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Alternating move, zero-sum, 2-player games

• Ordinary bellman equation

• Two player
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Vmin and Vmax

• Vmin is, by definition, the negative of Vmax

• No need to store two separate value functions

• Can store just one and flip the sign based upon who is playing

Algorithms for zero-sum games

• Alternative move case is easy
• Minor generalizations of value iteration, policy iteration, Q-learning, 

etc. all work as expected
• Value function approximation works as in regular MDPs 
• Used in:
• TD-gammon
• AlphaGo

• Not used in:
• Atari Games (opponents are viewed as part of environment)



4/18/24

3

Why not treat opponent as part of environment?

• Want a strategy that is robust against all possible opponent actions
• When we maximizing and assume opponent is minimizing

• Maximize our worst case results
• If policy is optimal, then no opponent can force us to get less (in expectation) than values 

our computed for our value function

• If opponent is viewed as part of the environment
• Implicitly assumes opponent behavior will not change in response to yours
• If opponent policy does change:

• Like learning in a non-stationary MDP
• Learned policy can oscillate
• Opponent can exploit your policy

Zero Sum Markov Games (simultaneous move)

• Combine MDPs with zero sum games
• Each state has a payoff matrix
• Joint action take by both players determines:
• Immediate payoff
• Distribution over next actions

• Question: Can we generalize MDP algorithms to this case?
• Answer: Yes!
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Bellman equation for zero sum stochastic games

• Let Q(s,a,o) be the expected value (from player 1’s perspective) when 
player 1 takes action a, player 2, takes action 0, and both players act 
optimally thereafter
• Then V(s) is the solution to the following linear program:

All of this  replaces max
in the Bellman equation

Application of modified Bellman equation

• Can we do value iteration, policy iteration, function approximation, Q-
learning, etc. with this formulation?

• Yes! Notable example: minimax-Q

• But...
• It’s expensive
• Updating every state requires solving a linear program
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General Sum Stochastic Games

• Combine:
• General sum games
• MDPs

• Each state has:
• Payoff matrix (not assumed to be zero sum)
• Joint action determines immediate reward, distribution over next states

• Question: Can we use MDP techniques to find equilibria of general 
sum stochastic games?
• Answer: Not really L

Why MDP techniques fail for general sum 
stochastic games
• Recall the zero sum case:

• Problems:
• V(s) is not the result of a maximization in the general sum case
• Our policy for state s should be an equilibrium policy, but which equilibrium?
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Solution strategies

• A huge one-shot game where actions are policies? (Ew…, but ok…)
• What is a best response?
• If opponent strategies are frozen, best response is solution to an MDP
• Suggests numerous approaches such as double oracle, iterated best response, 

fictitious play, etc.

• Generalizations of minimax-Q -> Nash-Q
• RL approaches to general sum stochastic games typically converge 

only in special cases, not in general

General sum MG as a math program

Non-linear terms highlighted
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Summary

• Zero sum case is easy
• Alternating move behaves just like and MDP; all algorithms generalize
• Simultaneous move is conceptually pretty easy, but requires solving an LP at 

each state

• General sum case inherits some tricky issues from one-shot games
• Computational difficulty in finding equilibria
• Equilibrium selection problem
• No simple generalization of standard MDP algorithms


