
2/29/24

1

Model Based RL
and

Exploration in RL/MDPs
CSCI 2951-F

Ron Parr
Brown Univeristy

Overview

• How/why model based RL?

• Small(ish) state spaces
• How are models learned/used?
• Exploration in small(ish) state spaces

• Large state spaces
• How are models learned/used
• How is exploration handled?

2/29/24

2

How to learn a model?

• Similar approach to bandits
• Bandit: Each machine is a binomial (2 outcomes, win or lose)
• MDP: Each (state,action) is a multinomial (outcomes = next states)
• Generic approaches (w/ no assumptions about form of model):
• Maximum likelihood
• Bayesian with Dirichlet prior

• Generalization of beta prior
• Prior = hallucinated previous transitions
• Same pros and cons as beta prior for bandits

• Model fitting
• Use prior knowledge that not every state is reachable from every state

Why model based RL?

• Could learn the MDP, then solve the MDP, but…

• If we can learn Q-functions directly, why bother learning model?
• Q-functions store SxA numbers
• Model stores SxSxA numbers + size of R
• Could it be more data efficient to learn the model?

• Possibly (depends on how you look at it – see bounds later in the slide deck)
• Definitely if you have inductive bias that makes model fitting practical

• e.g., you know that you are in a grid world and all actions behave under a shared noise model
• e.g., environment has some known parametric model with fewer parameters than states

2/29/24

3

Digression: Model learning in deep RL

• Q: Can you use a deep network to learn a model?
• A: Yes!
• How: Train model to predict next states given current state, action
• Why:
• Can be a useful auxiliary task
• Can be used for data efficient planning if:

• Model has a low-dimensional ”latent state” that can be learned
• Planning can be done efficiently in the latent state space – see Dreamer

• Back to small state spaces for a while…

Interleaving updates and actions

• Silly(?) approach:
• Act randomly until you’ve tried every (s,a) enough
• Solve the learned model

• Smarter approaches
• Update model as you go
• Use model in some smart way to choose actions

• But how do we update the MDP solution?
• Re-solve the entire MDP after each new experience
• Asynchronous updates

2/29/24

4

Asynchronous value function updates

• Value iteration/determination operate synchronously using a model
• State values at iteration i are fixed
• Used to create a totally new set of state values at iteration i+1

• RL updates one state at time based upon an observed transition
• Anything between these two extremes also works (with mild assumptions)
• Update strategies while learning a model:
• Update only the state for which the transition model has changed
• Update some additional randomly selected states
• Use a priority queue to track states with values that are most out of date

• e.g. If state s jumps in value, other states w/transitions to s need updating too.
• Called “prioritized sweeping”, extended to “prioritized replay” for replay buffers (DQN)

Exploration
enters the
conversation

2/29/24

5

How to think about exploration
• Similar to pulling arms in a bandit problem, but
• Events can be rare in multiple ways
• Individual transitions can have low probability
• Low(ish) probability events can chain to create even lower probabilities
• Even without domain randomness, randomly choosing actions can lead to

low probabilities of reaching distant states

a2/e

a2/1-ea1/1.0

a2/e

a2/1-e
a1/1.0

a2/e

a2/1-ea1/1.0

a2/e

a2/1-ea1/1.0

Narrow passages

2/29/24

6

Hard-to-reach places (narrow passages)

https://en.wikipedia.org/wiki/Mountain_car_problem

Montezuma’s Revenge (long sequences)

Source: https://gymnasium.farama.org/v0.27.1/environments/atari/montezuma_revenge/

2/29/24

7

Questions about exploration

• How do you know when you are “done” exploring?

• What is the right way to think about the (opportunity) cost of exploring?

• If we need to take millions of actions to discover the good parts of the
state space, is it wrong to take short term reward instead?

• In very large state spaces, it is impossible to visit every state, so how do
we think about exploration?

Approaches to exploration
• Ignore it and assume that randomness takes care of things

• Pro: Easy
• Con: May not work

• e-greedy
• Pro: Easy to implement, favors “good” actions
• Con: Picking e, hard to prove that it balances exploration vs. exploitation

• Boltzman exploration (softmax with adjustable temperature)
• Pro: More nuanced than e-greedy
• Cons: Hard to pick l, mostly same issues as a e-greedy

• Ad-hoc exploration bonuses based on how many times an action has been tried in a state
• Pro: Easy to implement for discrete MDPs, biases exploration towards “new” states
• Con: Not clear how to pick bonuses, hard to prove anything

• Optimism in the face of uncertainty
• Assume all states (stat-action pairs) we haven’t tried are really good
• Rely upon RL updates to prove us wrong

• Bayesian exploration

2/29/24

8

Balancing exploration vs. exploitation

• PAC optimal RL (PAC-MDP)
• Borrows ideas from computational learning theory, PAC bandits
• WHP bounds on the number of steps in which we make “bad” decisions

• Bayesian approaches
• Solve exploration MDP as a MDP
• Generalize Thompson sampling from bandits

PAC MDP optimality criterion

• Probably Approximately Correct
• Motivation:
• With real data, can’t guarantee that any finite sample sees all or enough of

the data/state space to get things right
• For a finite sample of data, we can only hope to get close to the truth, not an

exact estimate of real numbers

• We aim to get within e of best/correct answer
• With probability 1-d
• Goal: Scaling (computation, sample complexity) in 1/e, 1/d

2/29/24

9

What does PAC-MDP mean

• Application of PAC concepts to RL

• With probability 1-d, algorithm makes a bounded number of steps
that are e worse than optimal
•

Amount of computation, number of suboptimal steps should scale
polynomially with |S|, |A|, 1/e, 1/d, and 1/(1-g)

What does e worse than optimal mean?

• Considers the value of whatever policy you are following at time t (At)
• (Because policy is constantly changing as you learn)
• Could be arbitrarily bad – all e worse actions count the same
• Also, could be inconsequential if you take an action from a stupid policy

but change policies before you experience the consequences
• Disconnects somewhat from actual rewards accrued

STREHL, LI, AND LITTMAN

performance). As these parameters approach zero, greater exploration and learning is necessary, as
higher quality is demanded of the algorithms.

In the following definition, we view an algorithm as a non-stationary (in terms of the current
state) policy that, on each timestep, takes as input an entire history or trajectory through the MDP
(its actual history) and outputs an action (which the agent then executes). Formally, we define the
policy of any algorithmA at a fixed instance in time t to be a functionAt : {S×A× [0,1]}∗×S→A,
that maps future paths to future actions.6

Definition 1 (Kakade 2003) Let c = (s1,a1,r1,s2,a2,r2, . . .) be a random path generated by exe-
cuting an algorithm A in an MDP M. For any fixed ε > 0, the sample complexity of exploration
(sample complexity, for short) of A is the number of timesteps t such that the policy at time t, At ,
satisfies VAt (st) <V ∗(st)− ε.

Note that the sample complexity of an algorithm is dependent on some infinite-length path
through the MDP. We believe this definition captures the essence of measuring learning. It directly
measures the number of times the agent acts poorly (quantified by ε) and we view “fast” learners as
those that act poorly as few times as possible. Based on this intuition, we define what it means to
be an “efficient” learning algorithm.

Definition 2 An algorithm A is said to be an efficient PAC-MDP (Probably Approximately Cor-
rect in Markov Decision Processes) algorithm if, for any ε > 0 and 0 < δ < 1, the per-timestep
computational complexity, space complexity, and the sample complexity of A are less than some
polynomial in the relevant quantities (S,A,1/ε,1/δ,1/(1− γ)), with probability at least 1−δ. It is
simply PAC-MDP if we relax the definition to have no computational complexity requirement.

The terminology, PAC, in this definition is borrowed from Angluin (1988) for the distribution-
free supervised-learning model of Valiant (1984). One thing to note is that we only require a PAC-
MDP algorithm to behave poorly (non-ε-optimally) on no more than a small (polynomially) number
of timesteps. We do not place any limitations on when the algorithm acts poorly or how poorly it
acts on those timesteps. This definition is in contrast to Valiant’s PAC notion, which is more “off-
line” in that it requires the algorithm to make all of its mistakes ahead of time (during the learning
phase) before identifying a near-optimal policy. The notion of PAC-MDP is also closely related
to the Mistake Bound (MB) model of Littlestone (1988) where the goal of a learner that predicts
sequentially must make a small (polynomial) number of mistakes during a whole run. Indeed, if we
count every timestep in which an algorithm behaves non-ε-optimally as a mistake, then a PAC-MDP
algorithm makes only a polynomial number of mistakes during a whole run with high probability,
similar to an MB algorithm. However, a mistake in a PAC-MDP algorithm refers to the quality of a
policy rather than prediction errors as in MB.

Efficient learnability in the sample-complexity framework from above implies efficient learn-
ability in a more realistic framework called Average Loss that measures the actual return (sum of
rewards) achieved by the agent against the expected return of the optimal policy (Strehl and Littman,
2008b). The analysis of R-MAX by Kakade (2003) and of MBIE by Strehl and Littman (2005) use
the same definition as above. The analysis of R-MAX by Brafman and Tennenholtz (2002) and of

6. The action of an agent on timestep t in state st is given by the function evaluated at the empty history, At(/0,st).

2418

2/29/24

10

The R-Max algorithm

• Model based RL
• Initially assumes all states-actions pairs have max possible Q-value (Vmax)
• Always act greedily WRT current model, value function
• When a new state has at least m samples of (s,a)

• Estimate P(s’|s,a)
• Recompute Q-values for entire model

• Choose m high enough so that you have “enough” experiences in each
state for P(s’|s,a) to be close to correct (m is a messy, but polynomial,
function of # of states, # of actions, 1/d, 1/e, and Vmax)
• Resulting policy always draws you towards unexplored states

Intuition for why R-max works

• If m is “large”, and all states are “known”, then your model is
approximately correct, and your policy will be close to optimal for the
real MDP
• If not all states states are known, then either:
• Your policy will take actions to reach to unknown states, eventually making

them “known”, or
• You don’t care because you can achieve close to the highest value possible

without leaving the “known states”

• But how efficient is it?

2/29/24

11

R-Max sample complexity

• Ignores log factors
• S2A shouldn’t be surprising – size of transition matrices
• e3(1-g)6 isn’t great

STREHL, LI, AND LITTMAN

analyses. In addition, the bounds we present are stated in terms of an admissible heuristic provided
to the algorithm (see Section 1.3) and the (unknown) optimal value function. These bounds are
more refined than the ones previously presented in the literature and more accurately reflect the
performance of the corresponding algorithms. For the lower bound, we provide an improved result
that matches the upper bound in terms of the number of states of the MDP.

An outline of the paper is as follows. This introduction section concludes with a formal spec-
ification of the problem and related work. In Section 2, R-MAX and Delayed Q-learning are de-
scribed. Then, we present their analyses and prove PAC-MDP upper bounds in Section 3. A new
lower bound is proved in Section 4.

1.1 Main Results

We present two upper bounds and one lower bound on the achievable sample complexity of general
reinforcement-learning algorithms (see Section 1.5 for a formal definition). The two upper bounds
dominate all previously published bounds, but differ from one another. When logarithmic factors
are ignored, the first bound, for the R-MAX algorithm, is

Õ(S2A/(ε3(1− γ)6)),

while the corresponding second bound, for the Delayed Q-learning algorithm, is

Õ(SA/(ε4(1− γ)8)).

Here, S and A are the number of states and the number of actions, respectively, of the MDP, ε and
δ are accuracy parameters, and γ is a discount factor. R-MAX works by building an approximate
MDP model and the S2A term in its sample complexity follows from requiring accuracy in each of
the S2A parameters of the model. Delayed Q-learning, on the other hand, does not build an explicit
model and can be viewed as an approximate version of value iteration. Thus, accuracy only needs
to be guaranteed for each of the SA entries in the value function.

While previous bounds are in terms of an upper bound 1/(1− γ) on the value function, we
find that tighter bounds are possible if a more informative value-function upper bound is given.
Specifically, we can rewrite the bounds in terms of the initial admissible heuristic values (see Sec-
tion 1.3) supplied to the algorithms, U(·, ·), and the true (unknown) value function V ∗(·). Ignoring
logarithmic factors, for R-MAX the bound is

Õ

(

V 3maxS |{(s,a) ∈ S ×A|U(s,a)≥V ∗(s)− ε}|
ε3(1− γ)3

)

, (1)

and for Delayed Q-learning

Õ

(

V 3max∑(s,a)∈S×A[U(s,a)−V ∗(s)]+
ε4(1− γ)4

)

, (2)

where Vmax ≥ maxs,aU(s,a) is an upper bound on the admissible heuristic (and also on the true
value function), and [x]+ is defined as max(0,x) for x ∈ R. Thus, we observe that for R-MAX one
factor of SA/(1− γ)3 gets replaced by |{(s,a) : U(s,a) ≥ V ∗(s)− ε}|V 3max,1 the number of state-
action pairs whose heuristic initial value is larger than V ∗ − ε, while for Delayed Q-learning the

1. This quantity can be as small as SV 3max and as large as SAV 3max, where Vmax ∈ [0, 1
1−γ].

2414

A model-free approach: Delayed Q-learning

• Initialize all Q-values to max possible value
• Always act greedily WRT Q-functions
• Delay updating Q-functions unless:
• A state has had m (different m from Rmax) new (s,a) experiences
• The update is sufficiently large

• Stop making updates if no significant changes
• Also adds a small “exploration” bonus for states with values that

haven’t (approximately) converged yet

• Turns Q-learning into a semi-batch method
https://www.jmlr.org/papers/volume10/strehl09a/strehl09a.pdf

2/29/24

12

Delayed Q-learning sample complexity

• Ignores log factors
• SA shouldn’t be surprising – size of Q-functions
• e4(1-g)8 is eye-watering

STREHL, LI, AND LITTMAN

analyses. In addition, the bounds we present are stated in terms of an admissible heuristic provided
to the algorithm (see Section 1.3) and the (unknown) optimal value function. These bounds are
more refined than the ones previously presented in the literature and more accurately reflect the
performance of the corresponding algorithms. For the lower bound, we provide an improved result
that matches the upper bound in terms of the number of states of the MDP.

An outline of the paper is as follows. This introduction section concludes with a formal spec-
ification of the problem and related work. In Section 2, R-MAX and Delayed Q-learning are de-
scribed. Then, we present their analyses and prove PAC-MDP upper bounds in Section 3. A new
lower bound is proved in Section 4.

1.1 Main Results

We present two upper bounds and one lower bound on the achievable sample complexity of general
reinforcement-learning algorithms (see Section 1.5 for a formal definition). The two upper bounds
dominate all previously published bounds, but differ from one another. When logarithmic factors
are ignored, the first bound, for the R-MAX algorithm, is

Õ(S2A/(ε3(1− γ)6)),

while the corresponding second bound, for the Delayed Q-learning algorithm, is

Õ(SA/(ε4(1− γ)8)).

Here, S and A are the number of states and the number of actions, respectively, of the MDP, ε and
δ are accuracy parameters, and γ is a discount factor. R-MAX works by building an approximate
MDP model and the S2A term in its sample complexity follows from requiring accuracy in each of
the S2A parameters of the model. Delayed Q-learning, on the other hand, does not build an explicit
model and can be viewed as an approximate version of value iteration. Thus, accuracy only needs
to be guaranteed for each of the SA entries in the value function.

While previous bounds are in terms of an upper bound 1/(1− γ) on the value function, we
find that tighter bounds are possible if a more informative value-function upper bound is given.
Specifically, we can rewrite the bounds in terms of the initial admissible heuristic values (see Sec-
tion 1.3) supplied to the algorithms, U(·, ·), and the true (unknown) value function V ∗(·). Ignoring
logarithmic factors, for R-MAX the bound is

Õ

(

V 3maxS |{(s,a) ∈ S ×A|U(s,a)≥V ∗(s)− ε}|
ε3(1− γ)3

)

, (1)

and for Delayed Q-learning

Õ

(

V 3max∑(s,a)∈S×A[U(s,a)−V ∗(s)]+
ε4(1− γ)4

)

, (2)

where Vmax ≥ maxs,aU(s,a) is an upper bound on the admissible heuristic (and also on the true
value function), and [x]+ is defined as max(0,x) for x ∈ R. Thus, we observe that for R-MAX one
factor of SA/(1− γ)3 gets replaced by |{(s,a) : U(s,a) ≥ V ∗(s)− ε}|V 3max,1 the number of state-
action pairs whose heuristic initial value is larger than V ∗ − ε, while for Delayed Q-learning the

1. This quantity can be as small as SV 3max and as large as SAV 3max, where Vmax ∈ [0, 1
1−γ].

2414

Are these bounds bad?

• They might not be tight in all variables

• Can’t avoid trying every state and action “enough” times to figure out
if it’s worthwhile

• What if we had prior knowledge about (some) state values?

2/29/24

13

Bayesian RL

• Maintain a probability distribution over (models)MDPs
• Sample models, choose actions that are optimal WRT to sample
• (Similar to Thompson sampling)
• Tricky in practice – space of RL models is not easy to manage

• Not the focus of this lecture

Admissible heuristics

• For PAC MDPs h(x) is admissible if it never underestimates the true value

• Concept taken from heuristic search, e.g., A*, but reversed

• Standard R-Max and Delayed Q are admissible, but what if we have
extra knowledge?

2/29/24

14

Bounds with admissible heuristics

• R-max

• Delayed Q

STREHL, LI, AND LITTMAN

analyses. In addition, the bounds we present are stated in terms of an admissible heuristic provided
to the algorithm (see Section 1.3) and the (unknown) optimal value function. These bounds are
more refined than the ones previously presented in the literature and more accurately reflect the
performance of the corresponding algorithms. For the lower bound, we provide an improved result
that matches the upper bound in terms of the number of states of the MDP.

An outline of the paper is as follows. This introduction section concludes with a formal spec-
ification of the problem and related work. In Section 2, R-MAX and Delayed Q-learning are de-
scribed. Then, we present their analyses and prove PAC-MDP upper bounds in Section 3. A new
lower bound is proved in Section 4.

1.1 Main Results

We present two upper bounds and one lower bound on the achievable sample complexity of general
reinforcement-learning algorithms (see Section 1.5 for a formal definition). The two upper bounds
dominate all previously published bounds, but differ from one another. When logarithmic factors
are ignored, the first bound, for the R-MAX algorithm, is

Õ(S2A/(ε3(1− γ)6)),

while the corresponding second bound, for the Delayed Q-learning algorithm, is

Õ(SA/(ε4(1− γ)8)).

Here, S and A are the number of states and the number of actions, respectively, of the MDP, ε and
δ are accuracy parameters, and γ is a discount factor. R-MAX works by building an approximate
MDP model and the S2A term in its sample complexity follows from requiring accuracy in each of
the S2A parameters of the model. Delayed Q-learning, on the other hand, does not build an explicit
model and can be viewed as an approximate version of value iteration. Thus, accuracy only needs
to be guaranteed for each of the SA entries in the value function.

While previous bounds are in terms of an upper bound 1/(1− γ) on the value function, we
find that tighter bounds are possible if a more informative value-function upper bound is given.
Specifically, we can rewrite the bounds in terms of the initial admissible heuristic values (see Sec-
tion 1.3) supplied to the algorithms, U(·, ·), and the true (unknown) value function V ∗(·). Ignoring
logarithmic factors, for R-MAX the bound is

Õ

(

V 3maxS |{(s,a) ∈ S ×A|U(s,a)≥V ∗(s)− ε}|
ε3(1− γ)3

)

, (1)

and for Delayed Q-learning

Õ

(

V 3max∑(s,a)∈S×A[U(s,a)−V ∗(s)]+
ε4(1− γ)4

)

, (2)

where Vmax ≥ maxs,aU(s,a) is an upper bound on the admissible heuristic (and also on the true
value function), and [x]+ is defined as max(0,x) for x ∈ R. Thus, we observe that for R-MAX one
factor of SA/(1− γ)3 gets replaced by |{(s,a) : U(s,a) ≥ V ∗(s)− ε}|V 3max,1 the number of state-
action pairs whose heuristic initial value is larger than V ∗ − ε, while for Delayed Q-learning the

1. This quantity can be as small as SV 3max and as large as SAV 3max, where Vmax ∈ [0, 1
1−γ].

2414

STREHL, LI, AND LITTMAN

analyses. In addition, the bounds we present are stated in terms of an admissible heuristic provided
to the algorithm (see Section 1.3) and the (unknown) optimal value function. These bounds are
more refined than the ones previously presented in the literature and more accurately reflect the
performance of the corresponding algorithms. For the lower bound, we provide an improved result
that matches the upper bound in terms of the number of states of the MDP.

An outline of the paper is as follows. This introduction section concludes with a formal spec-
ification of the problem and related work. In Section 2, R-MAX and Delayed Q-learning are de-
scribed. Then, we present their analyses and prove PAC-MDP upper bounds in Section 3. A new
lower bound is proved in Section 4.

1.1 Main Results

We present two upper bounds and one lower bound on the achievable sample complexity of general
reinforcement-learning algorithms (see Section 1.5 for a formal definition). The two upper bounds
dominate all previously published bounds, but differ from one another. When logarithmic factors
are ignored, the first bound, for the R-MAX algorithm, is

Õ(S2A/(ε3(1− γ)6)),

while the corresponding second bound, for the Delayed Q-learning algorithm, is

Õ(SA/(ε4(1− γ)8)).

Here, S and A are the number of states and the number of actions, respectively, of the MDP, ε and
δ are accuracy parameters, and γ is a discount factor. R-MAX works by building an approximate
MDP model and the S2A term in its sample complexity follows from requiring accuracy in each of
the S2A parameters of the model. Delayed Q-learning, on the other hand, does not build an explicit
model and can be viewed as an approximate version of value iteration. Thus, accuracy only needs
to be guaranteed for each of the SA entries in the value function.

While previous bounds are in terms of an upper bound 1/(1− γ) on the value function, we
find that tighter bounds are possible if a more informative value-function upper bound is given.
Specifically, we can rewrite the bounds in terms of the initial admissible heuristic values (see Sec-
tion 1.3) supplied to the algorithms, U(·, ·), and the true (unknown) value function V ∗(·). Ignoring
logarithmic factors, for R-MAX the bound is

Õ

(

V 3maxS |{(s,a) ∈ S ×A|U(s,a)≥V ∗(s)− ε}|
ε3(1− γ)3

)

, (1)

and for Delayed Q-learning

Õ

(

V 3max∑(s,a)∈S×A[U(s,a)−V ∗(s)]+
ε4(1− γ)4

)

, (2)

where Vmax ≥ maxs,aU(s,a) is an upper bound on the admissible heuristic (and also on the true
value function), and [x]+ is defined as max(0,x) for x ∈ R. Thus, we observe that for R-MAX one
factor of SA/(1− γ)3 gets replaced by |{(s,a) : U(s,a) ≥ V ∗(s)− ε}|V 3max,1 the number of state-
action pairs whose heuristic initial value is larger than V ∗ − ε, while for Delayed Q-learning the

1. This quantity can be as small as SV 3max and as large as SAV 3max, where Vmax ∈ [0, 1
1−γ].

2414

Here, admissible means Q∗(𝑠, 𝑎) ≤ 𝑈 𝑠, 𝑎 ≤ 𝑉"#$

What’s the best we can hope to do?

• Two bounds:

• Improved (in most cases) to:

REINFORCEMENT LEARNING IN FINITE MDPS: PAC ANALYSIS

factor SA/(1− γ)4 is replaced by V 3max∑(s,a)∈S×A(U(s,a)−V ∗(s)),2 V 3max times the total sum of
differences between the heuristic values and the optimal value function. The latter term is better,
because it takes more advantage of accurate heuristics. For instance, ifU(s,a) =V ∗(s)+ε andV ∗(s)
is large for all s, then the bound for R-MAX stays essentially the same but the one for Delayed Q-
learning is greatly improved. Please see Russell and Norvig (1994) for discussions and references
on admissible heuristics. The method of incorporating admissible heuristics into Q-learning (Ng
et al., 1999) and R-MAX (Asmuth et al., 2008) are well known, but the bounds given in Equation 1
and Equation 2 are new.

The upper bounds summarized above may be pessimistic and thus may not reflect the worst-case
behavior of these algorithms. Developing lower bounds, especially matching lower bounds, tells us
what can (or cannot) be achieved. Although matching lower bounds are known for deterministic
MDPs (Koenig and Simmons, 1996; Kakade, 2003), it remains an open question for general MDPs.
The previous best lower bound is due to Kakade (2003), and was developed for the slightly different
notion of H-horizon value functions instead of the γ-discounted ones we focus on here. Adapting
his analysis to discounted value functions, we get the following lower bound:

Ω

(

SA
ε(1− γ)2

ln
1
δ

)

.

Based on the work of Mannor and Tsitsiklis (2004), we provide an improved lower bound

Ω

(

SA
ε2
ln
S
δ

)

(3)

which simultaneously increases the dependence on both S and 1/ε. While we choose to drop de-
pendence on 1/(1− γ) in our lower bound to facilitate a cleaner analysis, we believe it is possible
to force a quadratic dependence by a more careful analysis. This new lower bound (3) has a few
important implications. First, it implies that Delayed Q-learning’s worst-case sample complexity
has the optimal dependence on S. Second, it increases the dependence on 1/ε significantly from
linear to quadratic. It would be interesting to know whether a cubic dependence on 1/ε is possible,
which would match the upper bound for R-MAX (ignoring logarithmic factors).

Our lower bound is tight for the factors S, 1/ε, and 1/δ, in the weaker parallel sampling model
(Kearns and Singh, 1999). This finding suggests that a worse dependence on 1/ε is possible only in
MDPs with slow mixing rates.3 In both the parallel sampling model and the MDP used to prove the
lower bound given by Equation 3 (see Section 4), the distribution of states being sampled/visited
mixes extremely fast (in one and two timesteps, respectively). The slower the mixing rate, the more
difficult the temporal credit assignment problem (Sutton and Barto, 1998). In other words, a worse
dependence on 1/ε may require the construction of an MDP where deep planning is necessary.

Before finishing the informal introduction, we should point out that the present paper focuses
on worst-case upper bounds and so the sample complexity of exploration bounds like Equations 1
and 2 can be too conservative for MDPs encountered in practice. However, the algorithms and their
analyses have proved useful for guiding development of more practical exploration schemes as well
as improved algorithms. First of all, these algorithms formalize the principle of “optimism under the

2. This quantity can be as small as 0 and as large as SAV 4max, where Vmax ∈ [0, 1
1−γ].

3. There are many ways to define a mixing rate. Roughly speaking, it measures how fast the distribution of states an
agent reaches becomes independent of the initial state and the policy being followed.

2415

REINFORCEMENT LEARNING IN FINITE MDPS: PAC ANALYSIS

factor SA/(1− γ)4 is replaced by V 3max∑(s,a)∈S×A(U(s,a)−V ∗(s)),2 V 3max times the total sum of
differences between the heuristic values and the optimal value function. The latter term is better,
because it takes more advantage of accurate heuristics. For instance, ifU(s,a) =V ∗(s)+ε andV ∗(s)
is large for all s, then the bound for R-MAX stays essentially the same but the one for Delayed Q-
learning is greatly improved. Please see Russell and Norvig (1994) for discussions and references
on admissible heuristics. The method of incorporating admissible heuristics into Q-learning (Ng
et al., 1999) and R-MAX (Asmuth et al., 2008) are well known, but the bounds given in Equation 1
and Equation 2 are new.

The upper bounds summarized above may be pessimistic and thus may not reflect the worst-case
behavior of these algorithms. Developing lower bounds, especially matching lower bounds, tells us
what can (or cannot) be achieved. Although matching lower bounds are known for deterministic
MDPs (Koenig and Simmons, 1996; Kakade, 2003), it remains an open question for general MDPs.
The previous best lower bound is due to Kakade (2003), and was developed for the slightly different
notion of H-horizon value functions instead of the γ-discounted ones we focus on here. Adapting
his analysis to discounted value functions, we get the following lower bound:

Ω

(

SA
ε(1− γ)2

ln
1
δ

)

.

Based on the work of Mannor and Tsitsiklis (2004), we provide an improved lower bound

Ω

(

SA
ε2
ln
S
δ

)

(3)

which simultaneously increases the dependence on both S and 1/ε. While we choose to drop de-
pendence on 1/(1− γ) in our lower bound to facilitate a cleaner analysis, we believe it is possible
to force a quadratic dependence by a more careful analysis. This new lower bound (3) has a few
important implications. First, it implies that Delayed Q-learning’s worst-case sample complexity
has the optimal dependence on S. Second, it increases the dependence on 1/ε significantly from
linear to quadratic. It would be interesting to know whether a cubic dependence on 1/ε is possible,
which would match the upper bound for R-MAX (ignoring logarithmic factors).

Our lower bound is tight for the factors S, 1/ε, and 1/δ, in the weaker parallel sampling model
(Kearns and Singh, 1999). This finding suggests that a worse dependence on 1/ε is possible only in
MDPs with slow mixing rates.3 In both the parallel sampling model and the MDP used to prove the
lower bound given by Equation 3 (see Section 4), the distribution of states being sampled/visited
mixes extremely fast (in one and two timesteps, respectively). The slower the mixing rate, the more
difficult the temporal credit assignment problem (Sutton and Barto, 1998). In other words, a worse
dependence on 1/ε may require the construction of an MDP where deep planning is necessary.

Before finishing the informal introduction, we should point out that the present paper focuses
on worst-case upper bounds and so the sample complexity of exploration bounds like Equations 1
and 2 can be too conservative for MDPs encountered in practice. However, the algorithms and their
analyses have proved useful for guiding development of more practical exploration schemes as well
as improved algorithms. First of all, these algorithms formalize the principle of “optimism under the

2. This quantity can be as small as 0 and as large as SAV 4max, where Vmax ∈ [0, 1
1−γ].

3. There are many ways to define a mixing rate. Roughly speaking, it measures how fast the distribution of states an
agent reaches becomes independent of the initial state and the policy being followed.

2415

2/29/24

15

A Bayesian Approach

• Recall how to solve a bandit as an MDP
• State = #w,#l for each arm (win probability for each arm)
• beta prior implies distribution over next states
• Solve MDP in this state space to find optimal exploration strategy

• Generalization to MDPs
• State is current Dirichlet distribution parameters for all states
• Implies distribution over next states (next MDP parameters)
• Could solve this as a huge MDP (but you don’t want to!)

Thompson sampling for MDPs

• Active research area
• General approach:
• Maintain a distribution over MDPs
• Sample an MDP from this distribution
• Compute the optimal policy for the MDP and act in it for a while, collecting data
• Update distribution
• Repeat until some convergence condition

• Recent results have emphasized regret bounds in finite horizon MDPs

2/29/24

16

Exploration in large state spaces

• Methods used so far rely upon collecting data for every (s,a)
• For large state spaces:
• Too many states
• May never visit the same (s,a) twice (if continuous)
• Rely upon function approximation (e.g. DQN)

• Idea:
• Approximate behavior of R-max by giving an exploration bonus to states that

have not been visited much (supplementary reward)
• Attenuate the bonus as states are visited more
• “Pseudo counts”
• Challenge: How do you estimate this for large state spaces?

Exploration bonus example

Images courtesy of Sam Lobel

2/29/24

17

Implementing pseudo counts

• Goal: (Approximately) estimate how often an agent has been in a state
(lumping together “similar” states)
• Challenges:
• Input space can be enormous (image space)
• Chicken and egg problem – we may not know what relevant similarities are until

we’ve solved the problem, but can’t solve the problem w/o expoloration

• One family of approaches:
• Measure similarity in a lower dimensional and/or discreteized space such as
• Bottleneck in the NN (last layer, or embedding space depending upon architecture)
• Some hash or projection of the input space

Indirect approaches
• Use neural network to indirectly estimate state visitation frequency
• Random Network Distillation [Burda et al.]

• Initialize a random neural network f(s,q) – fixed weights, not trained
• Train a new network g(s,w) starting from a different random initialization to match

f(s,q) – one gradient step every time we visit s
• Exploration bonus increases with difference between | f(s,q)- g(s,w) |
• Intuition: As we get more experience “around” s, networks should converge
• Works strangely well despite some obvious concerns about representation, local

optima, etc.
• Coin flipping network [Lobel et al.]

• Train a network with state s as input, uniformly randomly selected +1/-1 target
• Ideally, network will converge to 0 for all states
• Distance from 0 is indication of state novelty
• More justifiable and (often) works better than RND

2/29/24

18

+1

+1 +1

-1

Couresy of Sam Lobel

What do you do in practice?

• e-greedy still the most popular form of exploration

• Methods like RND and CFN that are motivated by theoretical results
on small state spaces getting increasing traction

