3/21/24

Learning From Observing Behavior

CSCI 2951-F
Ron Parr
Brown University

Algorithms for Inverse RL
(Ng & Russell, ICML 00)

3/21/24

Differences From RL

* RL: Learn optimal behavior from known/observed
reward in unknown domain
* Learning from observed behavior:
— Watch an agent acting in the domain
— Reward function typically not known
— Transition model may be known
— Assume expert is acting (near) optimally
— Goal: Produce similarly optimal behavior

When Does This Happen?

 Sometimes easier to demonstrate something than it specify it
 What are you optimizing when you ride a bicycle?

* When goal of RL is a behavior, rather than an optimization

— Not obviously sensible for finance or other applications with
costs/rewards grounded in real things

— Possibly sensible in robotics where rewards often are not
grounded, but are viewed as means to an end

3/21/24

Behavioral Cloning

Just copy what the teacher does
Turn things into a supervised learning problem
Pro: Simple
Cons:
— Lack of robustness (limited training states)

— (compounds with) lack of robustness to
changes model/configuration/assumptions

(Not our focus)

Inverse RL

Unknown expert reward function

Agent watches expert perform task
under presumption of expert optimality

Agent tries to infer reward function and
produce an optimal policy for it

3/21/24

IRL vs. Utility Elicitation

Utility elicitation:
— Seeks to discover an agent’s utility function
— Useful for:
* Advising people on good choices
* Allocating resources in an equitable/desirable manner (population scale)
IRL:
— Seeks to discover an agent’s reward function
— Useful for:
* Optimizing the same reward function on different hardware
* Understanding underlying causes for how/why people act

Reward function may be sparser than the utility function

What we know

P, = transition matrix with all actions = a
P_.. = transition matrix for n*
For all a:

PV*—P_.V*<0
(Pa - Pn*)(l - yPn*)_lR <0

3/21/24

How To Use This

(Ng & Russell ICML 00)

* Set of linear constraints on R
e Could write an LP (with no objective function)

* Problem:
— Under-constrained
— R=0is a solution for any m*

Workarounds

* WLOG, renumber actions so that P_,=P_,
e Assume m actions

* Create objective function to maximize
difference between m* and other actions:

n

Z z zn: (P(Sk|5i: a) — P(Sklsi' aj)) ((1 — Pal)_lR) [Sk]

i=1j=2k=1

3/21/24

Details

Problem: R not bounded
Solution: Add constraint R(s)<R, .,

Problem: May want a sparse R
Solution: Add term to objective —A||R||

Continuous State

* Problem: Can’t write down all constraints

e Solution:
— Sample constraints
— Assume reward function linear combination features

— Modify objective function to be a soft penalty
(in case optimality of = isn’t feasible)

— Add bound on the norm of the weights on features

3/21/24

No Model Case

e Estimate value of policies by Monte Carlo

* Proposed algorithm in original Ng+Russell
paper was not very practical/efficient but still
important first step

Apprenticeship Learning via Inverse RL
(Abbeel & Ng, ICML 04)

3/21/24

Assumptions

We know P and y well enough to solve the MDP if we have R
Reward function is a linear combination of features

We observe expert trajectories sampled from optimal policy
Know start state or distribution

Want to recover:
— Expert reward function
— Policy as good as expert’s policy

Feature Expectations

* Suppose:R = Z{<=1 w;d;
* Expert policy gets:

t K

t
E [Z)/jrj‘ =E Iz)/jwid)i(sj)] =w'E[y¢] = wlug
j=0

j=0i=1 |

Expected discounted sum of features
expert gets

3/21/24

Matching Feature Expectations

* Policy w/same (discounted) feature expectations
has same value of starting initial state distribution

* Find weights and a policy optimal WRT weights to
match expert’s feature expectations

The Hard Way

* Suppose:
— We could enumerate all policies 1...n

— Can compute feature expectations of each policy

e Set of constraints on w:

ViiwTy, < wlug

3/21/24

Constraint Generation

* Problem: Exponential number of constraints

* Solution: Sequentially generate weight vectors
that maximize the difference between expert
return and return of policies we have
generated so far (constraint generation)

Algorithm

* Assume we have generated w;...w; so far

* U;..u; are the feature expectations for the

optimal policies given w;...w,

* Compute wj,; using the following QP:

Maximize t, wj,; subject to Idea: Propose a new set of reward

. T T that is maximally difference under
Vi Wj+1.uE 2 Wj+1.ui +t expert feature expectations vs. current
”W ” weight/policy pairs
Jj+1 . _ .
2 Repeat until small t = near optimality

10

3/21/24

Properties

* In general constraint generation for math
programs has no guarantees

* For k features, Abbeel and Ng guarantee ¢-
optimal performance in:
— Iterations proportional to: k log(k)
— Iterations proportional to: 1/¢2 log(1/¢)

Maximum Entropy IRL

* Assumes high reward trajectories are
exponentially more likely:

1
Z(d)

exp(Rg (7))

T~

* |s this reasonable? Normalization

Py (T) =

11

3/21/24

MaxEnt RL Objective

° lo exp(Rq (T
Maximize: f(o T;) gzq)) p(Re (7))

 Gradient: Optimal policy for

current estimate of reward

Vof = <ZV¢R¢) |D’ZP¢ T)VRe(T) /

€D
<ZV¢R¢) |D’va¢ Z”cb s)VeRe (s, a)
€D

b

State occupancy probs
Under current optimal policy
(can be computed by dynamic programming)

MaxEnt RL Interpretation

* For reward as linear combination of features

[(;)Vd)Rd)(T))}E);bwb Zﬂcp $)V R (s, a)}

e Gradient of R is just reward feature values

e Gradient is 0 when observed feature counts
match feature counts of policy

12

3/21/24

MaxENT RL in Practice

Iterates between:
— Updating reward weights
— Updating policy WRT reward weights

Stop when gradient is close to 0, implying policy feature
expectations match expert’s

Requires multiple approximations to work in large state spaces

GAIL

Generative Adversarial Imitation Learning
Q: What do GANs do best?
A: Match probability distributions

Insight: A policy is a distribution over actions, which implies
a distribution over trajectories

In practice:
— Impressive experiment results vs. previous approaches
— Be cautious about issues w/GANs (they are fiddly)

13

3/21/24

The Arc of Imitation Learning

* Linear programs: ~2000

Quadratic programs: ~2005
GANs: ~2015

Can you guess what’s next?

Asking a Different Questiq'

Assumptions in inverse RL:
— Expertis always optimal
— No observed metric of performance

Observe a single score per trajectory

Olympic judges problem:

— We see the final scores
— What are skaters optimizing?

14

3/21/24

Learning From Scored Trajectories

* Infer reward weights from total trajectory scores

* Reduces IRL to linear regression

LS
S

G

« See El Asri et al. [2013], Burchfiel et al. [2016]
BROWN

LfD Summary

* Includes mimicking experts and inverse RL
* Mimicking is simpler, but arguably less robust

* Inverse RL:
— Typically assumes (near) expert optimality

— Approaches combine optimization techniques with
distribution matching techniques

15

