Learning From Observing Behavior

CSCI 2951-F Ron Parr Brown University

Algorithms for Inverse RL (Ng & Russell, ICML 00)

Differences From RL

- RL: Learn optimal behavior from known/observed reward in unknown domain
- Learning from observed behavior:
 - Watch an agent acting in the domain
 - Reward function typically not known
 - Transition model may be known
 - Assume expert is acting (near) optimally
 - Goal: Produce similarly optimal behavior

When Does This Happen?

- Sometimes easier to demonstrate something than it specify it
- What are you optimizing when you ride a bicycle?
- When goal of RL is a **behavior**, rather than an **optimization**
 - Not obviously sensible for finance or other applications with costs/rewards grounded in real things
 - Possibly sensible in robotics where rewards often are not grounded, but are viewed as means to an end

Behavioral Cloning

- Just copy what the teacher does
- Turn things into a supervised learning problem
- Pro: Simple
- Cons:
 - Lack of robustness (limited training states)
 - (compounds with) lack of robustness to changes model/configuration/assumptions
- (Not our focus)

Inverse RL

- Unknown expert reward function
- Agent watches expert perform task under presumption of expert optimality
- Agent tries to infer reward function and produce an optimal policy for it

IRL vs. Utility Elicitation

- Utility elicitation:
 - Seeks to discover an agent's utility function
 - Useful for:
 - Advising people on good choices
 - Allocating resources in an equitable/desirable manner (population scale)
- IRL:
 - Seeks to discover an agent's reward function
 - Useful for:
 - Optimizing the same reward function on different hardware
 - Understanding underlying causes for how/why people act
- Reward function may be *sparser* than the utility function

What we know

- P_a = transition matrix with all actions = a
- P_{π^*} = transition matrix for π^*
- For all a:

$$P_a V^* - P_{\pi^*} V^* \le 0$$

(P_a - P_{\pi^*})(I - \gamma P_{\pi^*})^{-1} R \le 0

How To Use This

(Ng & Russell ICML 00)

- Set of linear constraints on R
- Could write an LP (with no objective function)
- Problem:
 - Under-constrained
 - R=0 is a solution for any $\pi *$

Workarounds

- WLOG, renumber actions so that $P_{\pi*} = P_{a1}$
- Assume m actions
- Create objective function to maximize difference between π* and other actions:

$$\sum_{i=1}^{n} \sum_{j=2}^{m} \sum_{k=1}^{n} \left(P(S_k | S_i, a_1) - P(S_k | S_i, a_j) \right) \left(\left(I - P_{a_1} \right)^{-1} R \right) [S_k]$$

Details

- Problem: R not bounded
- Solution: Add constraint R(s)≤R_{max}
- Problem: May want a sparse R
- Solution: Add term to objective $-\lambda \|R\|_1$

Continuous State

- Problem: Can't write down all constraints
- Solution:
 - Sample constraints
 - Assume reward function linear combination features
 - Modify objective function to be a soft penalty (in case optimality of π * isn't feasible)
 - Add bound on the norm of the weights on features

No Model Case

- Estimate value of policies by Monte Carlo
- Proposed algorithm in original Ng+Russell paper was not very practical/efficient but still important first step

Assumptions

- We know P and γ well enough to solve the MDP if we have R
- Reward function is a linear combination of features
- We observe expert trajectories sampled from optimal policy
- Know start state or distribution
- Want to recover:
 - Expert reward function
 - Policy as good as expert's policy

Feature Expectations

- Suppose: $R = \sum_{i=1}^{K} w_i \phi_i$
- Expert policy gets:

$$\mathbf{E}\left[\sum_{j=0}^{t} \gamma^{j} r_{j}\right] = \mathbf{E}\left[\sum_{j=0}^{t} \sum_{i=1}^{K} \gamma^{j} w_{i} \phi_{i}(s_{j})\right] = w^{T} \mathbf{E}[\gamma \phi] = w^{T} \mu_{E}$$

Expected discounted sum of features expert gets

Matching Feature Expectations

- Policy w/same (discounted) feature expectations has same value of starting initial state distribution
- Find weights and a policy optimal WRT weights to match expert's feature expectations

Constraint Generation

- Problem: Exponential number of constraints
- Solution: Sequentially generate weight vectors that maximize the difference between expert return and return of policies we have generated so far (constraint generation)

MaxENT RL in Practice

- Iterates between:
 - Updating reward weights
 - Updating policy WRT reward weights
- Stop when gradient is close to 0, implying policy feature expectations match expert's
- Requires multiple approximations to work in large state spaces

GAIL

- Generative Adversarial Imitation Learning
- Q: What do GANs do best?
- A: Match probability distributions
- Insight: A policy is a distribution over actions, which implies a distribution over trajectories
- In practice:
 - Impressive experiment results vs. previous approaches
 - Be cautious about issues w/GANs (they are fiddly)

The Arc of Imitation Learning

- Linear programs: ~2000
- Quadratic programs: ~2005
- GANs: ~2015
- Can you guess what's next?

Learning From Scored Trajectories

- Infer reward weights from total trajectory scores
- Reduces IRL to linear regression
- See El Asri et al. [2013], Burchfiel et al. [2016]

LfD Summary

- Includes mimicking experts and inverse RL
- Mimicking is simpler, but arguably less robust
- Inverse RL:
 - Typically assumes (near) expert optimality
 - Approaches combine optimization techniques with distribution matching techniques