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Recap

• Policy gradient allows to search directly in policy space J
• Variance is high L

• Baseline subtraction (via an advantage function, which can be 
computed from Q-functions) helps
• Trades some bias for variance
• Can still have noisy gradients
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More about gradients

• Gradient descent/ascent is our most basic tool in modern ML
• Recall: First order approximation to complicated function
• Things that affect quality of first order approximation:
• Noise
• Smoothness of function
• Size of region around the approximation (step size)

Policy value often is not very smooth

• Think about value of policy is through distribution over states
• Let r(0) be your initial state distribution, r(i) be distribution at time i
• 𝜌("#$) =	𝜌 " &𝑃'
• 𝜌(") =	𝜌 ( &𝑃'"

• 𝑈 𝜃 = ∑")(* 𝜌(")& 𝑅
• 𝑃'  is parameterized by q
• Effect is quadratic in 2 time steps, cubic in 3, etc.
• Function is very curvy, so gradient quickly becomes inaccurate
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Goal steepest descent (or ascent)

• Get the most out of each step for a constant step size

• Want: Direction of descent that maximizes progress on objective fn.

• Can we be smarter about disentangling correlated effects on gradient?

What if we redefine distance?

• Idea: Warp space to compensate for interactions between parameters 
as well as scaling issues
• Define G to be some positive definite matrix
• Redefine distance:
• Steepest descent direction is then: 

𝐺!"∇𝑈(𝜃)
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But what is a good choice of G?

• Fisher information matrix at any state tells use how parameters interact:

• Total correction is weighted by visitation frequencies:

Avoiding overstepping

• Natural gradient helps adjust the direction

• Step size is still a problem

• Want to take the largest possible step without overshooting

• Multiple approaches
• TRPO: Uses line search and various approximations to maximize step size
• PPO: Uses a “clamped” objective to avoid overshooting
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Digression: Reproducibility

• TRO vs PPO
• PPO originally introduced as a simpler alternative to TRPO
• Was also shown to perform better in many cases
• Engstrom et al. (IMPLEMENTATION MATTERS IN DEEP POLICY GRADIENTS: A CASE STUDY ON PPO AND TRPO) 

investigate this:
• Find 9 optimizations in PPO not (clearly) documented as main improvements
• “We find that much of the PPO’s observed improvement in performance comes 

from seemingly small modifications to the core algorithm that either can be 
found only in a paper’s original implementation, or are described as auxiliary 
details and are not present in the corresponding TRPO baselines.”

• “Ultimately, we discover that the PPO code-optimizations are more important in 
terms of final reward achieved than the choice of general training algorithm 
(TRPO vs. PPO). “

Performance comparison

• PPO = full PPO algorithm
• PPO-M = PPO w/o 9 (seemingly secondary) optimizations
• TRPO = original TRPO algorithm
• TRPO+ = TRPO with PPO optimizations
• [,] = 95% confidence interval

[Engstrom et al., ICLR 19]
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Sample Efficiency

• Data reuse:
• Algorithms like DQN use a “replay buffer” to maximize data efficiency
• Works because Q-learning is off-policy

• Policy gradient is not inherently off-policy
• Rewards “must” be from the policy you are updating

• Is there a workaround?

Importance weights

• Simple case: Policy goes right w.p. p, left w.p. 1-p
• Adjust p using policy gradient

P1-P

R2R1
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Re-weighting
• Suppose we have generated 100 samples using different values of p
• Need to keep sampling, or can we re-use previous experiences?

• Suppose sample was generated using policy q

• Replace p with p/q when using this sample

• Intuition: Sample was generated w.p. q, so is implicitly weighted by q, p/q 
re-weights to effectively sample by p

• TRPO and PPO use reweighting

Issues with importance weights

• When p ≅ q, everything is great

• As p and q get further apart, importance weights (p/q) get weird

• Combining with baseline updates also gets weird since baseline 
can be from an outdated policy function
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Generalized Advantage Estimation

• As presented, baseline is subtracted at every step:

• What if baseline is stale?
• Interpolate between samples and baseline
• Using n steps of samples
• Use baseline at end of n steps

11.6. summary 245

It is common to use likelihood ratio policy gradient estimation with this base-
line subtraction (algorithm 11.6).15. Figure 11.3 compares the methods discussed 15 This combination is used in

the class of algorithms called
REINFORCE as introduced by
R. J. Williams, “Simple Statistical
Gradient-Following Algorithms
for Connectionist Reinforcement
Learning,”Machine Learning, vol. 8,
pp. 229–256, 1992.

here.
Qualitatively, when considering the gradient contribution of state-action pairs,

what we really care about is the relative value of one action over another. If all
actions in a particular state produce the same high value, there is no real signal
in the gradient, and baseline subtraction can zero that out. We want to identify
the actions that produce a higher value than others, regardless of the mean value
across actions.

An alternative to the action value is the advantage, A(s, a) = Q(s, a)−U(s).
Using the state value function in baseline subtraction produces the advantage.
The policy gradient using the advantage is unbiased and typically has much lower
variance. The gradient computation takes the following form:

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1 Aθ
(

s(k), a(k)
)

]

(11.44)

As with the state and action value functions, the advantage function is typically
unknown. Other methods, covered in chapter 13, are needed to approximate it.

11.6 Summary

• A gradient can be estimated using finite differences.

• Linear regression can also be used to provide more robust estimates of the
policy gradient.

• The likelihood ratio can be used to derive a form of the policy gradient that
does not depend on the transition model for stochastic policies.

• The variance of the policy gradient can be significantly reduced using the
reward-to-go and baseline subtraction.
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Brief comments about DDPG

• Many control problems do not inherently require stochastic policies
• Variance reduction tricks required in policy gradient/actor-critic 

methods can in some ways be viewed as mending a self-inflicted 
wound – using a stochastic policy unnecessarily introduces additional 
variance into the gradient estimate
• But how do we estimate the gradient for an arbitrary policy function?
• Silver et al. (2014) showed decomposition of gradient mirrors 

stochastic policy gradient if we have a differentiable action function 
as in, e.g., a deterministic action function defined over a 
continuous action space



3/14/24

9

Summary

• Large family of modern RL methods that combine aspects of policy 
gradient and value function approximation: Actor Critic Methods
• Simultaneously learn:
• Continuous policy function
• Q/Advantage functions for baseline
• Sometimes with multiple heads on a single NN

• Originally viewed a best suited to continuous control problems
• Increasingly applied to general RL problems, even Atari


