4/11/24

Approximate/Reinforcement
Learning Approaches to
POMDPs

Ron Parr
CSCI 2951-F

Brown University

Overview

* Value function based methods methods

* Policy search

* Augmented state methods

4/11/24

Review

* Finite horizon POMDP value function is piecewise linear and convex
(for arbitrary horizon lengths)

* Max over a set of “alpha” vectors
* Each vector corresponds to a conditional plan

* Number of pieces can grow exponentially

* Hard to solve problems with more than high 1’s or low 10’s of states @

Point based methods

* Instead of generating ALL o vectors at each iteration, generate a subset
* Every o vector would still be a valid conditional plan
* Value function would lower-bound the true value function

* Point based algorithms generate o vectors that are optimal for only a
finite set of points, rather than for the entire belief space

4/11/24

Visualizing PBVI (figure from Pineau et al.)

Questions

* How do we pick the points?

* How do we find the optimal a vector for each point?

4/11/24

Picking Points
* Typically done heuristically
* Exploration from initial dist. finds a set of reachable belief states

» Reasonable if start dist. is known and/or entire belief space is not
reachable (exact POMDP algorithms may be working too hard)

PBVI performance (figure from Pineau et al.)

-8
7+ PBVI

< PBVI
--- Qmop --

REWARD
! |
=
REWARD

10 10" 10° 10 10° 10° 10° 10°
TIME (secs) TIME (secs) TIME (secs) TIME (secs)

Figure 3: PBVI performance for four problems: Tag(left), Maze33(center-left), Hallway(center-right) and Hallway2(right)

QMDP is an approximation method that uses 1 a vector per action at all iterations.
Incremental Pruning was one of the best exact methods at the time.

4/11/24

PBVI limitations

* Fixed representation size was not adaptive to complexity of value fn.
* Only as fast as value iteration, which converges asymptotically
* Not monotonic: Can’t guarantee values of all b increase at every iteration

* Is there a way to get the benefits of policy iteration?

Point Based Policy Iteration

* Combines policy iteration with point based methods

* Main idea:
* Maintain a finite state machine (FSC) as the policy
* Evaluate the FSC
* Do one step of PBVI
* Use output of PBVI to improve the FSC
* Repeat

4/11/24

Limitations of Point Based Methods

* Still can be slow

e Assumes a known model:
* At planning time
* At execution time

Value function-based RL for POMDPs

* Since a POMDP is a continuous state MDP, why not use value function
approximation on the continuous state?

* Many early efforts did this, e.g., RP’s second publication from grad school

* Problems:
« Still requires a model to update the belief state
* Problems with huge state spaces have huge belief states

* Solution(?): Use a compressed belief state, e.g., Bayes net, but this still
requires a model, and an efficient way of updating the belief state

4/11/24

Policy Search for POMDPs

Policy Search

* Recall policy gradient (figure from Sutton & Barto):

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(als,8),Va € A,s € 8,0 € R?
Initialize policy parameter
Repeat forever:
Generate an episode Sy, Ao, R1, ..., S7—1, Ar_1, Ry, following 7(-|-, 8)
For each step of the episode t =0,...,7T — 1:
G < return from step ¢t
0 < 0 + ay'GVglogm(A|St, 0)

* This still works even if Markov property is violated, but...

4/11/24

Naive policy search in POMDPs

* Policy search “works”, but policy is limited to a mapping from
observations to actions

* Doesn’t directly address the partial observability issue

e At best can randomize actions to avoid losses from state confusion

Policy search with FSCs

* Create a random Finite State Controller
* Make transition probabilities and action probabilities tunable parameters
 Use policy gradient methods to tune both of these

* Cool idea that has been rediscovered many times over the years
* Can be tricky to get working in practice for large problems

4/11/24

Policy Search in POMPs summary

* Advantages:
* Does not require knowledge of the model
* Does not need to maintain a belief state

* Disadvantages:

* Many of the challenges of policy gradient methods:
* Local optima
* Variance in the gradient estimate
* Slow
* Estimating a value function baseline to reduce variance is also subject to state
aliasing/partial observability issues

Augmented State Methods

4/11/24

Augmented state

* POMDPs are tricky b/c process is not Markovian in the observation

* Rather than change the algorithm, why not change the representation?
* Advantage: Get to run regular MDP algorithms on the new state

* Challenge: How to do this

Finite History Window

* Problem might not be Markovian in current observation, but

* Perhaps it is Markovian if we augment the state to include a k-step
window of previous states — see, e.g., DQN for Atari

* Advantages:
* Obviously the right thing to do if you can afford to do it
* Simple

* Disadvantages:
* For n states, d step history, state space grows with n¢
* Not always obvious how large to make d

10

4/11/24

History Trees

* Long history windows probably waste a lot of effort tracking irrelevant info:
* Many states may have unique/unambiguous observations
* No need to remember history when we see these
* History trees define state as a variable length vector of previous states and
actions sufficient to ensure Markov property

* In practice:
* Collect statistics on histories
* When violations of Markov property are detected, extend history

* See e.g., McCallum '95, “Reinforcement Learning with Selective Perception and Hidden State”

History tree example

il
* Robot going through maze D
* Suppose two intersections look alike i |:|:
* History tree can be used to remember £ ——|:|]
how the robot got to the intersection, to s ’_
help distinguish between similar states
i _
* How to discover this: —L ﬂ]
* Need to collect statistics on all possible T
extensions of current histories — | [| -
* When neXt States or neXt Utllities dlver e https://commons.wikimedia.org/wiki/File:Prim_Maze.svg

based upon different extensions of the history,
grow the history

11

4/11/24

History Tree Pros and Cons

* Works very well in some problems where short(ish) histories are
sufficient to recover the Markov property

* More efficient than finite window methods

* Limitations:
* May need to collect a lot of data (for long histories)
* Can be hard to determine when to augment histories if there is a lot of noise

* Myopic/greedy (will miss if you need to remember something from 20 steps in
the past, and remembering something 1...19 steps in the past doesn’t help.)

Augmented state w/Function Approximation

* |dea: Use function approximation to learn how to augment the state
“automatically” with a recurrent neural network (RNN)

* Old idea (at least as far back as Lin in the 90’s)

utility

From page 109 of
Long Ji Lin’s Ph.D. thesis > Q-net (memory

(CMU 1993)! ? f

sensation action history features

12

4/11/24

Learned, Augmented State

* Cool idea

* Agent is essentially learning an encoded belief state and method for
updating the belief state simultaneously

* Historically, such efforts were plagued by the difficulties associated
with RNNs in general:
° Convergence concerns
* Difficulty with long term memory

Learned, augmented states strike back

* LSTMs are a type of RNN designed to maintain long term memory
* GRUs are a simplification of LSTMs that may work better

utility utility utility

! !

o} — [— [
el I e s vl B e o il

sensation action history features sensation action history features sensation action history features

13

4/11/24

Some references

* Jozefowicz et al. 2015 compare different memory architectures
(LSTM, GRU,...) in general (not for RL)

* Ni et al. 2022 claim GRUs are a “strong baseline” for RL in POMDPs,
(but use a particular type of problem to make this claim)

What about Transformers?

* Deep Transformer Q-networks (Esslinger et al. 22) one of the more
compelling efforts to use transformers in RL

* Use attention transform observations from a finite window of the
past into an encoded state

* Enjoys advantages of transformers:
* Quadratic in size of window, rather than exponential
* No decay/forgetting within window size

* Will transformers overtake RNNs for POMDP RL?

14

4/11/24

POMDP approximation summary

* Known model of moderate size: Use point based methods, or value
function approximation on a (compressed?) state

* Modest history dependence: Augment state, possibly using a learning
method to discover required augmentation (e.g., history trees)

* Unknown model, unknown (bounded?) history dependence:
* Deep learning with LSTM/GRU or similar methods to learn representation
* Up-and-coming transformer approaches?

15

