4/18/24

Markov Games
Ron Parr

CSCI 2951-F

Brown University

Alternating move, zero-sum, 2-player games

* Ordinary bellman equation

V(s)=max,A R(s,a)+ 7ZS,P(S'| s,a)V (s")

* Two player

Vi (8) = max,, R(s,@)+y > P(s'| 5,a)V i (5")
V() =min, R(s,a)+y > P(s'| 5,0V, (s")

4/18/24

Vmin and Vmax

* Vmin is, by definition, the negative of Vmax
* No need to store two separate value functions

* Can store just one and flip the sign based upon who is playing

Algorithms for zero-sum games

* Alternative move case is easy

* Minor generalizations of value iteration, policy iteration, Q-learning,
etc. all work as expected

* Value function approximation works as in regular MDPs

e Used in:
* TD-gammon
* AlphaGo
* Not used in:
* Atari Games (opponents are viewed as part of environment)

4/18/24

Why not treat opponent as part of environment?

* Want a strategy that is robust against all possible opponent actions

* When we maximizing and assume opponent is minimizing
* Maximize our worst case results

* If policy is optimal, then no opponent can force us to get less (in expectation) than values
our computed for our value function

* If opponent is viewed as part of the environment

* Implicitly assumes opponent behavior will not change in response to yours
* If opponent policy does change:

¢ Like learning in a non-stationary MDP

* Learned policy can oscillate

* Opponent can exploit your policy

Zero Sum Markov Games (simultaneous move)

* Combine MDPs with zero sum games
* Each state has a payoff matrix

* Joint action take by both players determines:
* Immediate payoff
* Distribution over next actions

* Question: Can we generalize MDP algorithms to this case?
* Answer: Yes!

4/18/24

Bellman equation for zero sum stochastic games

* Let Q(s,a,0) be the expected value (from player 1’s perspective) when
player 1 takes action a, player 2, takes action 0, and both players act
optimally thereafter

* Then V(s) is the solution to the following linear program:

Maximize: V(s)
Subjectto: Va € A, 7w (s,a) >0

Zﬂ"(s,a)z 1

acA
/ Yoe O, V(s) < Z Q(s,a,0)m (s,a)

AII of this replaces max aeA
in the Bellman equation

Application of modified Bellman equation

* Can we do value iteration, policy iteration, function approximation, Q-
learning, etc. with this formulation?

International Foundation for
Auton us Agents and *’
U doin FAAMAS

* Yes! Notable example: minimax-Q

* But...
* It's expensive
* Updating every state requires solving a linear program

4/18/24

General Sum Stochastic Games

* Combine:
* General sum games
* MDPs
* Each state has:
* Payoff matrix (not assumed to be zero sum)
* Joint action determines immediate reward, distribution over next states

* Question: Can we use MDP techniques to find equilibria of general
sum stochastic games?

* Answer: Not really ®

Why MDP techniques fail for general sum
stochastic games

* Recall the zero sum case:

Maximize: V(s)
Subjectto: Va € A, w (s,a) >0
Z 7w (s,a) =1
acA
Yoe O, V(s) < Z Q(s,a,0)T (s,a)
acA
* Problems:

* V(s) is not the result of a maximization in the general sum case
* Qur policy for state s should be an equilibrium policy, but which equilibrium?

4/18/24

Solution strategies

* A huge one-shot game where actions are policies? (Ew..., but ok...)

* What is a best response?

* If opponent strategies are frozen, best response is solution to an MDP

* Suggests numerous approaches such as double oracle, iterated best response,
fictitious play, etc.

e Generalizations of minimax-Q -> Nash-Q

* RL approaches to general sum stochastic games typically converge
only in special cases, not in general

General sum MG as a math program
minimize Y E(ui (5) — Q' (s,n(s)))
U i€l s
subjectto U'(s) > Q'(s,a’, " (s)) for alli,s,a’
Zni(ai | s) =1foralli,s

at

ﬂi(ai | s) > 0foralli,s, at

Q! (s, m(s)) = Ri(s,m(s)))+ » X/:Ui(SI)

Non-linear terms highlighted

where

4/18/24

Summary

* Zero sum case is easy
* Alternating move behaves just like and MDP; all algorithms generalize

* Simultaneous move is conceptually pretty easy, but requires solving an LP at
each state

* General sum case inherits some tricky issues from one-shot games
* Computational difficulty in finding equilibria
* Equilibrium selection problem
* No simple generalization of standard MDP algorithms

