
4/11/24

1

Approximate/Reinforcement
Learning Approaches to

POMDPs
Ron Parr

CSCI 2951-F
Brown University

Overview

• Value function based methods methods

• Policy search

• Augmented state methods

4/11/24

2

Review

• Finite horizon POMDP value function is piecewise linear and convex
 (for arbitrary horizon lengths)
• Max over a set of “alpha” vectors
• Each vector corresponds to a conditional plan

• Number of pieces can grow exponentially

• Hard to solve problems with more than high 1’s or low 10’s of states 😱

Point based methods

• Instead of generating ALL a vectors at each iteration, generate a subset
• Every a vector would still be a valid conditional plan
• Value function would lower-bound the true value function

• Point based algorithms generate a vectors that are optimal for only a
finite set of points, rather than for the entire belief space

4/11/24

3

Visualizing PBVI (figure from Pineau et al.)

states, is a set of discrete actions, and is a set of dis-
crete observations providing incomplete and/or noisy state in-
formation. The POMDP model is parameterized by: ,
the initial belief distribution;

, the distribution describing the probability
of transitioning from state to state when taking action ;

, the dis-
tribution describing the probability of observing from state
after taking action ; , the reward signal received

when executing action in state ; and , the discount factor.
A key assumption of POMDPs is that the state is only par-

tially observable. Therefore we rely on the concept of a belief
state, denoted , to represent a probability distribution over
states. The belief is a sufficient statistic for a given history:

(1)
and is updated at each time-step to incorporate the latest ac-
tion, observation pair:

(2)

where is the normalizing constant.
The goal of POMDP planning is to find a sequence of ac-

tions maximizing the expected sum of rewards
. Given that the state is not necessarily

fully observable, the goal is to maximize expected reward for
each belief. The value function can be formulated as:

(3)

When optimized exactly, this value function is always piece-
wise linear and convex in the belief [Sondik, 1971] (see
Fig. 1, left side). After consecutive iterations, the solution
consists of a set of -vectors: . Each
-vector represents an -dimensional hyper-plane, and de-
fines the value function over a bounded region of the be-
lief: . In addition, each
-vector is associated with an action, defining the best imme-
diate policy assuming optimal behavior for the following
steps (as defined respectively by the sets).
The -th horizon value function can be built from the pre-

vious solution using the Backup operator, . We use
notation to denote an exact value backup:

(4)

A number of algorithms have been proposed to implement
this backup by directly manipulating -vectors, using a com-
bination of set projection and pruning operations [Sondik,
1971; Cassandra et al., 1997; Zhang and Zhang, 2001].
We now describe the most straight-forward version of exact
POMDP value iteration.
To implement the exact update , we first generate

intermediate sets and (Step 1):
(5)

Next we create (), the cross-sum over observa-
tions, which includes one from each (Step 2):

(6)

Finally we take the union of sets (Step 3):

(7)

In practice, many of the vectors in the final set may be
completely dominated by another vector (),
or by a combination of other vectors. Those vectors can be
pruned away without affecting the solution. Finding dom-
inated vectors can be expensive (checking whether a single
vector is dominated requires solving a linear program), but is
usually worthwhile to avoid an explosion of the solution size.
To better understand the complexity of the exact update, let
be the number of -vectors in the previous solution set.

Step 1 creates projections and Step 2 generates
cross-sums. So, in the worst case, the new solu-

tion has size (time). Given that
this exponential growth occurs for every iteration, the impor-
tance of pruning away unnecessary vectors is clear. It also
highlights the impetus for approximate solutions.

3 Point-based value iteration
It is a well understood fact that most POMDP problems, even
given arbitrary action and observation sequences of infinite
length, are unlikely to reach most of the points in the belief
simplex. Thus it seems unnecessary to plan equally for all
beliefs, as exact algorithms do, and preferable to concentrate
planning on most probable beliefs.
The point-based value iteration (PBVI) algorithm solves a

POMDP for a finite set of belief points .
It initializes a separate -vector for each selected point, and
repeatedly updates (via value backups) the value of that -
vector. As shown in Figure 1, by maintaining a full -vector
for each belief point, PBVI preserves the piece-wise linear-
ity and convexity of the value function, and defines a value
function over the entire belief simplex. This is in contrast
to grid-based approaches [Lovejoy, 1991; Brafman, 1997;
Hauskrecht, 2000; Zhou and Hansen, 2001; Bonet, 2002],
which update only the value at each belief grid point.

α
0

b2 b1 b0 b3b2 b1 b0 b3

V={ ,α
1
,α

2
}

Figure 1: POMDP value function representation using PBVI (on the
left) and a grid (on the right).

The complete PBVI algorithm is designed as an anytime
algorithm, interleaving steps of value iteration and steps of
belief set expansion. It starts with an initial set of belief points
for which it applies a first series of backup operations. It then
grows the set of belief points, and finds a new solution for the
expanded set. By interleaving value backup iterations with

Questions

• How do we pick the points?

• How do we find the optimal a vector for each point?

4/11/24

4

Picking Points

• Typically done heuristically

• Exploration from initial dist. finds a set of reachable belief states

• Reasonable if start dist. is known and/or entire belief space is not
reachable (exact POMDP algorithms may be working too hard)

PBVI performance (figure from Pineau et al.)

100 102 104 106−20

−18

−16

−14

−12

−10

−8

TIME (secs)

R
EW

AR
D

PBVI
QMDP

10−2 100 102 104−0.5

0

0.5

1

1.5

2

2.5

TIME (secs)

R
EW

AR
D

PBVI
QMDP
IncPrune

10−2 100 102 1040

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TIME (secs)

R
EW

AR
D

PBVI
QMDP
IncPrune

10−2 100 102 1040

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TIME (secs)

R
EW

AR
D

PBVI
QMDP
IncPrune

Figure 3: PBVI performance for four problems: Tag(left), Maze33(center-left), Hallway(center-right) and Hallway2(right)

Method Goal% Reward Time(s)
Maze33 / Tiger-Grid
QMDP[*] n.a. 0.198 0.19 n.a.
Grid [Brafman, 1997] n.a. 0.94 n.v. 174
PBUA [Poon, 2001] n.a. 2.30 12116 660
PBVI[*] n.a. 2.25 3448 470
Hallway
QMDP[*] 47 0.261 0.51 n.a.
QMDP [Littman et al., 1995] 47.4 n.v. n.v. n.a.
PBUA [Poon, 2001] 100 0.53 450 300
PBVI[*] 96 0.53 288 86
Hallway2
QMDP[*] 22 0.109 1.44 n.a.
QMDP [Littman et al., 1995] 25.9 n.v. n.v. n.a.
Grid [Brafman, 1997] 98 n.v. n.v. 337
PBUA [Poon, 2001] 100 0.35 27898 1840
PBVI[*] 98 0.34 360 95
Tag
QMDP[*] 17 -16.769 13.55 n.a.
PBVI[*] 59 -9.180 180880 1334
n.a.=not applicable n.v.=not available

Table 1: Results for POMDP domains. Those marked [*] were com-
puted by us; other results were likely computed on different plat-
forms, and therefore time comparisons may be approximate at best.
All results assume a standard (not lookahead) controller.

four heuristics. For each problem we apply PBVI using each
of the belief-point selection heuristics, and include the QMDP
approximation as a baseline comparison. Figure 4 shows the
computation time versus the reward performance for each do-
main.
The key result from Figure 4 is the rightmost panel, which

shows performance on the largest, most complicated domain.
In this domain our SSEA rule clearly performs best. In
smaller domains (left two panels) the choice of heuristic mat-
ters less: all heuristics except random exploration (RA) per-
form equivalently well.

6 Related work
Significant work has been done in recent years to improve
the tractability of POMDP solutions. A number of increas-
ingly efficient exact value iteration algorithms have been
proposed [Cassandra et al., 1997; Kaelbling et al., 1998;
Zhang and Zhang, 2001]. They are successful in finding op-
timal solutions, however are generally limited to very small
problems (a dozen states) since they plan optimally for all
beliefs. PBVI avoids the exponential growth in plan size by

restricting value updates to a finite set of (reachable) beliefs.

There are several approximate value iteration algorithms
which are related to PBVI. For example, there are many grid-
based methods which iteratively update the values of discrete
belief points. These methods differ in how they partition the
belief space into a grid [Brafman, 1997; Zhou and Hansen,
2001].

More similar to PBVI are those approaches which update
both the value and gradient at each grid point [Lovejoy, 1991;
Hauskrecht, 2000; Poon, 2001]. While the actual point-based
update is essentially the same between all of these, the over-
all algorithms differ in a few important aspects. Whereas
Poon only accepts updates that increase the value at a grid
point (requiring special initialization of the value function),
and Hauskrecht always keeps earlier -vectors (causing the
set to grow too quickly), PBVI requires no such assumptions.
A more important benefit of PBVI is the theoretical guaran-
tees it provides: our guarantees are more widely applicable
and provide stronger error bounds than those for other point-
based updates.

In addition, PBVI is significantly smarter than previous
algorithms about how it selects belief points. PBVI selects
only reachable beliefs; other algorithms use random beliefs,
or (like Poon’s and Lovejoy’s) require the inclusion of a large
number of fixed beliefs such as the corners of the probabil-
ity simplex. Moreover, PBVI selects belief points which im-
prove its error bounds as quickly as possible. In practice, our
experiments on the large domain of lasertag demonstrate that
PBVI’s belief-selection rule handily outperforms several al-
ternate methods. (Both Hauskrecht and Poon did consider
using stochastic simulation to generate new points, but nei-
ther found simulation to be superior to random point place-
ments. We attribute this result to the smaller size of their test
domains. We believe that as more POMDP research moves to
larger planning domains, newer and smarter belief selection
rules will become more and more important.)

Gradient-based policy search methods have also been used
to optimize POMDP solutions [Baxter and Bartlett, 2000;
Kearns et al., 1999; Ng and Jordan, 2000], successfully solv-
ing multi-dimensional, continuous-state problems. In our
view, one of the strengths of these methods lies in the fact
that they restrict optimization to reachable beliefs (as does
PBVI). Unfortunately, policy search techniques can be ham-
pered by low-gradient plateaus and poor local minima, and
typically require the selection of a restricted policy class.

QMDP is an approximation method that uses 1 a vector per action at all iterations.
Incremental Pruning was one of the best exact methods at the time.

4/11/24

5

PBVI limitations

• Fixed representation size was not adaptive to complexity of value fn.

• Only as fast as value iteration, which converges asymptotically

• Not monotonic: Can’t guarantee values of all b increase at every iteration

• Is there a way to get the benefits of policy iteration?

Point Based Policy Iteration

• Combines policy iteration with point based methods

• Main idea:
• Maintain a finite state machine (FSC) as the policy
• Evaluate the FSC
• Do one step of PBVI
• Use output of PBVI to improve the FSC
• Repeat

4/11/24

6

Limitations of Point Based Methods

• Still can be slow

•Assumes a known model:
• At planning time
• At execution time

Value function-based RL for POMDPs

• Since a POMDP is a continuous state MDP, why not use value function
approximation on the continuous state?
• Many early efforts did this, e.g., RP’s second publication from grad school
• Problems:

• Still requires a model to update the belief state
• Problems with huge state spaces have huge belief states

• Solution(?): Use a compressed belief state, e.g., Bayes net, but this still
requires a model, and an efficient way of updating the belief state

4/11/24

7

Policy Search for POMDPs

Policy Search

• Recall policy gradient (figure from Sutton & Barto):

• This still works even if Markov property is violated, but…

13.3. REINFORCE: MONTE CARLO POLICY GRADIENT 341

which is exactly what we want, a quantity that we can sample on each time step
whose expectation is equal to the gradient. Using this sample to instantiate our
generic stochastic gradient ascent algorithm (13.1), we obtain the update

✓t+1
.
= ✓t + ↵�tGt

r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.6)

We call this algorithm REINFORCE (after Williams, 1992). Its update has an
intuitive appeal. Each increment is proportional to the product of a return Gt and a
vector, the gradient of the probability of taking the action actually taken, divided by
the probability of taking that action. The vector is the direction in parameter space
that most increases the probability of repeating the action At on future visits to state
St. The update increases the parameter vector in this direction proportional to the
return, and inversely proportional to the action probability. The former makes sense
because it causes the parameter to move most in the directions that favor actions
that yield the highest return. The latter makes sense because otherwise actions that
are selected frequently are at an advantage (the updates will be more often in their
direction) and might win out even if they do not yield the highest return.

Note that REINFORCE uses the complete return from time t, which includes all
future rewards up until the end of the episode. In this sense REINFORCE is a
Monte Carlo algorithm and is well defined only for the episodic case with all updates
made in retrospect after the episode is completed (like the Monte Carlo algorithms
in Chapter 5). This is shown explicitly in the boxed pseudocode below.

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓), 8a 2 A, s 2 S, ✓ 2 Rd

Initialize policy parameter ✓
Repeat forever:

Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
For each step of the episode t = 0, . . . , T � 1:

G return from step t
✓ ✓ + ↵�tGr✓ log ⇡(At|St, ✓)

The vector r✓⇡(At|St,✓)
⇡(At|St,✓) in the REINFORCE update is the only place the policy

parameterization appears in the algorithm. This vector has been given several names
and notations in the literature; we will refer to it simply as the eligibility vector. The
eligibility vector is often written in the compact form r✓ log ⇡(At|St, ✓), using the
identity r log x = rx

x
. This form is used in all the boxed pseudocode in this chapter.

In earlier examples in this chapter we considered exponential softmax policies (13.2)
with linear action preferences (13.3). For this parameterization, the eligibility vector
is

r✓ log ⇡(a|s, ✓) = x(s, a)�
X

b

⇡(b|s, ✓)x(s, b). (13.7)

4/11/24

8

Naïve policy search in POMDPs

• Policy search “works”, but policy is limited to a mapping from
observations to actions

• Doesn’t directly address the partial observability issue

• At best can randomize actions to avoid losses from state confusion

Policy search with FSCs

• Create a random Finite State Controller
• Make transition probabilities and action probabilities tunable parameters
• Use policy gradient methods to tune both of these

• Cool idea that has been rediscovered many times over the years
• Can be tricky to get working in practice for large problems

4/11/24

9

Policy Search in POMPs summary

• Advantages:
• Does not require knowledge of the model
• Does not need to maintain a belief state

• Disadvantages:
• Many of the challenges of policy gradient methods:

• Local optima
• Variance in the gradient estimate
• Slow

• Estimating a value function baseline to reduce variance is also subject to state
aliasing/partial observability issues

Augmented State Methods

4/11/24

10

Augmented state

• POMDPs are tricky b/c process is not Markovian in the observation
• Rather than change the algorithm, why not change the representation?

• Advantage: Get to run regular MDP algorithms on the new state

• Challenge: How to do this

Finite History Window

• Problem might not be Markovian in current observation, but
• Perhaps it is Markovian if we augment the state to include a k-step

window of previous states – see, e.g., DQN for Atari
• Advantages:
• Obviously the right thing to do if you can afford to do it
• Simple

• Disadvantages:
• For n states, d step history, state space grows with nd

• Not always obvious how large to make d

4/11/24

11

History Trees

• Long history windows probably waste a lot of effort tracking irrelevant info:
• Many states may have unique/unambiguous observations
• No need to remember history when we see these

• History trees define state as a variable length vector of previous states and
actions sufficient to ensure Markov property
• In practice:
• Collect statistics on histories
• When violations of Markov property are detected, extend history

• See e.g., McCallum ‘95, “Reinforcement Learning with Selective Perception and Hidden State”

History tree example

• Robot going through maze
• Suppose two intersections look alike
• History tree can be used to remember

how the robot got to the intersection, to
help distinguish between similar states

• How to discover this:
• Need to collect statistics on all possible

extensions of current histories
• When next states or next utilities diverge

based upon different extensions of the history,
grow the history

https://commons.wikimedia.org/wiki/File:Prim_Maze.svg

4/11/24

12

History Tree Pros and Cons

• Works very well in some problems where short(ish) histories are
sufficient to recover the Markov property
• More efficient than finite window methods

• Limitations:
• May need to collect a lot of data (for long histories)
• Can be hard to determine when to augment histories if there is a lot of noise
• Myopic/greedy (will miss if you need to remember something from 20 steps in

the past, and remembering something 1…19 steps in the past doesn’t help.)

Augmented state w/Function Approximation

• Idea: Use function approximation to learn how to augment the state
“automatically” with a recurrent neural network (RNN)
• Old idea (at least as far back as Lin in the 90’s)

From page 109 of
Long Ji Lin’s Ph.D. thesis
(CMU 1993)!

4/11/24

13

Learned, Augmented State

• Cool idea

• Agent is essentially learning an encoded belief state and method for
updating the belief state simultaneously

• Historically, such efforts were plagued by the difficulties associated
with RNNs in general:
• Convergence concerns
• Difficulty with long term memory

Learned, augmented states strike back

• LSTMs are a type of RNN designed to maintain long term memory
• GRUs are a simplification of LSTMs that may work better

RNN LSTM GRU

4/11/24

14

Some references

• Jozefowicz et al. 2015 compare different memory architectures
(LSTM, GRU,…) in general (not for RL)

• Ni et al. 2022 claim GRUs are a “strong baseline” for RL in POMDPs,
(but use a particular type of problem to make this claim)

What about Transformers?

• Deep Transformer Q-networks (Esslinger et al. 22) one of the more
compelling efforts to use transformers in RL
• Use attention transform observations from a finite window of the

past into an encoded state
• Enjoys advantages of transformers:
• Quadratic in size of window, rather than exponential
• No decay/forgetting within window size

• Will transformers overtake RNNs for POMDP RL?

4/11/24

15

POMDP approximation summary

• Known model of moderate size: Use point based methods, or value
function approximation on a (compressed?) state

• Modest history dependence: Augment state, possibly using a learning
method to discover required augmentation (e.g., history trees)

• Unknown model, unknown (bounded?) history dependence:
• Deep learning with LSTM/GRU or similar methods to learn representation
• Up-and-coming transformer approaches?

