

RL Framework

- Learn an optimal policy by "trial and error"
- No assumptions about model
- No assumptions about reward function
- Can assume:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

Learning Rates in RL in Practice

- Maintain a per-state count N[s]
- Learning rate is function of N[s], α(N[s])
- Sufficient to satisfy theory: α(N[s])=1/N(s)
- 1/N(s) often viewed as too slow
 - $-\, \alpha \, \text{drops}$ quickly
 - Convergence is slow
- In practice, often a floor on, α , e.g., α = 0.01
- Floor leads to faster learning, but less stability

What breaks?

- Action selection
 - How do we pick a?
 - Need to P(s'|s,a), but the reason why we're doing RL is that we don't know this!
- Even if we magically knew the best action:
 - Can only learn the value of the policy we are following
 - If initial guess for V suggests a stupid policy, we'll never learn otherwise

Restaurant Problem

Exploration vs. Exploitation Theory and Practice

- Can assign an "exploration bonus" to states (or stateaction combinations) you haven't experienced much
 - Versions of this are provably efficient, e.g., R-Max (will eventually learn the optimal policy requiring polynomial effort in size of problem)
 - Works for small state spaces will have more to say about this
- In practice ε-greedy action selection is used most often
 - Choose greedy action w.p. 1- $\!\epsilon$
 - Choose random action w.p. $\boldsymbol{\epsilon}$

Value Function Representation

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models
- Function approximation
 - Combine fitted value/Q-iteration with RL
 - Use machine learning methods to generalize
 - Avoid the need to visit every state

- Table-updates are a special case
- Perceptron, linear regression are special cases

Properties of approximate RL

- Exact case (tabular representation) = special case
- Can be combined with Q-learning
- Convergence not guaranteed
 - Policy evaluation with linear function approximation converges if samples are drawn "on policy"
 - In general, convergence is not guaranteed
 - Chasing a moving target
 - Errors can compound
- Success has traditionally required very carefully chosen features
- Deep RL (next slide set) changes the paradigm

