Model Free RL

Ron Parr
CSCI 2951-F
Brown University

With thanks to Kris Hauser for some content, and Dillon Sandhu for edits

Notable Model Free RL Successes

e Most impressive examples are games:
— Backgammon (1993) and Go (2016) | O3 4 1 |

— Atari games (2014) 'v

— StarCraft 11 (2019)
— Dogfighting in realistic simulators (2020)

e Sutton & Barto RL Book is one of the most cited
references in CS (~68K citations as of Winter 2024)

Image source: Max Tegmark

Comparison w/Other Kinds of Learning

e Machine Learning is split into:
— Supervised: predicting human-labelled data

— Unsupervised: Discovering patterns in high
dimensional data

— Reinforcement Learning: maximizing a reward
that may be delayed

e What the last thing that happens before an
accident? -

Source: By Damnsoft 09 at English Wikipedia, CC BY 3.0, hitps://commons.wikimedia.org/w/index.ph

Why We Need Model Free RL

e We would like to solve an MDP, but...
e Where do we get transition probabilities?

e How do we store them?
* Big problems have big models

e Model size is quadratic in state space size

e Where do we get the reward function?

RL Framework

Learn an optimal policy by “trial and error”
e No assumptions about model
e No assumptions about reward function

Can assume:

— True state is known at all times
— Immediate reward is known

— Discount is known

RL for Our Game Show

* Problem: We don’t know probability of answering
correctly

e Solution: : ,
. Source: Wikipedia page
— Buy the home version of the game For “Who Wants to be a Millionaire”

— Practice on the home game to refine our strategy

— Deploy strategy when we play the real game

First steps: “Batch” Learning

e Observe execution trials of an agent that acts
according to some unobserved policy

e Problem: estimate V*,the value function for this
policy

e Important view of V*(s)

— Recall V7(s) is the expected, discounted value of
following policy m from state s

- V7(s) = EZ & [y* R(S;)] where S, is the random variable
denoting the distribution of states at time t

Batch RL
3 0|0 3 10.81/0.87|0.92| +1
1 \OC 0 i 0,0 110.71|0.66/0.61]0.39
1 2 3 4 1 2 3 4

1. Observe trials ti'=(sy!),a;1),5,0,r,0) ... 2", 540 ry) for i=1,...,n
2. For each state seS:
3. Find all trials t that pass through s at, e.g., time step k
4. Compute value VI0(s)=2 1o i vT* rel)
5. Set V™(s) to the average observed values

Note: This is called Monte Carlo Evaluation

Downsides of Batch RL

Batch approach:

— Store all data for trials 1...n

— Use all data to compute value after each trial
— Storage and computation grow monotonically

We would like to use less space and memory

We would like to learn immediately from
experience, instead of waiting until the end of a
trajectory

Incremental (“Online”) Learning

Generic description (not just RL)

Data is streaming into learner:

X1,Y1r - XY Vi = F(x)

Problem: keep a running estimate of f(x) to predict
Yne1 from x4

Example: Online Mean Estimation

e yv.= 0 + noise (constant - no x’s)

e Estimate the mean 6, from the noisy
observations y,, ...y,

Yi Ya¥s Y3 Y2

05

Example: Online Mean Estimation

e Now we observe yg
e What is our new mean, 6;4?

O—% @
Y1 Ya Ys VE! Ys Y2

05

Example: Online Mean Estimation

e Update:
* 0,=5/60;+1/6 y;

0—% } @,
Y1 Y2 ¥s ‘ Y3 Vs Y2

05 0,

Example: Online Mean Estimation

hd 96= 5/6 65 + 1/6 Y6
e In general, 0,,; = (n/n+1) 0, + 1/(n+1)y,,4
= en + 1/(n+1) (yn+1 - en)

O—% } @
Yi Y4 Ys ‘ Y3 Ys Y2

Proof of Online Mean Update

e Current estimate:
* 0,=1/nZ 1 Y

e Next Estimate:

* Opi= 1/(n+1) Lict.ne1 Vi
=1/(n+1) (Yns1 + Zicg 0 Vi)
= 1/(n+1) (yn+1 n 6n)
=1/(n+1) (Y41 + (n+1) 6, - 6;))
= en + 1/(n+1) (yn+1 - en)

Learning Rates

e |Infact, 0,,1 =0, + a, (y..1 - 0,) converges to
the mean for any a, such that:
—a,—>0asn— o
— X0, > ®©
-2a,2—>C<x®

* a,=0(1/n) does the trick

e If o, is close to 1, then the estimate shifts

strongly to recent data; close to 0, and the
old estimate is preserved

Learning Rates in RL in Practice

e Maintain a per-state count NJs]
e Learning rate is function of N[s], o.(N[s])
e Sufficient to satisfy theory: a(N[s])=1/N(s)
e 1/N(s) often viewed as too slow
— a. drops quickly
— Convergence is slow

e |n practice, often a floor on, a, e.g., a = 0.01

e Floor leads to faster learning, but less stability

Incremental Value Estimation

—
3| @ 0101+ 3 10.81|0.87(0.92| +1
2 1[0 O =1 — -5 [0.76 0.66| -1
11\0 134 i 0] 0 1 /0.71|0.66|0.61|0.39

1 2 3 4 1 2 3 4

1. Store counts N[s] and estimated values V*(s) (initialize to O, typically)
2. After atrial t, for each state s in the trial:

Set N[s] <~ N[s]+1

Calculate V¥(s) using discounted sum of rewards

Adjust value V*(s) <— V(s)+o(N[s])(V¥(s)-V™(s))

3.
4,
5.
[- Doesn’t require storing all trajectories, but...

Simple averaging
Slow learning, because Bellman equation is not used
to pass knowledge between adjacent states

Temporal Difference (TD) Learning

e Learn directly from a partial episode (i.e. a
single step)

e Update towards the value given by the Bellman
Equation, using current estimate for next state

e Trial-Based Value Estimation:

V(s) <= V(s)+a(N[s])(Z;y ri- V(s)) ™
e TD Learning:

V7(s) <~ V™(s)+a(N[s])(r+yV™(s’)-V*(s))

*Sum is sum of observed rewards until end of episode

Temporal Difference Learning

3]0 0|0+

D O

110 0 0 0 t/t+1(s) =R()+y P(s'ls, a)Vt(s’)}
sresucc(s,a)

1 2 3 4
. Online estimation
1. Store counts N[s] and estimated values V*(s)
of mean over value

2. For each observed transition (s,r,a,s’): next states
3. Set N[s] « N[s]+1
4. Adjust value V™(s) <—[V“(s)+oc(N[s])(r+yV“(s’)-V“(s))J

* Instead of averaging at the level of trajectories...
» Average at the level of states

Temporal Difference Learning

3/0|0] 0 |+1

N o

10| 0] 01O
1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) <= V*(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning

3/ 0|0] 0|+ With learning rate

o=0.5
n O

1]-002 0 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

11

Temporal Difference Learning

3 |-002002>0 | +1 With learning rate
a=0.5

2 | -0.02 ol -1

1]-002| 0 0 0
1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) <= V*(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning

3 |-0.02|-002| 0481541 With learning rate
a=0.5

2 |-0.02 0 -1

1]-002 0 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

12

Temporal Difference Learning

3 [-0.047120.21-10.721+1 With learning rate
a=0.5
2 | -0.04 0| -1
+

After a second trajectory
from start to +1

1 |-004| O 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) <= V*(s)+o(N[s])(r+yV™(s’)-V™(s))

1.
2.

Temporal Difference Learning

3 | 0.07120.44-10.84—1>+1 With learning rate
a=0.5
2 | 006 0| -1
4

After a third trajectory
from start to +1

1]-006| O 0 0

1 2 3 4

Store counts N[s] and estimated values V*(s)
For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

13

Temporal Difference Learning

3 | 0.23-bo62-1042 | #1 With learning rate
- 0=0.5
2 |-0.03 0 [-1
+

Our luck starts to run
out on the fourth trajectory

1(-008| O 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) <= V*(s)+o(N[s])(r+yV™(s’)-V™(s))

Temporal Difference Learning

3 [023] 062|042 | +1 With learning rate
T a=0.5
2 |-0.03 0.19 | =1

But we recover...
1]-008| 0 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] « N[s]+1
4. Adjust value V*(s) <= V*(s)+a(N[s])(r+yV™(s’)-V*(s))

14

Temporal Difference Learning

3 | 023|062 | 06941 With learning rate
a=0.5

2 |-0.03 019 | -1

...and reach the goal!
1(-008| O 0 0

1 2 3 4

1. Store counts N[s] and estimated values V*(s)
2. For each observed transition (s,r,a,s’):
3. Set N[s] < N[s]+1
4. Adjust value V*(s) <= V*(s)+o(N[s])(r+yV™(s’)-V™(s))

Learns a little with each step taken (no need to wait for
complete trajectories)

Uses current estimate of next state value, rather than
direct estimate of entire trajectory value

Using TD for Control

e Recall value iteration:
V™*!(s) = max, R(s,a) + yE P(s'ls,a)V'(s")
e Why not pick the maximizing a and then do:

V(s)=V(s)+a(N@)(r+ 7V (s') =V (s))

— s'is the observed next state after taking action a

15

What breaks?

e Action selection
— How do we pick a?

— Need to P(s’|s,a), but the reason why we’re doing RL is
that we don’t know this!

e Even if we magically knew the best action:
— Can only learn the value of the policy we are following

— If initial guess for V suggests a stupid policy, we’ll never
learn otherwise

Q-Values

Learning V is not enough for action selection
because a transition model is needed

Solution: learn Q-values: Q(s,a) is the utility of
choosing action a in state s

“Shift” or “split” Bellman equation
— V(s) = max, Q(s,a)
— Q(s,a) =R(s) +y Z¢ P(s'[s,a) maxy Q(s,a’)

So far, everything is the same... but what about
the learning rule?

16

Q-Learning

o Recall TD:
. Update: V(s) < V(s)+a(N[s])(r+yV(s')-V(s))
« Use P to pick actions? a <— arg max, ~. P(s"|s,a)V(s’)
o Q-Learning:
« Update: Q(s,a) < Q(s,a)+o(N[s,a])(r+y max,Q(s’,a")-Q(s,a))
. Select action: a «—arg max, Q(s,a)

- Key difference: average over P(s’|s,a) is “baked in” to
the Q function

- Q-learning is therefore a model-free learner

Q-Learning Demo
(see demo)

e Keyboard controlled Q-learning agent using robot grid world from
R&N (and previous MDP slides)

e Differences:
— Discount of 0.5
Noise =0 for manual

No step cost (previously -0.04)

Learning rate 0.5

17

Q-learning vs. TD-learning

e TD converges to value of policy you are following

e Q-learning converges to values of optimal policy
independent of of whatever policy you follow
during learning!

e Caveats:

— Converges in limit, assuming all states are visited
infinitely often

— In case of Q-learning, all states and actions must be
tried infinitely often

Note: If there is only one action possible in each state, then
Q-learning and TD-learning are identical

Exploration vs. Exploitation

e Greedy strategy purely exploits current knowledge

— The quality of this knowledge improves only for those states that
the agent observes often

e A good learner must perform exploration to improve
knowledge about states not often observed

— But pure exploration is useless (and costly) if it is never exploited

18

Restaurant Problem

- x

Exploration vs. Exploitation
Theory and Practice

e Can assign an “exploration bonus” to states (or state-
action combinations) you haven’t experienced much

— Versions of this are provably efficient, e.g., R-Max
(will eventually learn the optimal policy requiring polynomial
effort in size of problem)

— Works for small state spaces — will have more to say about this

¢ In practice g-greedy action selection is used most often
— Choose greedy action w.p. 1-¢
— Choose random action w.p. €

19

Value Function Representation

e Fundamental problem remains unsolved:
— TD/Q learning solves model-learning problem, but
— Large models still have large value functions
— Too expensive to store these functions

— Impossible to visit every state in large models

¢ Function approximation
— Combine fitted value/Q-iteration with RL
— Use machine learning methods to generalize
— Avoid the need to visit every state

Updates with Approximation

e Recall regular TD update:

V(s) < V(s)+a(N[s])(r+yV(s')-V(s))

e With function approximation:

Vis)=V(s: Vector
(S) (5:w) / operations
e Update the weights:

W =w +ale+ W (s's w) =V (s; W)V V (s;w)

Neural networks are a special case of this.

20

For linear value functions

e Gradient is trivial:
k
V(s;w)= ij¢j(s)
j=1
V., V(ssw)=9,(s) Individual

e Update is trivial: / components

w = wji +a(r+ V(s w) =V (s;w)@,(s)

J

Neural Networks

e s =input into neural network
e w = weights of neural network

g(s, 0) = output of network

Try to minimize
E=Y (f(s)-2(s,0))

Compute gradient of error wrt weights
OE
00

Adjust to minimize error

21

Combining NNs with TD

e Recall TD:
Ve (s)=R(s)+yV'(s")

V() =A=a)V' (s)+alV " (s)
e Compute error function:
E=(Vi(s,0)-Vmr(s,0))?
e Update:
OE Is this

0" =6 -«) / right???

=0’ +2alym (s,e)—V(s,e)]aV;‘;’ 9)

Gradient-based Updates

9i+1 — 01’ _aa_E
00

=0 +2aly e (5,0) P (s5,0)| L 5:0)

00

Equivalent to one step of backprop with V™ as target

Constant factor absorbed into learning rate

Table-updates are a special case

Perceptron, linear regression are special cases

Properties of approximate RL

e Exact case (tabular representation) = special case
¢ Can be combined with Q-learning

¢ Convergence not guaranteed

— Policy evaluation with linear function approximation converges if
samples are drawn “on policy”

— In general, convergence is not guaranteed
e Chasing a moving target
e Errors can compound
e Success has traditionally required very carefully chosen features

e Deep RL (next slide set) changes the paradigm

Conclusions
Reinforcement learning solves an unknown MDP
Converges for exact value function representation
Can be combined with approximation methods

Good results require good features (traditionally) or lots
of data and deep learning

23

