian state
• Known observation probabilities given state 

(Called O for observation, or E for evicence)

• Either of the following is a sufficient statistic:
– Conditioning future predictions on history
– Conditioning future predictions on distribution over 

underlying Markovian state
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Histories vs. Distributions

• Histories:
– Conceptually easy
– Potentially unbounded length

• Distributions over underlying states
– Fixed length
– More work to maintain

Historical Perspective on Histories

• Histories have waxed and waned in popularity
• Small histories viewed as tractable – when applicable 

 (e.g. frame stacking in Atari)
• Long histories viewed as awkward/intractable due to 

variable size, exponential number of possible histories

• Transformers have made history fashionable
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Example:  Speech Recognition

• Speech is broken down into atoms called 
phonemes, e.g., see arpabet: 
http://en.wikipedia.org/wiki/Arpabet

• Phonemes are pulled from the audio 
stream using a variety of techniques 

• Words are stochastic finite automata 
(HMMs) with outputs that are phonemes

You say tomato, I say…

[t] [ow] [m]

[ey]

[aa]

[t] [ow]
1.0 1.0

1.0

1.0

1.0
0.5

0.5

Real variations in speech between speakers can be much more
subtle and complicated than this:  How do we learn these?

http://en.wikipedia.org/wiki/Arpabet
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Phoneme Fun on Mac OS

• say tomato

• say "[inpt PHON]] tUXmAAtOW [[inpt TEXT]] "

• say "[[inpt PHON]] tUXmEYtOW [[inpt TEXT]] "

(Sadly, appears to be broken in latest MacOS release,
but try təˈmɑːtəʊ and təˈmeɪˌtoʊ here: http://ipa-reader.xyz)

Using HMMs for (single word) 
Speech Recognition

• Create one HMM for every word
• Upon hearing a word:

– Break down word into string of phonemes
– Compute probability that string came from each HMM
– Pick word (HMM) assigning highest probability to string

• Note HMMs can be used both generatively 
(generate words sounds) and discriminatively 
(recognize/label word sounds)
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Common Applications

• Monitoring/Filtering:  P(St:E0…Et)
– S is the current status of the patient/factory
– E is the current measurement

• Prediction:  P(St:E0…Ek), t>k
– S is the current/future position of an object
– E are our past observations
– Project S into the future

Common Applications

• Smoothing/hindsight:  P(Sk:E0…Et), t>k
– Update view of the past based upon future
– Diagnosis:  Factory exploded at time t=20, 

what happened at t=5 to cause this?

• Most likely explanation
– What is the most likely sequence of events 

(from start to finish) to explain observations?
– NB:  Answer is a single path, not a distribution
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Example:  Robot Self Tracking

• Consider Roomba-like robot with:
– Known map of the room
– 4-way proximity sensors
– Unknown initial position (kidnapped robot problem)

• We consider a discretized version of this problem
– Map discretized into grid
– Discrete, one-square movements

(Images from iRobot’s web page)

Simple Map, Kidnapped Robot

? ? ? ? ? ? ? ? ? ? ? ?
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Robot Senses

? ? ? ? ? ? ? ? ? ? ? ?

Obstacles up and down, none left and right

Robot Updates Distribution

? ? ? ? ? ?
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Robot Moves Right, Updates

? ? ?? ? ?

Robot Updates Probabilities

Obstacles up and down, none left and right



10

What Just Happened

• This was an example of robot tracking

• We can also do:
– Prediction (where would the robot be?)
– Smoothing (where was the robot?)
– Most likely path (what path did robot take?)

Prediction

? ? ? ? ? ? ? ? ? ? ? ?

Suppose the Robot Moves Right Twice
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New Robot Position Distribution

? ? ?? ? ?

Are these probabilities uniform?

What Isn’t Realistic Here?
• Where does the map come from?
• Does the robot really have these sensors?
• Are right/left/up/down the correct sort of actions?  (Even if the robot 

has a map, it may not know its orientation.)
• Are robot actions deterministic?
• Are sensing actions deterministic?
• Would a probabilistic sensor model conflate sensor noise and 

incorrect modeling?
• Can the world be modeled as a grid?

• Good news:  Despite these problems, robotic mapping and 
localization (tracking) can actually be made to work!
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…and it really is used:

HMM Basics

• What is the P(s0…st,e0…et)?
• Assume known initial distribution over s0

𝑃 𝑠! 𝑃 𝑒!|𝑠! 𝑃 𝑠" 𝑠! 𝑃 𝑒"|𝑠" 𝑃 𝑠# 𝑠" 𝑃 𝑒#|𝑠# …𝑃 𝑠$ 𝑠 $%" 𝑃(𝑒$|𝑠$)
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Conditional Probability with 
Extra Evidence

• Recall:  P(AB)=P(A|B)P(B)

• Add extra evidence C   
 (can be a set of variables)

• P(AB|C)=P(A|BC)P(B|C)

Bayes Rule Reminder

!!

€ 

P(A∧B) = P(B∧ A)
P(A |B)P(B) = P(B | A)P(A)

P(A |B) =
P(B | A)P(A)

P(B)
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Bayes Rule With Extra Evidence

!!

€ 

P(A |BC) =
P(B | AC)P(A |C)

P(B |C)

How to think about this:  The C is “extra” evidence.
This forces us into one corner of the event space.
Given that we are in this corner, everything behaves the same
   (put C to the right of the conditioning bar everywhere)

Using Conditional Independence
And the Markov Property

• Conditional probability w/extra evidence:
– P(AB|C)=P(A|BC)P(B|C)

• P(StSt-1|et-1e0)=P(St|St-1et-1e0) P(St-1|et-1e0)  
   =P(St|St-1) P(St-1|et-1e0)
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Monitoring

We want:  P(St|et…e0)

!!!!

€ 

P(St |et ...e0 ) =
P(et | St ,et −1...e0 )P(St |et −1 ...e0 )

P(et |et −1 ...e0 )
= αP(et | Stet −1...e0 )P(St |et −1 ...e0 )
= αP(et | St )P(St |et −1...e0 )

= αP(et | St ) P(St | St −1)P(St −1 |et −1...e0 )
St −1

∑
Recursive

Implementation

P(S1t-1)

P(S2t-1)

P(S3t-1)

P(S1t)

P(S2t)

P(S3t)

Maintain a vector of probabilities at each time step
Arcs correspond P(st|st-1) in summation of previous slide:
• Each color is a different iteration through the loop
• Add up probability of all paths that lead to each state

S
Weight by P(et|S1t)

forwards…è

NB: These are conditioned on e0…et-1,
 but condition is omitted to fit in box.

NB: These are conditioned on e0…et,
 but condition is omitted to fit in box.
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Implementation

P(S1t-1)

P(S2t-1)

P(S3t-1)

P(S1t)

P(St2)

P(S3t)

Maintain a vector of probabilities at each time step
Arcs correspond P(si|si-1) in summation of previous slide:
• Each color is a different iteration through the loop
• Add up probability of all paths that lead to each state

S
Weight by P(et|S1t)

Weight by P(et|S2t) forwards…è

NB: These are conditioned on e0…et-1,
 but condition is omitted to fit in box.

NB: These are conditioned on e0…et,
 but condition is omitted to fit in box.

Implementation

P(S1t-1)

P(S2t-1)

P(S3t-1)

P(S1t)

P(St2)

P(S3t)

Maintain a vector of probabilities at each time step
Arcs correspond P(si|si-1) in summation of previous slide:
• Each color is a different iteration through the loop
• Add up probability of all paths that lead to each state

S
Weight by P(et|S1t)

Weight by P(et|S2t)

Weight by P(et|S3t)

forwards…è

NB: These are conditioned on e0…et-1,
 but condition is omitted to fit in box.

NB: These are conditioned on e0…et,
 but condition is omitted to fit in box.
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Example
• W = grad student is working
• R = student has produced results
• Advisor observes whether student has produced results
• Infer whether student is working given observations

P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2

Problem

• Assume student starts semester in a 
productive (working) state

• Prof. has observed two consecutive 
meetings without results

• What is probability the student was 
working in the second week?
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Let’s Do The Math
P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2

P(W2|r2r1)=α1P(r2|W2) P(W2|W1)P(W1|r1)
W1

∑

P(W1|r1)=α2P(r1|W1) P(W1|W0)P(W0)
W0

∑

P(w1|r1)=α20.4(0.8*1.0+0.3*0.0)=α20.32

P(w1|r1)=α20.8(0.2*1.0+0.7*0.0)=α20.16

P(w1|r1)= 0.67,P(w1|r1)= 0.33

More MathP(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2
P(w1|r1)= 0.67
P(w1|r1)= 0.33

!!!!

€ 

P(W2 | r!2r!1) = α1P(r!2 |W2 ) P(W2 |W1)P(W1 | r!1)
W1

∑

P(w2 | r!2r!1) = α10.4(0.8*0.67+ 0.3*0.33) = α10.25
P(w!2 | r!2r!1) = α10.8(0.2*0.67+ 0.7*0.33) = α10.292
P(w2 | r!2r!1) = 0.46,P(w!2 | r!2r!1) = 0.54
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Most Likely (Viterbi) Path
From definition of HMM:

Suppose we want max probability sequence of states:

Keep distributing max over product! Compare with Dijkstra’s 
algorithm, dynamic programming.

13

New Robot Position Distribution

? ? ?? ? ?

Are these probabilities uniform?

Most Likely (Viterbi) Path
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From definition of Bayes net (or HMM):

Suppose we want max probability sequence of states:

Keep distributing max over product! Compare with Dijkstra’s
algorithm, dynamic programming.

13

New Robot Position Distribution

? ? ?? ? ?

Are these probabilities uniform?

Most Likely (Viterbi) Path

)|()()|(max)|()|(max)|()|()|(max

)|()()|(max)|()|()|(max

)|()|()|()(max)..|...(max

000011112

1

2
1...

00001

1

1
1...

1
1000...00...

012

01

00

SePSPSSPSePSSPSePSSPSeP

SePSPSSPSePSSPSeP

SePSSPSePSPeeSSP

SS

t

i
iiiittSS

S

t

i
iiiittSS

t

i
iiiiSSttSS

t

t

tt

�

�

�

�

 
�

�

 
�

 
�

 

 

 

�
 

�v
t

i
iiiitt SePSSPSePSPeeSSP

1
100000 )|()|()|()()|...( �

From definition of Bayes net (or HMM):

Suppose we want max probability sequence of states:

Keep distributing max over product! Compare with Dijkstra’s
algorithm, dynamic programming.

Viterbi Visualized

Pt-1(…S1t-1)

Pt-1(…S2t-1)

Pt-1(…S3t-1)

Pt(…S1t)

Pt(…St2)

Pt(…S3t)

Maintain a vector of probabilities at each time step
Each entry = prob of highest prob path ending in a state
Arcs correspond P(si|si-1) in max of previous slide

Multiply by 
transition 
Probability, 
and take max

Weight by P(et|S1t)

Forward in time…è

Prob of highest probability
path ending in each state
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Implementing the Viterbi Algorithm
(forward part)

• P0=initial distribution
• For t=1 to T

– Pt = [0…0]
– For NextS = 1 to n

• For PrevS = 1 to n
– Pt[NextS] = max{Pt[NextS],Pt-1[PrevS]*P(NextS|PrevS)}

• Pt[NextS] = Pt[NextS]*P(et|NextS)

What is is needed: Store argmax, reconstruct path in backward pass
(compare with reconstructing the path in search)

Hindsight

!!!!

€ 

P(Sk |et ...e0 ) = αP(et ...ek+1 | Sk,ek ...e0 )P(Sk |ek ...e0 )
!!!!!!!!!!!!!!!!!!!!!! = αP(et ...ek+1 | Sk)P(Sk |ek ...e0 )

P(et ...ek+1 | Sk ) = P(
Sk+1

∑ et ...ek+1 | SkSk+1)P(Sk+1 | Sk)

!!!!!!!!!!!!!!!!!!!!!!!! = P(
Sk+1

∑ et ...ek+1 | Sk+1)P(Sk+1 | Sk)

!!!!!!!!!!!!!!!!!!!!!!!! = P(ek+1 | Sk+1)P(
Sk+1

∑ et ...ek+2 | Sk+1)P(Sk+1 | Sk )
Recursive

Monitoring!

Hindsig
ht deriv

atio
n, ex

am
ple

inclu
ded in sli

des 
but not disc

usse
d

in deta
il
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Implementation

There is no et+1!
What does this mean?
Can assume all ones,
or just ignore P(et+1|s)
 

P(et|s1t-1)

P(et|s2t-1)

P(et|s3t-1)

P(et-1et|s1t-2)

P(et-1et|s2t-2)

P(et-1et|s3t-2)

ç…backwards

S

P(et|s1)

P(et|s2)
P(et|s3)

Weight by P(et-1|s1)

Weight by P(et-1|s2)

Weight by P(et-1|s3)

Black, blue, green 
are different iterations
through loop implied 
by summation on 
previous slide

P(si|si-1) 

Hindsight (smoothing) Summary

• Forward:  Compute time k state distribution given
– Forward distribution up to k
– Observations up to k
– Equivalent to monitoring up to k

• Backward: Compute conditional evidence distribution after k
– Work backward from t to k

• Smoothed state distribution is proportional to product of 
forward and backward components
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Implementation Sanity Checks

• Make sure you never double count observations: 
Any path through the HMM should multiply by 
each P(ei|si) exactly once     
(think of forward/backward as summing 
probabilities of paths, weighted by observations)

• Make sure you handle base cases
– Forward message starts with initial distribution at time 0
– Observations beyond the horizon can be ignored 

  (or assume first backwards message is all ones)

Problem II

Can we revise our estimate of the probability that the student
worked at step 1?

We initially thought:

Since the employee didn’t have results at time 2, is it now
less likely that he was working at time 1?

!!!!

€ 

P(w1 | r!1) = 0.67,P(w!1 | r!1) = 0.33



23

Let’s Do More Math
P(wt+1|wt )= 0.8

P(wt+1|wt )= 0.3

P(r|w)= 0.6
P(r|w)= 0.2
P(w1|r1)= 0.67
P(w1|r1)= 0.33

P(W1|r2r1)=αP(W1|r1)P(r2|W1)

P(r2|w1)= P(r2|W2)
W2

∑ P(W2|w1)

P(r2|w1)= (0.4*0.8+0.8*0.2)= 0.48

P(r2|w1)= (0.4*0.3+0.8*0.7)= 0.68

P(w1|r2r1)=α0.67*0.48=α0.3216
P(w1|r2r1)=α0.33*0.68=α0.2244
P(w1|r2r1)= 0.59,P(w1|r2r1)= 0.41

Sums probabilities
of all ways of making
step 2 observation
given w1

Understanding things in Terms of Paths

• Viterbi algorithm: For each s, and for each k, what is the 
maximum probability path that ends in s at time k?

• Forward algorithm: For each s, and for each k, what is 
the sum of the probabilities of all paths ending in s at 
time k?

• Backward algorithm: For each s, and for each k, what is 
the sum of the probabilities of all paths starting in s at 
time step k?
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Checkpoint

• Done:  Forward Monitoring and Backward Smoothing

• Monitoring is recursive from the past to the present
• Backward smoothing requires two recursive passes 

(forward then backward)
• Implemented as two loops (not recursively)

• Called the forward-backward algorithm
– Independently discovered many times throughout history
– Was classified for many years by US Govt.

Harsh Reality

• As with MDPs, things are great at the level of states
• Markov assumption leads to large state spaces

• Dealing with large state spaces
– Approximate inference algorithms

• Variational methods
• Assumed density filtering (ADF)

– Sampling methods
• Sequential Importance sampling
• Sequential Importance Sampling with Resampling    

(SISR, particle filter, condensation, etc.)
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Continuous Variables
(Very Brief Overview)

• How do we represent a probability distribution over a 
continuous variable?
– Probability density function
– Summations become integrals

• Very messy except for some special cases:
– Distribution over variable X at time t+1 is a multivariate 

normal with a mean that is a linear function of the variables 
at the previous time step

– This is a linear-Gaussian model

Inference in Linear Gaussian Models

• Filtering and smoothing integrals have closed 
form solution

• Elegant solution known as the Kalman filter
– Used for tracking projectiles (radar)
– State is modeled as a set of linear equations

• S=vt
• V=at

– What about pilot controls?
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HMM Conclusion

• Elegant algorithms for temporal reasoning over discrete atomic 
events, Gaussian continuous variables   
 (many practical systems are approximately such)

• Approximations required for large/complex/continuous systems


