# Partially Observable MDPs (POMDPs) 

CSCI 2951-F
Ron Parr
With thanks to Christopher Painter-Wakefield

## Example POMDP

Unidentified incoming target:


What is the state in this problem???

## This Is A Real Problem!

Many other tragic examples
$\equiv \quad \operatorname{Los}$ Angeles ©imes Login $Q$
SUBSCRIBE SIGNIN
world
Iran Says It
Unintentionally Shot Down Ukrainian Airliner
The plane had approached a sensitive military
base and was downed due to 'human error,'
armed forces say
since 1940s
$\qquad$
U.S. Downs Iran Airliner; 290 Dead
: Navy Cruiser Mistakes Jet for Hostile F-14 Over Gulf : 'Proper Defensive Action' Amid Battle, Reagan Says
By John M. BRODER and MELISSA HEALY
July 4, 198812 AM PT
$f y$ a
TIMES STAFF WRITERS
WASHINGTON - A U.S. warship, mistaking a commercial Iranian airliner for a warplane, shot the jet down during a naval skirmish in the Persian Gulf on Sunday. Officials in Tehran said that 290 passengers and crew aboard Iran Air

## Other Example POMDPs

- Patient diagnosis/treatment (patient state?)
- Machine maintenance (machine state?)
- Robotic search problems, e.g., de-mining (object my sensors detected?)
- Robot navigation (robot's true location?)
- Assistive technologies (user's intent/needs?)


## Straw Man

- What if we treat the observation as the state?
- Violates Markov assumption
- Can't distinguish between two states that coincidentally produce similar observations
- Leads to suboptimal policies and/or can cause oscillation in many algorithms (though not pure policy gradient)


## Partially Observable MDP (POMDP)

- State space: $s \in S$
- Transition model: $P\left(s^{\prime} \mid s, a\right)$
- Action space: $a \in A$
- Observation space: $z \in Z$
- Reward model: R(s,a, s')
- MDP dynamics (transitions, rewards) are unchanged
- After a state transition, agent observes z w.p. P(z|s',a)
- Underlying Markovian process BUT state is hidden; agent only sees observation
- Like HMMs with actions and reward


## Belief States

True state is only partially observable

- b = belief state
- $\mathrm{b}[\mathrm{s}]=$ probability of state s
- At each step, the agent
- takes some action a
- transitions to some state $s^{\prime}$ with probability $p\left(s^{\prime} \mid s, a\right)$
- makes observation $z$ with probability $p\left(z \mid s^{\prime}, a\right)$
- Posterior belief given $\mathrm{z}, \mathrm{a}, \mathrm{b}$ :

Same as HMM
tracking/monitoring equations

$$
b^{\prime}\left(s^{\prime}\right)=\alpha p\left(z \mid s^{\prime}, a\right) \sum_{s} p\left(s^{\prime} \mid s, a\right) b(s)
$$

## Understanding Belief States

- A problem with $n$ underlying states (discrete state space of size n) has:
- A continuous belief space
- Each element of the belief space is a distribution over the n underlying states
- Belief states that are vectors of length n
- Partial observability turns discrete problems into continuous problems
- A POMDP with n states induces an n-dimensional belief MDP


## Belief Space

- Since belief is a probability distribution:

$$
\sum_{s} b[s]=1
$$

- For n states, belief has $\mathrm{n}-1$ degrees of freedom
- Beliefs live in a $n-1$ dimensional simplex


Belief Space Illustrated


## POMDP Value Functions

- Bellman equation for POMDPs:

$$
\begin{aligned}
& \qquad V^{*}(b)=\max _{a}[\underbrace{\left.\rho(b, a)+\gamma \int_{b^{\prime}} p\left(b^{\prime} \mid a, b\right) V^{*}\left(b^{\prime}\right) d b^{\prime}\right]} \\
& \begin{array}{l}
\text { Expectation of } \mathrm{R} \text { given } \mathrm{b}, \mathrm{a}: \\
\quad \begin{array}{l}
\text { Need to compute a probability for } \\
\text { an infinite number of belief states }:
\end{array}
\end{array}
\end{aligned}
$$

- How do we compute this integral? We don't!


## POMDP Value Functions

- Bellman equation for POMDPs:

$$
V^{*}(b)=\max _{a}[\underbrace{\rho(b, a)}+\gamma \sum_{b^{\prime}}^{P\left(b^{\prime} \mid a, b\right) V^{*}}\left(b^{\prime}\right)]
$$

Expectation of R given b , a : Belief transition probability derived from

$$
=\sum_{s} R(s, a) b(s)
$$ POMDP transition/observation models:

$=\sum_{z b_{b}^{\prime} b_{b} b^{\prime}} \sum_{s} P\left(z \mid s^{\prime}, a\right) \sum_{s} P\left(s^{\prime} \mid s, a\right)$

- Why sum and not integral?


## Representing V

- Good news: Computing RHS of the Bellman equation for a particular $V(b)$ takes a reasonable amount of time given some method of querying $\mathrm{V}\left(\mathrm{b}^{\prime}\right)$
- Bad news: V is still defined over a continuous domain - how do we represent V tractably?


With one step to go, we can take an action and receive a reward.

## 2-Step POMDP Policy

- How many 2-step policies are there?
- Exponential in $|\mathrm{Z}|$


What is the value of the root node, as a function of the (unknown) starting state?
It is the immediate reward + expected discounted value of next action
Call $\alpha[s]$ the value of being in node $s$, starting at the root $\alpha^{\top} b=$ value of $a$ belief state $b$ under this policy

## POMDP Value Function



With two steps to go, we can take an action and make an observation, then take another action.

## Multistep POMDP Value Functions

- Build (i+1)-step policies by considering all ways of adding on to i-step policies

- How many ( $\mathrm{i}+1$ )-step policies are there?
- n i-step policies, a actions z obsersvations -> $\mathrm{an}^{2}$


## POMDP Value Functions

- Any finite horizon conditional plan has value that is linear in the belief state
- $\alpha[s]=$ value of starting plan in state $s$
- $\Gamma=\left[\alpha_{0} \ldots \alpha_{m}\right]$ : Set of vectors corresponding to values of conditional plans
- Value of following plan i from belief state b:

$$
\sum_{s} \alpha_{i}[s] b[s]=\alpha_{i} \cdot b
$$

## POMDP Value Functions



Finite horizon POMDP value function is piecewise linear and convex (assume we follow best plan for each belief state)

## Infinite Horizon Policies

- Conditional policies represented as finite state machines
- States $\mu_{1} \ldots \mu_{m}$ labeled with actions
- Deterministic transition function $\delta(\mu, z)$
- Belief state not used in following policy



## FSM Policy Evaluation

- Policy x POMDP induces a Markov chain
- States: $\sigma_{\mu, s} \quad(\forall s \in S, \mu \in$ FSM)
- Reward function: $\rho_{\mu, s}=R\left(s, a_{\mu}\right)$
- Transition function:

- Discount factor: $\gamma$
- POMDP value function can be extracted from Markov chain value function


## POMDP FSM Value Functions



## Solving POMDPs by Value Iteration

- Basic outline of an exact VI algorithm
- Given $\mathrm{V}_{\mathrm{i}}=\Gamma_{\mathrm{i}}$
- Generate $\Gamma_{i+1}$ as one step extensions from $\Gamma_{\mathrm{i}}$
- Note: (|A|| $\left.\Gamma_{\mathrm{i}}\right|^{|z|}$ extensions!)
- Prune vectors in $\Gamma_{i+1}$ which are not maximal for any $b$
$-\mathrm{V}_{\mathrm{i}+1}=\Gamma_{\mathrm{i}+1}$
- Challenges:
- Potentially large number of new vectors
- Exponential growth with number of iterations


## POMDP Value Iteration



## Policy Iteration for POMDPs

- Basic idea of MDP policy iteration carries over to POMDPs
- Policies = FSMs
- Implementation is slightly tricky
- Highlights:
- Evaluate FSM (generate alpha vectors)
- Do one step of value iteration (policy evaluation)
- Modify FSM based on value iteration results (policy improvement)
- Alternate between policy evaluation, policy improvement
- Good news: Can be more efficient than VI
- Bad news: FSM complexity can grow exponentially


## 三 WikipediA

## Example: Tiger Problem

- Tiger behind one door, prize behind another
- Agent doesn't know which is which (2 states)
- Listening gives a noisy indicator
- Intuitive solution: Listen until you are confident, then open the door
- What does the value function for this problem look like? (discussion)

The Lady, or the Tiger?
Article Talk
${ }^{\text {㸚 }}$
"The Lady, or the Tiger?" is a much-a short story written by Frank R. Stocktor publication in the November issue of Th Magazine in 1882. "The Lady, or the Tis entered the English language as an alle expression, a shorthand indication or si problem that is unsolvable.

## POMDP Computational Complexity

- Size of value function can grow exponentially with number of iterations of value iteration
- Pruning can help, but no guarantees
- In practice, exact value iteration algorithms are practical for POMDPs with ones of states
- Doesn't necessarily imply problem is intractable, but...
- POMDPs are, in fact, PSPACE hard $(2$


## POMDP Conclusions

- Generalize MDPs
- Like HMMs, track distribution over underlying states
- Every POMDP is a continuous state MDP, where MDP states correspond to POMDP belief states
- Tricky and computationally expensive in practice


