
1

Model Free RL

Ron Parr
CSCI 2951-F

Brown University

With thanks to Kris Hauser for some content, and Dillon Sandhu for edits

Notable Model Free RL Successes

• Most impressive examples are games:
– Backgammon (1993) and Go (2016)
– Atari games (2014)
– StarCraft II (2019)
– Dogfighting in realistic simulators (2020)

• Sutton & Barto RL Book is one of the most cited
references in CS (~68K citations as of Winter 2024)

Image source: Max Tegmark

2

Comparison w/Other Kinds of Learning

• Machine Learning is split into:
– Supervised: predicting human-labelled data
– Unsupervised: Discovering patterns in high

dimensional data
– Reinforcement Learning: maximizing a reward

that may be delayed
• What the last thing that happens before an

accident?

Source: By Damnsoft 09 at English Wikipedia, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=11802152

Why We Need Model Free RL

• We would like to solve an MDP, but…
• Where do we get transition probabilities?

• How do we store them?
• Big problems have big models
• Model size is quadratic in state space size

• Where do we get the reward function?

3

RL Framework

• Learn an optimal policy by “trial and error”
• No assumptions about model
• No assumptions about reward function
• Can assume:

– True state is known at all times
– Immediate reward is known
– Discount is known

RL for Our Game Show

• Problem: We don’t know probability of answering
correctly

• Solution:
– Buy the home version of the game
– Practice on the home game to refine our strategy
– Deploy strategy when we play the real game

Source: Wikipedia page
For “Who Wants to be a Millionaire”

4

First steps: “Batch” Learning

• Observe execution trials of an agent that acts
according to some unobserved policy p

• Problem: estimate Vp ,the value function for this
policy

• Important view of Vp(s)
– Recall Vp(s) is the expected, discounted value of

following policy p from state s
– Vp(s) = ES St[gt R(St)] where St is the random variable

denoting the distribution of states at time t

Batch RL

1. Observe trials t(i)=(s0
(i),a1

(i),s1
(i),r1

(i),…,ati
(i),sti

(i),rti
(i)) for i=1,…,n

2. For each state sÎS:
3. Find all trials t(i) that pass through s at, e.g., time step k
4. Compute value Vt(i)(s)=St=k to ti gt-k rt

(i)

5. Set Vp(s) to the average observed values

3

2

1

4321

+1

-10

0000

0

00 0 3

2

1

4321

+1

-10.66

0.390.610.660.71

0.76

0.870.81 0.92

Note: This is called Monte Carlo Evaluation

5

Downsides of Batch RL

• Batch approach:
– Store all data for trials 1…n
– Use all data to compute value after each trial
– Storage and computation grow monotonically

• We would like to use less space and memory
• We would like to learn immediately from

experience, instead of waiting until the end of a
trajectory

Incremental (“Online”) Learning

• Generic description (not just RL)

• Data is streaming into learner:
x1,y1, …, xn,yn yi = f(xi)

• Problem: keep a running estimate of f(x) to predict
yn+1 from xn+1

6

Example: Online Mean Estimation
• yi = q + noise (constant - no x’s)
• Estimate the mean qn from the noisy

observations y1, … ,yn

q5

y2y1 y4 y3y5

Example: Online Mean Estimation
• Now we observe y6

• What is our new mean, q6?

q5

y2y1 y4 y3y5 y6

7

Example: Online Mean Estimation
• Update:
• q6= 5/6 q5 + 1/6 y6

q5

y2y1 y4 y3y5 y6

q6

Example: Online Mean Estimation
• q6= 5/6 q5 + 1/6 y6

• In general, qn+1 = (n/n+1) qn + 1/(n+1)yn+1
 = qn + 1/(n+1) (yn+1 - qn)

q5

y2y1 y4 y3y5 y6

q6

8

Proof of Online Mean Update
• Current estimate:
• qn = 1/n Si=1…n yi

• Next Estimate:
• qn+1 = 1/(n+1) Si=1…n+1 yi

 = 1/(n+1) (yn+1 + Si=1…n yi)
 = 1/(n+1) (yn+1 + n qn)
 = 1/(n+1) (yn+1 + (n+1) qn - qn)
 = qn + 1/(n+1) (yn+1 - qn)

Learning Rates

• In fact, qn+1 = qn + an (yn+1 - qn) converges to
the mean for any an such that:
– an ® 0 as n ® ¥
– San ® ¥
– San

2 ® C < ¥

• an = O(1/n) does the trick
• If an is close to 1, then the estimate shifts

strongly to recent data; close to 0, and the
old estimate is preserved

9

Learning Rates in RL in Practice

• Maintain a per-state count N[s]
• Learning rate is function of N[s], a(N[s])
• Sufficient to satisfy theory: a(N[s])=1/N(s)
• 1/N(s) often viewed as too slow
– a drops quickly
– Convergence is slow

• In practice, often a floor on, a, e.g., a = 0.01
• Floor leads to faster learning, but less stability

Incremental Value Estimation

1. Store counts N[s] and estimated values Vp(s) (initialize to 0, typically)
2. After a trial t, for each state s in the trial:

3. Set N[s] ¬ N[s]+1
4. Calculate Vt(s) using discounted sum of rewards
5. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(Vt(s)-Vp(s))

3

2

1

4321

+1

-10

0000

0

00 0 3

2

1

4321

+1

-10.66

0.390.610.660.71

0.76

0.870.81 0.92

• Doesn’t require storing all trajectories, but…
• Simple averaging
• Slow learning, because Bellman equation is not used

to pass knowledge between adjacent states

10

Temporal Difference (TD) Learning
• Learn directly from a partial episode (i.e. a

single step)
• Update towards the value given by the Bellman

Equation, using current estimate for next state
• Trial-Based Value Estimation:
 Vp(s) ¬ Vp(s)+a(N[s])(Si gi ri

 - Vp(s)) *

• TD Learning:
 Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

* Sum is sum of observed rewards until end of episode

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

0000

0

00 0

• Instead of averaging at the level of trajectories…
• Average at the level of states

Online estimation
of mean over value
next states

11

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

0000

0

00 0

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.02

0

00 0 With learning rate
a=0.5

12

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.02

-0.02

-0.02-0.02 0 With learning rate
a=0.5

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.02

-0.02

-0.02-0.02 0.48 With learning rate
a=0.5

13

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.04

-0.04

0.21-0.04 0.72 With learning rate
a=0.5

After a second trajectory
from start to +1

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.06

-0.06

0.440.07 0.84 With learning rate
a=0.5

After a third trajectory
from start to +1

14

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10

000-0.08

-0.03

0.620.23 0.42 With learning rate
a=0.5

Our luck starts to run
out on the fourth trajectory

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10.19

000-0.08

-0.03

0.620.23 0.42 With learning rate
a=0.5

But we recover…

15

Temporal Difference Learning

1. Store counts N[s] and estimated values Vp(s)
2. For each observed transition (s,r,a,s’):

3. Set N[s] ¬ N[s]+1
4. Adjust value Vp(s) ¬ Vp(s)+a(N[s])(r+gVp(s’)-Vp(s))

3

2

1

4321

+1

-10.19

000-0.08

-0.03

0.620.23 0.69

• Learns a little with each step taken (no need to wait for
complete trajectories)

• Uses current estimate of next state value, rather than
direct estimate of entire trajectory value

With learning rate
a=0.5

…and reach the goal!

Using TD for Control

• Recall value iteration:

• Why not pick the maximizing a and then do:

– s' is the observed next state after taking action a

!!!!

€

V i+1(s) =maxa R(s,a) +γ P(s' | s,a)V i(s')
s'
∑

))()'())((()()(sVsVrsNsVsV -++= ga

16

What breaks?

• Action selection
– How do we pick a?
– Need to P(s’|s,a), but the reason why we’re doing RL is

that we don’t know this!

• Even if we magically knew the best action:
– Can only learn the value of the policy we are following
– If initial guess for V suggests a stupid policy, we’ll never

learn otherwise

Q-Values

• Learning V is not enough for action selection
because a transition model is needed

• Solution: learn Q-values: Q(s,a) is the utility of
choosing action a in state s

• “Shift” or “split” Bellman equation
– V(s) = maxa Q(s,a)
– Q(s,a) = R(s) + g Ss’ P(s’|s,a) maxa’ Q(s’,a’)

• So far, everything is the same… but what about
the learning rule?

17

Q-Learning

¢ Recall TD:
• Update: V(s) ¬ V(s)+a(N[s])(r+gV(s’)-V(s))
• Use P to pick actions? a ¬ arg maxa Ss’ P(s’|s,a)V(s’))

¢ Q-Learning:
• Update: Q(s,a) ¬ Q(s,a)+a(N[s,a])(r+g maxa’Q(s’,a’)-Q(s,a))
• Select action: a ¬ arg maxa f(Q(s,a))

– Key difference: average over P(s’|s,a) is “baked in” to
the Q function

– Q-learning is therefore a model-free learner

Q-Learning Demo
(see demo)

• Keyboard controlled Q-learning agent using robot grid world from
R&N (and previous MDP slides)

• Differences:
– Discount of 0.5
– Noise =0 for manual
– No step cost (previously -0.04)
– Learning rate 0.5

18

Q-learning vs. TD-learning

• TD converges to value of policy you are following
• Q-learning converges to values of optimal policy

independent of of whatever policy you follow
during learning!

• Caveats:
– Converges in limit, assuming all states are visited

infinitely often
– In case of Q-learning, all states and actions must be

tried infinitely often

Note: If there is only one action possible in each state, then
Q-learning and TD-learning are identical

Exploration vs. Exploitation

• Greedy strategy purely exploits current knowledge
– The quality of this knowledge improves only for those states that

the agent observes often

• A good learner must perform exploration to improve
knowledge about states not often observed
– But pure exploration is useless (and costly) if it is never exploited

19

Restaurant Problem

Exploration vs. Exploitation
Theory and Practice

• Can assign an “exploration bonus” to states (or state-
action combinations) you haven’t experienced much
– Versions of this are provably efficient, e.g., R-Max

 (will eventually learn the optimal policy requiring polynomial
effort in size of problem)

– Works for small state spaces – will have more to say about this

• In practice e-greedy action selection is used most often
– Choose greedy action w.p. 1-e
– Choose random action w.p. e

20

Value Function Representation

• Fundamental problem remains unsolved:
– TD/Q learning solves model-learning problem, but
– Large models still have large value functions
– Too expensive to store these functions
– Impossible to visit every state in large models

• Function approximation
– Combine fitted value/Q-iteration with RL
– Use machine learning methods to generalize
– Avoid the need to visit every state

Updates with Approximation

• Recall regular TD update:

• With function approximation:

• Update the weights:
);()(wsVsV » Vector

operations

);());();'((1 wsVwsVwsVrww w
ii Ñ-++=+ ga

Neural networks are a special case of this.

V(s) ¬ V(s)+a(N[s])(r+gV(s’)-V(s))

21

For linear value functions

• Gradient is trivial:

• Update is trivial:

å
=

=
k

j
jj swwsV

1
)();(j

Individual
components

)();(swsV jwj
j=Ñ

)());();'((1 swsVwsVrww j
i
j

i
j jga -++=+

Neural Networks
• s = input into neural network
• w = weights of neural network
• g(s, q) = output of network
• Try to minimize

• Compute gradient of error wrt weights

• Adjust to minimize error

()å -=
s

sgsfE 2),()(q

q¶
¶E

22

Combining NNs with TD
• Recall TD:

• Compute error function:

• Update:

[]
q
qqqaq

q
aqq

¶
¶

-+=

¶
¶

-=+

),(),(),(2

1

sVsVsV

E

tempi

ii
Is this
right???

)'()()(sVsRsV itemp g+=

)()()1()(1 sVsVsV tempii aa +-=+

E=(Vi(s,q)-Vtemp(s,q))2

Gradient-based Updates

• Equivalent to one step of backprop with Vtemp as target
• Constant factor absorbed into learning rate
• Table-updates are a special case
• Perceptron, linear regression are special cases

[]
q
qqqaq

q
aqq

¶
¶

-+=

¶
¶

-=+

),(),(ˆ),(2

1

sVsVsV

E

tempi

ii

23

Properties of approximate RL
• Exact case (tabular representation) = special case
• Can be combined with Q-learning

• Convergence not guaranteed
– Policy evaluation with linear function approximation converges if

samples are drawn “on policy”
– In general, convergence is not guaranteed

• Chasing a moving target
• Errors can compound

• Success has traditionally required very carefully chosen features
• Deep RL (next slide set) changes the paradigm

Conclusions

• Reinforcement learning solves an unknown MDP

• Converges for exact value function representation

• Can be combined with approximation methods

• Good results require good features (traditionally) or lots
of data and deep learning

