2/29/24

Model Based RL
and
Exploration in RL/MDPs

CSCI 2951-F
Ron Parr

Brown Univeristy

Overview

* How/why model based RL?

* Small(ish) state spaces
* How are models learned/used?
* Exploration in small(ish) state spaces

* Large state spaces
* How are models learned/used
* How is exploration handled?

2/29/24

How to learn a model?

* Similar approach to bandits
* Bandit: Each machine is a binomial (2 outcomes, win or lose)
* MDP: Each (state,action) is a multinomial (outcomes = next states)

* Generic approaches (w/ no assumptions about form of model):
* Maximum likelihood
* Bayesian with Dirichlet prior
* Generalization of beta prior

* Prior = hallucinated previous transitions
* Same pros and cons as beta prior for bandits

* Model fitting
* Use prior knowledge that not every state is reachable from every state

Why model based RL?

* Could learn the MDP, then solve the MDP, but...

* If we can learn Q-functions directly, why bother learning model?
* Q-functions store SxA numbers
* Model stores SxXSxA numbers + size of R
* Could it be more data efficient to learn the model?
* Possibly (depends on how you look at it — see bounds later in the slide deck)

* Definitely if you have inductive bias that makes model fitting practical
* e.g., you know that you are in a grid world and all actions behave under a shared noise model
* e.g., environment has some known parametric model with fewer parameters than states

2/29/24

Digression: Model learning in deep RL

* Q: Can you use a deep network to learn a model?

* A: Yes!
* How: Train model to predict next states given current state, action
* Why:

* Can be a useful auxiliary task

* Can be used for data efficient planning if:
* Model has a low-dimensional ”latent state” that can be learned
* Planning can be done efficiently in the latent state space — see Dreamer

* Back to small state spaces for a while...

Interleaving updates and actions

* Silly(?) approach:
* Act randomly until you’ve tried every (s,a) enough
* Solve the learned model

* Smarter approaches

* Update model as you go
* Use model in some smart way to choose actions

* But how do we update the MDP solution?
* Re-solve the entire MDP after each new experience
* Asynchronous updates

2/29/24

Asynchronous value function updates

* Value iteration/determination operate synchronously using a model
* State values at iteration i are fixed
* Used to create a totally new set of state values at iteration i+1

* RL updates one state at time based upon an observed transition

* Anything between these two extremes also works (with mild assumptions)

* Update strategies while learning a model:
* Update only the state for which the transition model has changed
* Update some additional randomly selected states

* Use a priority queue to track states with values that are most out of date
* e.g. If state s jJumps in value, other states w/transitions to s need updating too.
* Called “prioritized sweeping”, extended to “prioritized replay” for replay buffers (DQN)

/ﬁn@i p VS &\

—

Exploration
enters the
conversation

2/29/24

How to think about exploration

* Similar to pulling arms in a bandit problem, but

* Events can be rare in multiple ways

* Individual transitions can have low probability

* Low(ish) probability events can chain to create even lower probabilities

* Even without domain randomness, randomly choosing actions can lead to
low probabilities of reaching distant states

2/1-
a1/1.0 \2/1-8 a1/1.0 \/ ’ 21/1.0 \312/1_8 AO a2/l

O

Narrow passages

2/29/24

Hard-to-reach places (narrow passages)

https://en.wikipedia.org/wiki/Mountain_car_problem

Montezuma’s Revenge (long sequences)

T
T

Source: https://gymnasium.farama.org/v0.27.1/environments/atari/montezuma_revenge/

2/29/24

Questions about exploration
* How do you know when you are “done” exploring?
* What is the right way to think about the (opportunity) cost of exploring?

* If we need to take millions of actions to discover the good parts of the
state space, is it wrong to take short term reward instead?

* In very large state spaces, it is impossible to visit every state, so how do
we think about exploration?

Approaches to exploration

* Ignore it and assume that randomness takes care of things
¢ Pro: Easy
¢ Con: May not work
* g-greedy
¢ Pro: Easy to implement, favors “good” actions
* Con: Picking €, hard to prove that it balances exploration vs. exploitation

* Boltzman exploration (softmax with adjustable temperature)
¢ Pro: More nuanced than e-greedy
* Cons: Hard to pick A, mostly same issues as a e-greedy
* Ad-hoc exploration bonuses based on how many times an action has been tried in a state
* Pro: Easy to implement for discrete MDPs, biases exploration towards “new” states
* Con: Not clear how to pick bonuses, hard to prove anything
* Optimism in the face of uncertainty
¢ Assume all states (stat-action pairs) we haven’t tried are really good
¢ Rely upon RL updates to prove us wrong

* Bayesian exploration

2/29/24

Balancing exploration vs. exploitation

* PAC optimal RL (PAC-MDP)
* Borrows ideas from computational learning theory, PAC bandits
* WHP bounds on the number of steps in which we make “bad” decisions

* Bayesian approaches
* Solve exploration MDP as a MDP
* Generalize Thompson sampling from bandits

PAC MDP optimality criterion

* Probably Approximately Correct

* Motivation:

* With real data, can’t guarantee that any finite sample sees all or enough of
the data/state space to get things right

* For a finite sample of data, we can only hope to get close to the truth, not an
exact estimate of real numbers

* We aim to get within ¢ of best/correct answer
* With probability 1-5
* Goal: Scaling (computation, sample complexity) in 1/¢, 1/

2/29/24

What does PAC-MDP mean

* Application of PAC concepts to RL

» With probability 1-5, algorithm makes a bounded number of steps
that are € worse than optimal

Amount of computation, number of suboptimal steps should scale
polynomially with |S|, |A|, 1/¢, 1/0, and 1/(1-y)

What does € worse than optimal mean?

VA (s;) <V*(s;) —¢

* Considers the value of whatever policy you are following at time t (4,)
* (Because policy is constantly changing as you learn)
* Could be arbitrarily bad — all € worse actions count the same

* Also, could be inconsequential if you take an action from a stupid policy
but change policies before you experience the consequences

* Disconnects somewhat from actual rewards accrued

2/29/24

The R-Max algorithm

* Model based RL
* Initially assumes all states-actions pairs have max possible Q-value (Vmax)
* Always act greedily WRT current model, value function

* When a new state has at least m samples of (s,a)
* Estimate P(s’|s,a)
* Recompute Q-values for entire model

* Choose m high enough so that you have “enough” experiences in each
state for P(s’|s,a) to be close to correct (m is a messy, but polynomial,
function of # of states, # of actions, 1/9, 1/¢, and Vi)

* Resulting policy always draws you towards unexplored states

Intuition for why R-max works

* If mis “large”, and all states are “known”, then your model is

approximately correct, and your policy will be close to optimal for the
real MDP

* If not all states states are known, then either:

* Your policy will take actions to reach to unknown states, eventually making
them “known”, or

* You don’t care because you can achieve close to the highest value possible
without leaving the “known states”

* But how efficient is it?

10

2/29/24

R-Max sample complexity

O(s°A/ (€ (1-7)%))

* Ignores log factors
* S?A shouldn’t be surprising — size of transition matrices
* €3(1-y)®isn’t great

A model-free approach: Delayed Q-learning

* Initialize all Q-values to max possible value
 Always act greedily WRT Q-functions

* Delay updating Q-functions unless:
* A state has had m (different m from Rmax) new (s,a) experiences
* The update is sufficiently large

* Stop making updates if no significant changes

* Also adds a small “exploration” bonus for states with values that
haven’t (approximately) converged yet

* Turns Q-learning into a semi-batch method

https://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf

11

2/29/24

Delayed Q-learning sample complexity

O(SA/(*(1-7)%))

* Ignores log factors
* SA shouldn’t be surprising — size of Q-functions
* €4(1-y)® is eye-watering

Are these bounds bad?

* They might not be tight in all variables

* Can’t avoid trying every state and action “enough” times to figure out
if it’s worthwhile

* What if we had prior knowledge about (some) state values?

12

2/29/24

Bayesian RL

* Maintain a probability distribution over (models)MDPs
* Sample models, choose actions that are optimal WRT to sample

* (Similar to Thompson sampling)
* Tricky in practice — space of RL models is not easy to manage

* Not the focus of this lecture

Admissible heuristics

* For PAC MDPs h(x) is admissible if it never underestimates the true value

* Concept taken from heuristic search, e.g., A*, but reversed

 Standard R-Max and Delayed Q are admissible, but what if we have
extra knowledge?

13

2/29/24

Bounds with admissible heuristics

* R-max

5 (v;axs«s,a) €S X AU(s,) 2 V*(s) e}|)
3 3
e (1—y)

* Delayed Q

) Vr?lax E(S,a)ESXA[U(s7a) - V*<S)]+
et(1—v)"

Here, admissible means Q*(s,a) < U(s,a) < Viux

What’s the best we can hope to do?

* Two bounds:

14

2/29/24

A Bayesian Approach

 Recall how to solve a bandit as an MDP
* State = #w,#| for each arm (win probability for each arm)
* beta prior implies distribution over next states
* Solve MDP in this state space to find optimal exploration strategy

* Generalization to MDPs
* State is current Dirichlet distribution parameters for all states
* Implies distribution over next states (next MDP parameters)
* Could solve this as a huge MDP (but you don’t want to!)

Thompson sampling for MDPs

* Active research area

* General approach:
* Maintain a distribution over MDPs
* Sample an MDP from this distribution
* Compute the optimal policy for the MDP and act in it for a while, collecting data
* Update distribution
* Repeat until some convergence condition

* Recent results have emphasized regret bounds in finite horizon MDPs

15

2/29/24

Exploration in large state spaces

* Methods used so far rely upon collecting data for every (s,a)

* For large state spaces:
* Too many states
* May never visit the same (s,a) twice (if continuous)
* Rely upon function approximation (e.g. DQN)

* |dea:

* Approximate behavior of R-max by giving an exploration bonus to states that
have not been visited much (supplementary reward)

¢ Attenuate the bonus as states are visited more
¢ “Pseudo counts”
* Challenge: How do you estimate this for large state spaces?

Exploration bonus example

-0.40

-0.35

0.30

-0.25

-0.20

0.15

-0.10

Images courtesy of Sam Lobel

16

2/29/24

Implementing pseudo counts

* Goal: (Approximately) estimate how often an agent has been in a state
(lumping together “similar” states)

* Challenges:
* Input space can be enormous (image space)
* Chicken and egg problem — we may not know what relevant similarities are until

we’ve solved the problem, but can’t solve the problem w/o expoloration
* One family of approaches:
* Measure similarity in a lower dimensional and/or discreteized space such as
* Bottleneck in the NN (last layer, or embedding space depending upon architecture)
* Some hash or projection of the input space

Indirect approaches

* Use neural network to indirectly estimate state visitation frequency

* Random Network Distillation [Burda et al.]
* Initialize a random neural network f(s,0) — fixed weights, not trained
* Train a new network g(s,o) starting from a different random initialization to match
f(s,0) — one gradient step every time we visit s
* Exploration bonus increases with difference between | f(s,0)- g(s,®) |
* Intuition: As we get more experience “around” s, networks should converge
* Works strangely well despite some obvious concerns about representation, local
optima, etc.
* Coin flipping network [Lobel et al.]
* Train a network with state s as input, uniformly randomly selected +1/-1 target
* |deally, network will converge to O for all states '
* Distance from 0 is indication of state novelty
* More justifiable and (often) works better than RND i £

17

2/29/24

Couresy of Sam Lobel

o RMS(Jlv]l) 1

=1 0

What do you do in practice?

* g-greedy still the most popular form of exploration

* Methods like RND and CFN that are motivated by theoretical results
on small state spaces getting increasing traction

18

