
3/21/24

1

Learning From Observing Behavior

CSCI 2951-F
Ron Parr

Brown University

Algorithms for Inverse RL
(Ng & Russell, ICML 00)

3/21/24

2

Differences From RL
• RL: Learn optimal behavior from known/observed

reward in unknown domain
• Learning from observed behavior:
– Watch an agent acting in the domain
– Reward function typically not known
– Transition model may be known
– Assume expert is acting (near) optimally
– Goal: Produce similarly optimal behavior

When Does This Happen?
• Sometimes easier to demonstrate something than it specify it

• What are you optimizing when you ride a bicycle?

• When goal of RL is a behavior, rather than an optimization
– Not obviously sensible for finance or other applications with

costs/rewards grounded in real things
– Possibly sensible in robotics where rewards often are not

grounded, but are viewed as means to an end

3/21/24

3

Behavioral Cloning

• Just copy what the teacher does
• Turn things into a supervised learning problem
• Pro: Simple
• Cons:

– Lack of robustness (limited training states)
– (compounds with) lack of robustness to

changes model/configuration/assumptions
• (Not our focus)

Inverse RL

• Unknown expert reward function
• Agent watches expert perform task

under presumption of expert optimality
• Agent tries to infer reward function and

produce an optimal policy for it

3/21/24

4

IRL vs. Utility Elicitation
• Utility elicitation:

– Seeks to discover an agent’s utility function
– Useful for:

• Advising people on good choices
• Allocating resources in an equitable/desirable manner (population scale)

• IRL:
– Seeks to discover an agent’s reward function
– Useful for:

• Optimizing the same reward function on different hardware
• Understanding underlying causes for how/why people act

• Reward function may be sparser than the utility function

What we know
• Pa = transition matrix with all actions = a
• Pp* = transition matrix for p*
• For all a:

𝑃!𝑉∗ − 𝑃#∗𝑉∗ ≤ 0	
𝑃! − 𝑃#∗ 𝐼 − 𝛾𝑃#∗ $%𝑅 ≤ 0

3/21/24

5

How To Use This
(Ng & Russell ICML 00)

• Set of linear constraints on R
• Could write an LP (with no objective function)
• Problem:
– Under-constrained
– R=0 is a solution for any p*

Workarounds
• WLOG, renumber actions so that Pp* = Pa1

• Assume m actions
• Create objective function to maximize

difference between p* and other actions:

!
!"#

$

!
%"&

'

!
("#

$

𝑃 𝑆(𝑆! , 𝑎# − 𝑃 𝑆(𝑆! , 𝑎% 𝐼 − 𝑃)!
*#
𝑅 [𝑆(]

3/21/24

6

Details
• Problem: R not bounded
• Solution: Add constraint R(s)≤Rmax

• Problem: May want a sparse R
• Solution: Add term to objective −𝜆 𝑅 !

Continuous State
• Problem: Can’t write down all constraints

• Solution:
– Sample constraints
– Assume reward function linear combination features
– Modify objective function to be a soft penalty

 (in case optimality of p* isn’t feasible)
– Add bound on the norm of the weights on features

3/21/24

7

No Model Case
• Estimate value of policies by Monte Carlo

• Proposed algorithm in original Ng+Russell
paper was not very practical/efficient but still
important first step

Apprenticeship Learning via Inverse RL
(Abbeel & Ng, ICML 04)

3/21/24

8

Assumptions
• We know P and g well enough to solve the MDP if we have R
• Reward function is a linear combination of features
• We observe expert trajectories sampled from optimal policy
• Know start state or distribution

• Want to recover:
– Expert reward function
– Policy as good as expert’s policy

Feature Expectations
• Suppose:𝑅 = ∑"#!$ 𝑤"𝜙"
• Expert policy gets:

E !
%"+

,

𝛾%𝑟% = E !
%"+

,

!
!"#

-

𝛾%𝑤!𝜙!(𝑠%) = 𝑤.𝐸 𝛾𝜙 = 𝑤.𝜇/

Expected discounted sum of features
expert gets

3/21/24

9

Matching Feature Expectations
• Policy w/same (discounted) feature expectations

has same value of starting initial state distribution

• Find weights and a policy optimal WRT weights to
match expert’s feature expectations

The Hard Way
• Suppose:
– We could enumerate all policies 1…n
– Can compute feature expectations of each policy

• Set of constraints on w:

∀𝑖: 𝑤&𝜇' ≤ 𝑤&𝜇(

3/21/24

10

Constraint Generation
• Problem: Exponential number of constraints

• Solution: Sequentially generate weight vectors
that maximize the difference between expert
return and return of policies we have
generated so far (constraint generation)

Algorithm
• Assume we have generated w1…wj so far
• µ1…µj are the feature expectations for the

optimal policies given w1…wj

• Compute wj+1 using the following QP:

∀𝑖:𝑤6789 𝜇: ≥ 𝑤6789 𝜇; + 𝑡
𝑤678 <

Maximize t, wj+1 subject to Idea: Propose a new set of reward
that is maximally difference under
expert feature expectations vs. current
weight/policy pairs
Repeat until small t → near optimality

3/21/24

11

Properties
• In general constraint generation for math

programs has no guarantees

• For k features, Abbeel and Ng guarantee e-
optimal performance in:
– Iterations proportional to: k log(k)
– Iterations proportional to: 1/e2 log(1/e)

Maximum Entropy IRL
• Assumes high reward trajectories are

exponentially more likely:

• Is this reasonable?

368 chapter 18. imitation learning

Any policy π induces a distribution over trajectories10 Pπ(τ). Different policies

10 For simplicity, this section as-
sumes a finite horizon and that the
state and action spaces are discrete,
making Pφ(τ) a probability mass.
To extend maximum entropy in-
verse reinforcement learning both
to problems with continuous state
and action spaces where the dy-
namics may be unknown, consider
guided cost learning. C. Finn, S.
Levine, and P. Abbeel, “Guided
Cost Learning: Deep Inverse Op-
timal Control via Policy Optimiza-
tion,” in International Conference on
Machine Learning (ICML), 2016.

produce different trajectory distributions. We are free to choose any of these
distributions over trajectories that match the expert feature expectations. The
principle of maximum entropy chooses the least informative distribution, which
corresponds to the one with maximum entropy.11 It can be shown that the least

11 For an introduction to this prin-
ciple, see E. T. Jaynes, “Informa-
tion Theory and StatisticalMechan-
ics,” Physical Review, vol. 106, no. 4,
pp. 620–630, 1957.

informative trajectory distribution takes the following form:

Pφ(τ) =
1

Z(φ)
exp(Rφ(τ)) (18.8)

where Pφ(τ) is the likelihood of a trajectory τ given reward parameterφ, and

Rφ(τ) =
d

∑
k=1

γk−1Rφ(s(k), a(k)) (18.9)

is the discounted trajectory reward. We make no assumption on the parameteriza-
tion of Rφ(s(k), a(k)) other than that it is differentiable, allowing representations
such as neural networks. The normalization scalar Z(φ) ensures that the proba-
bilities sum to 1:

Z(φ) = ∑
τ

exp(Rφ(τ)) (18.10)

The summation is over all possible trajectories.
We have chosen a particular class of trajectory distributions for our policy.

We now fit that class to our trajectories using maximum likelihood to obtain the
parameters that best describe our data:

max
φ

f (φ) = max
φ

∑
τ∈D

log Pφ(τ) (18.11)

We can rewrite the objective function f (φ) from equation (18.11):

f (φ) = ∑
τ∈D

log
1

Z(φ)
exp(Rφ(τ)) (18.12)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log Z(φ) (18.13)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log ∑
τ

exp(Rφ(τ)) (18.14)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

Normalization

3/21/24

12

MaxEnt RL Objective
• Maximize:
• Gradient:

368 chapter 18. imitation learning

Any policy π induces a distribution over trajectories10 Pπ(τ). Different policies

10 For simplicity, this section as-
sumes a finite horizon and that the
state and action spaces are discrete,
making Pφ(τ) a probability mass.
To extend maximum entropy in-
verse reinforcement learning both
to problems with continuous state
and action spaces where the dy-
namics may be unknown, consider
guided cost learning. C. Finn, S.
Levine, and P. Abbeel, “Guided
Cost Learning: Deep Inverse Op-
timal Control via Policy Optimiza-
tion,” in International Conference on
Machine Learning (ICML), 2016.

produce different trajectory distributions. We are free to choose any of these
distributions over trajectories that match the expert feature expectations. The
principle of maximum entropy chooses the least informative distribution, which
corresponds to the one with maximum entropy.11 It can be shown that the least

11 For an introduction to this prin-
ciple, see E. T. Jaynes, “Informa-
tion Theory and StatisticalMechan-
ics,” Physical Review, vol. 106, no. 4,
pp. 620–630, 1957.

informative trajectory distribution takes the following form:

Pφ(τ) =
1

Z(φ)
exp(Rφ(τ)) (18.8)

where Pφ(τ) is the likelihood of a trajectory τ given reward parameterφ, and

Rφ(τ) =
d

∑
k=1

γk−1Rφ(s(k), a(k)) (18.9)

is the discounted trajectory reward. We make no assumption on the parameteriza-
tion of Rφ(s(k), a(k)) other than that it is differentiable, allowing representations
such as neural networks. The normalization scalar Z(φ) ensures that the proba-
bilities sum to 1:

Z(φ) = ∑
τ

exp(Rφ(τ)) (18.10)

The summation is over all possible trajectories.
We have chosen a particular class of trajectory distributions for our policy.

We now fit that class to our trajectories using maximum likelihood to obtain the
parameters that best describe our data:

max
φ

f (φ) = max
φ

∑
τ∈D

log Pφ(τ) (18.11)

We can rewrite the objective function f (φ) from equation (18.11):

f (φ) = ∑
τ∈D

log
1

Z(φ)
exp(Rφ(τ)) (18.12)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log Z(φ) (18.13)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log ∑
τ

exp(Rφ(τ)) (18.14)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.6. generative adversarial imitation learning 369

We can attempt to optimize this objective function through gradient ascent.
The gradient of f is

∇φ f =

(

∑
τ∈D
∇φRφ(τ)

)

− |D|
∑τ exp(Rφ(τ)) ∑

τ
exp(Rφ(τ))∇φRφ(τ)

(18.15)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
τ

Pφ(τ)∇φRφ(τ) (18.16)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
s

bγ,φ(s)∑
a

πφ(a | s)∇φRφ(s, a) (18.17)

If the reward function is linear, with Rφ(s, a) = φ⊤β(s, a), as in the previous
section, then ∇φRφ(s, a) is simply β(s, a).

Updating the parameter vector φ thus requires both the discounted state
visitation frequency bγ,φ and the optimal policy under the current parameter
vector, πφ(a | s). We can obtain the optimal policy by running reinforcement
learning. To compute the discounted state visitation frequencies, we can use
rollouts or take a dynamic programming approach.

If we take a dynamic programming approach to compute the discounted state
visitation frequencies, we can start with the initial state distribution b

(1)
γφ = b(s)

and iteratively work forward in time:

b
(k+1)
γ,φ (s) = γ ∑

a
∑
s′

b
(k)
γ,φ(s)π(a | s)T(s′ | s, a) (18.18)

This version of maximum entropy inverse reinforcement learning is implemented
in algorithm 18.6.

18.6 Generative Adversarial Imitation Learning

In generative adversarial imitation learning (GAIL),12 we optimize a differentiable 12 J. Ho and S. Ermon, “Generative
Adversarial Imitation Learning,” in
Advances in Neural Information Pro-
cessing Systems (NIPS), 2016.

parameterized policy πθ, often represented by a neural network. Rather than
provide a reward function, we use adversarial learning (appendix D.7). We also
train a discriminator Cφ(s, a), typically also a neural network, to return the proba-
bility that it assigns to the state-action pair coming from the learned policy. The
process involves alternating between training this discriminator to become better

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

18.6. generative adversarial imitation learning 369

We can attempt to optimize this objective function through gradient ascent.
The gradient of f is

∇φ f =

(

∑
τ∈D
∇φRφ(τ)

)

− |D|
∑τ exp(Rφ(τ)) ∑

τ
exp(Rφ(τ))∇φRφ(τ)

(18.15)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
τ

Pφ(τ)∇φRφ(τ) (18.16)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
s

bγ,φ(s)∑
a

πφ(a | s)∇φRφ(s, a) (18.17)

If the reward function is linear, with Rφ(s, a) = φ⊤β(s, a), as in the previous
section, then ∇φRφ(s, a) is simply β(s, a).

Updating the parameter vector φ thus requires both the discounted state
visitation frequency bγ,φ and the optimal policy under the current parameter
vector, πφ(a | s). We can obtain the optimal policy by running reinforcement
learning. To compute the discounted state visitation frequencies, we can use
rollouts or take a dynamic programming approach.

If we take a dynamic programming approach to compute the discounted state
visitation frequencies, we can start with the initial state distribution b

(1)
γφ = b(s)

and iteratively work forward in time:

b
(k+1)
γ,φ (s) = γ ∑

a
∑
s′

b
(k)
γ,φ(s)π(a | s)T(s′ | s, a) (18.18)

This version of maximum entropy inverse reinforcement learning is implemented
in algorithm 18.6.

18.6 Generative Adversarial Imitation Learning

In generative adversarial imitation learning (GAIL),12 we optimize a differentiable 12 J. Ho and S. Ermon, “Generative
Adversarial Imitation Learning,” in
Advances in Neural Information Pro-
cessing Systems (NIPS), 2016.

parameterized policy πθ, often represented by a neural network. Rather than
provide a reward function, we use adversarial learning (appendix D.7). We also
train a discriminator Cφ(s, a), typically also a neural network, to return the proba-
bility that it assigns to the state-action pair coming from the learned policy. The
process involves alternating between training this discriminator to become better

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

Optimal policy for
current estimate of reward

State occupancy probs
Under current optimal policy
(can be computed by dynamic programming)

MaxEnt RL Interpretation
• For reward as linear combination of features

• Gradient of R is just reward feature values
• Gradient is 0 when observed feature counts

match feature counts of policy p

18.6. generative adversarial imitation learning 369

We can attempt to optimize this objective function through gradient ascent.
The gradient of f is

∇φ f =

(

∑
τ∈D
∇φRφ(τ)

)

− |D|
∑τ exp(Rφ(τ)) ∑

τ
exp(Rφ(τ))∇φRφ(τ)

(18.15)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
τ

Pφ(τ)∇φRφ(τ) (18.16)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
s

bγ,φ(s)∑
a

πφ(a | s)∇φRφ(s, a) (18.17)

If the reward function is linear, with Rφ(s, a) = φ⊤β(s, a), as in the previous
section, then ∇φRφ(s, a) is simply β(s, a).

Updating the parameter vector φ thus requires both the discounted state
visitation frequency bγ,φ and the optimal policy under the current parameter
vector, πφ(a | s). We can obtain the optimal policy by running reinforcement
learning. To compute the discounted state visitation frequencies, we can use
rollouts or take a dynamic programming approach.

If we take a dynamic programming approach to compute the discounted state
visitation frequencies, we can start with the initial state distribution b

(1)
γφ = b(s)

and iteratively work forward in time:

b
(k+1)
γ,φ (s) = γ ∑

a
∑
s′

b
(k)
γ,φ(s)π(a | s)T(s′ | s, a) (18.18)

This version of maximum entropy inverse reinforcement learning is implemented
in algorithm 18.6.

18.6 Generative Adversarial Imitation Learning

In generative adversarial imitation learning (GAIL),12 we optimize a differentiable 12 J. Ho and S. Ermon, “Generative
Adversarial Imitation Learning,” in
Advances in Neural Information Pro-
cessing Systems (NIPS), 2016.

parameterized policy πθ, often represented by a neural network. Rather than
provide a reward function, we use adversarial learning (appendix D.7). We also
train a discriminator Cφ(s, a), typically also a neural network, to return the proba-
bility that it assigns to the state-action pair coming from the learned policy. The
process involves alternating between training this discriminator to become better

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

3/21/24

13

MaxENT RL in Practice
• Iterates between:

– Updating reward weights
– Updating policy WRT reward weights

• Stop when gradient is close to 0, implying policy feature
expectations match expert’s

• Requires multiple approximations to work in large state spaces

GAIL
• Generative Adversarial Imitation Learning
• Q: What do GANs do best?
• A: Match probability distributions

• Insight: A policy is a distribution over actions, which implies
a distribution over trajectories

• In practice:
– Impressive experiment results vs. previous approaches
– Be cautious about issues w/GANs (they are fiddly)

3/21/24

14

The Arc of Imitation Learning
• Linear programs: ~2000
• Quadratic programs: ~2005
• GANs: ~2015

• Can you guess what’s next?

Asking a Different Question

• Assumptions in inverse RL:
– Expert is always optimal
– No observed metric of performance

• Observe a single score per trajectory
• Olympic judges problem:

– We see the final scores
– What are skaters optimizing?

3/21/24

15

Learning From Scored Trajectories
• Infer reward weights from total trajectory scores

• Reduces IRL to linear regression

• See El Asri et al. [2013], Burchfiel et al. [2016]

LfD Summary
• Includes mimicking experts and inverse RL

• Mimicking is simpler, but arguably less robust

• Inverse RL:
– Typically assumes (near) expert optimality
– Approaches combine optimization techniques with

distribution matching techniques

