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Some portions adapted from Sutton & Barto ch. 13

Find good policies w/o using Q/Value functions?

• Why bother?
• Approximate value function methods can be unstable
• Values can diverge
• Hard to provide meaningful performance guarantees

• In some problems finding a good approximation for a policy function 
may be easier than finding a good approximation for a value function
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Example: Inverted pendulum

• Observation from homework: Obtaining a good 
functional form to represent the Value 
function/Q-functions isn’t trivial

• A (near) optimal policy has a very simple form:
• When angle and angular velocity have same 

sign, push in opposite direction
• When angle and angular velocity have 

different sign, do nothing

Managing policy space

• Just like value functions, policies defined explicitly over huge state 
spaces are unwieldy
• Possible policy representations:
• Lookup tables
• Implicit in Q-functions
• Decision trees
• Neural networks mapping states to distributions over actions
• Arbitrary programs
• Etc. - almost anything goes
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Searching policy space

• Natural representation choice for value functions: differentiable functions
• Natural optimization method for value functions: gradient descent

• Many choices for policy functions
• Many optimization methods

• Brief review of black(ish) box optimization methods...

Evaluating policies

• An in homework, we can evaluate a policy at a particular state by:
• Simulating/running the policy
• Recording discounted sum of rewards
• Repeating and average until variance is reduced

• Evaluate policy overall by:
• Sampling a start state from a distribution over start states
• Repeat, average, etc. to get an expected policy value as a single number
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Improving policies

• Can view as a generic optimization problem
• Black box tells us f(x)
• Figure out how to adjust x to maximize f(x)

• Starting point:
• Policy is an arbitrary function from states to actions
• We have bounded set of possible changes we can try

Hill Climbing

• Evaluate current policy
• Evaluate set of candidate changes
• Picking a change:
• Steepest ascent (largest improvement)
• Stochastic – randomly pick one of the 

good ones
• First choice

• This is a greedy procedure
• Inefficient
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Genetic Algorithms
(over discrete spaces)

• GAs run hot and cold (cold now, hotish in 90’s)

• Biological metaphors to motivate search

• Organism is a word from a finite alphabet (organisms = policies)

• Fitness measures performance on task (fitness = policy evaluation)
• Uses multiple organisms (parallel search)

• Uses mutation (random steps) - asexual reproduction

• Uses crossover (combining elements of “fit” solutions) – sexual reproduction

Is this a good idea?

• Has worked well in some examples

• Can be very brittle
• Representations must be carefully engineered
• Sensitive to mutation rate
• Sensitive to details of crossover mechanism

• For the same amount of engineering & computation, other 
approaches might do better
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Stochastic policies

• But policies are discrete, so how do we do something like gradient descent 
in policy space???

• So far, we have assumed a deterministic policy, i.e., we always take the 
same action in every state

• Why not p(s,a) = p(a|s)?

• Nothing wrong with doing this, i.e., Bellman equation still works, but…

Deterministic policies are optimal

• Could use a stochastic policy to break ties for max, but why?

• There always exists an optimal deterministic policy

V *(s)=maxa R(s,a)+γ P(s'|s,a)V *(s')
s'∑
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Why use stochastic policies then?
• Can’t tune a non-differentiable max by gradient descent
• Deterministic policies are optimal for true MDPs, but if Markov property 

is violated (or our features have the same effect), then stochastic policies 
may be better
• Example from Sutton & Barto (assumes all states appear identical)

13.1. POLICY APPROXIMATION AND ITS ADVANTAGES 337

Problems vary in the complexity of their policies and action-value functions. For
some, the action-value function is simpler and thus easier to approximate. For others,
the policy is simpler. In the latter case a policy-based method will typically be faster
to learn and yield a superior asymptotic policy (as seems to be the case with Tetris;
see Şimşek, Algórta, and Kothiyal, 2016).

In problems with significant function approximation, the best approximate policy
may be stochastic. For example, in card games with imperfect information the opti-
mal play is often to do two di↵erent things with specific probabilities, such as when
blu�ng in Poker. Action-value methods have no natural way of finding stochastic op-
timal policies, whereas policy approximating methods can, as shown in Example 13.1.
This is a third significant advantage of policy-based methods.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The
reward is �1 per step, as usual. In each of the three nonterminal states
there are only two actions, right and left. These actions have their usual
consequences in the first and third states, but in the second state they are
reversed, so that right moves to the left and left moves to the right. The
problem is di�cult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1, 0]> and x(s, left) =
[0, 1]>, for all s. An action-value method with "-greedy action selection is
forced to choose between just two policies: choosing right with high probability
1 � "/2 on all steps or choosing left with the same high probability on all time
steps. If " = 0.1, then these two policies achieve a value (at the start state)
of less than �44 and �82, respectively, as shown in the graph. A method can
do significantly better if it can learn a specific probability with which to select
right. The best probability is about 0.59, which achieves a value of about
�11.6.

probability of right action
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Exercise 13.1 Use your knowledge of the gridworld and its dynamics to determine
an exact symbolic expression for the optimal probability of selecting the right action
in Example 13.1. ⇤

An example policy function: Softmax

• Actions with higher h values selected more often
• Optionally add a temperature parameter t that we multiply all h values by
• Low values of t approach uniform random distribution
• High values of t approach a max

336 CHAPTER 13. POLICY GRADIENT METHODS

13.1 Policy Approximation and its Advantages

In policy gradient methods, the policy can be parameterized in any way, as long as
⇡(a|s, ✓) is di↵erentiable with respect to its parameters, that is, as long as r✓⇡(a|s, ✓)
exists and is always finite. In practice, to ensure exploration we generally require
that the policy never becomes deterministic (i.e., that ⇡(a|s, ✓) 2 (0, 1) 8s, a, ✓.
In this section we introduce the most common parameterization for discrete action
spaces and point out the advantages it o↵ers over action-value methods. Policy-
based methods also o↵er useful ways of dealing with continuous action spaces, as we
describe later in Section 13.7.

If the action space is discrete and not too large, then a natural kind of param-
eterization is to form parameterized numerical preferences h(s, a, ✓) 2 R for each
state–action pair. The most preferred actions in each state are given the highest
probability of being selected, for example, according to an exponential softmax dis-
tribution:

⇡(a|s, ✓) =
exp(h(s, a, ✓))P

b
exp(h(s, b, ✓)

, (13.2)

where exp(x) = ex, where e ⇡ 2.71828 is the base of the natural logarithm. Note that
the denominator here is just what is required so that the action probabilities in each
state to sum to one. The preferences themselves can be parameterized arbitrarily.
For example, they might be computed by a deep neural network, where ✓ is the vector
of all the connection weights of the network (as in the AlphaGo system described in
Section 16.7). Or the preferences could simply be linear in features,

h(s, a, ✓) = ✓>x(s, a), (13.3)

using feature vectors x(s, a) 2 Rd constructed by any of the methods described in
Chapter 9.

An immediate advantage of selecting actions according to the softmax in action
preferences (13.2) is that the approximate policy can approach determinism, whereas
with "-greedy action selection over action values there is always an " probability of
selecting a random action. Of course, one could select according to a softmax over
action values, but this alone would not approach determinism. Instead, the action-
value estimates would converge to their corresponding true values, which would di↵er
by a finite amount, translating to specific probabilities other than 0 and 1. If the
softmax included a temperature parameter, then the temperature could be reduced
over time to approach determinism, but in practice it would be di�cult to choose
the reduction schedule, or even the initial temperature, without more knowledge of
the true action values than we would like to assume. Action preferences are di↵erent
because they do not approach specific values; instead they are driven to produce the
optimal stochastic policy. If the optimal policy is deterministic, then the preferences
of the optimal actions will be driven infinitely higher than all suboptimal actions (if
permited by the parameterization).

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.

From Sutton & Barto ch. 13



3/19/24

8

But what is h?

• Due to normalization, this will always be a distribution
• h can be an arbitrary (family of) function(s)
• One natural choice is to have have one linear function per action
• Other choices could be neural networks

336 CHAPTER 13. POLICY GRADIENT METHODS
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In policy gradient methods, the policy can be parameterized in any way, as long as
⇡(a|s, ✓) is di↵erentiable with respect to its parameters, that is, as long as r✓⇡(a|s, ✓)
exists and is always finite. In practice, to ensure exploration we generally require
that the policy never becomes deterministic (i.e., that ⇡(a|s, ✓) 2 (0, 1) 8s, a, ✓.
In this section we introduce the most common parameterization for discrete action
spaces and point out the advantages it o↵ers over action-value methods. Policy-
based methods also o↵er useful ways of dealing with continuous action spaces, as we
describe later in Section 13.7.

If the action space is discrete and not too large, then a natural kind of param-
eterization is to form parameterized numerical preferences h(s, a, ✓) 2 R for each
state–action pair. The most preferred actions in each state are given the highest
probability of being selected, for example, according to an exponential softmax dis-
tribution:

⇡(a|s, ✓) =
exp(h(s, a, ✓))P

b
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, (13.2)

where exp(x) = ex, where e ⇡ 2.71828 is the base of the natural logarithm. Note that
the denominator here is just what is required so that the action probabilities in each
state to sum to one. The preferences themselves can be parameterized arbitrarily.
For example, they might be computed by a deep neural network, where ✓ is the vector
of all the connection weights of the network (as in the AlphaGo system described in
Section 16.7). Or the preferences could simply be linear in features,

h(s, a, ✓) = ✓>x(s, a), (13.3)

using feature vectors x(s, a) 2 Rd constructed by any of the methods described in
Chapter 9.

An immediate advantage of selecting actions according to the softmax in action
preferences (13.2) is that the approximate policy can approach determinism, whereas
with "-greedy action selection over action values there is always an " probability of
selecting a random action. Of course, one could select according to a softmax over
action values, but this alone would not approach determinism. Instead, the action-
value estimates would converge to their corresponding true values, which would di↵er
by a finite amount, translating to specific probabilities other than 0 and 1. If the
softmax included a temperature parameter, then the temperature could be reduced
over time to approach determinism, but in practice it would be di�cult to choose
the reduction schedule, or even the initial temperature, without more knowledge of
the true action values than we would like to assume. Action preferences are di↵erent
because they do not approach specific values; instead they are driven to produce the
optimal stochastic policy. If the optimal policy is deterministic, then the preferences
of the optimal actions will be driven infinitely higher than all suboptimal actions (if
permited by the parameterization).

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.

Search in continuous spaces
• Assume function is continuous/differentiable
• Find local optimum
• Black box approaches (no analytic gradient)

• Nelder-Mead
• Hooke-Jeeves
• Bayesian optimziation
• Vaious particle/swarm/genetic approaches
• All use multiple points to explicitly or implicitly 

represent the shape of the optimization surface

Nelder Mead figu by
Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=51597577Cross entropy figure from text
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Limitations of black 
box search methods

• Ignore that we are solving an MDP 
 (generic optimization)

• Can be particularly inefficient
• When function evaluation   

(return on policy) is noisy
• in high dimensional spaces

Policy gradient

• A family of methods for searching continuous policy space

• Smarter/more specific than black box methods

• Takes advantage of fact that we are solving an MDP
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Policy gradient: What are we optimizing?

• Note: S&B takes a different (also interesting and useful to read) 
approach to deriving policy gradient
• I am using the textbook’s notation and derivation for the slides
• U – utility
• q – policy parameters
• t – trajectory
• R(t) – (discounted) sum of rewards accrued on t

234 chapter 11. policy gradient estimation

11.2 Regression Gradient

Instead of estimating the gradient at θ by taking a fixed step along each coordinate
axis, as done in the previous section, we can use linear regression3 to estimate the 3 Linear regression is covered in

section 8.6.gradient from the results of random perturbations from θ. These perturbations
are stored in a matrix as follows:4 4 This general approach is some-

times referred to as simultaneous
perturbation stochastic approximation
by J. C. Spall, Introduction to Stochas-
tic Search and Optimization. Wiley,
2003. The general connection to
linear regression is provided by J.
Peters and S. Schaal, “Reinforce-
ment Learning ofMotor Skills with
Policy Gradients,” Neural Networks,
vol. 21, no. 4, pp. 682–697, 2008.

∆Θ =

⎡

⎢

⎢

⎣

(∆θ(1))⊤

...
(∆θ(m))⊤

⎤

⎥

⎥

⎦

(11.6)

More policy parameter perturbations will tend to produce better gradient esti-
mates.5

5 A recommended rule of thumb is
to use about twice as many pertur-
bations as the number of parame-
ters.

For each of these perturbations, we perform a rollout and estimate the change
in utility:6

6 This equation shows the forward
difference. Other finite-difference
formulations, such as the central
difference, can also be used.

∆U =
[

U(θ+ ∆θ(1))−U(θ), . . . , U(θ+ ∆θ(m))−U(θ)
]

(11.7)

The policy gradient estimate using linear regression is then7

7 As discussed in section 8.6, X+ de-
notes the pseudoinverse of X.

∇U(θ) ≈ ∆Θ
+∆U (11.8)

Algorithm 11.3 provides an implementation of this approach in which the per-
turbations are drawn uniformly from a hypersphere with radius δ. Example 11.2
demonstrates this approach with a simple function.

11.3 Likelihood Ratio

The likelihood ratio approach8 to gradient estimation uses an analytical form of 8 P.W. Glynn, “Likelihood Ratio
Gradient Estimation for Stochas-
tic Systems,” Communications of the
ACM, vol. 33, no. 10, pp. 75–84,
1990.

∇πθ to improve our estimate of ∇U(θ). Recall from equation (10.2) that

U(θ) =
∫

pθ(τ)R(τ)dτ (11.9)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com

Finding the gradient

11.3. l ikelihood ratio 235

struct RegressionGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
δ # step size

end

function gradient(M::RegressionGradient, π, θ)
𝒫, b, d, m, δ, γ = M.𝒫, M.b, M.d, M.m, M.δ, M.𝒫.γ
ΔΘ = [δ.*normalize(randn(length(θ)), 2) for i = 1:m]
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
U(θ) = R(simulate(𝒫, rand(b), s->π(θ,s), d))
ΔU = [U(θ + Δθ) - U(θ) for Δθ in ΔΘ]
return pinv(reduce(hcat, ΔΘ)') * ΔU

end

Algorithm 11.3. A method for es-
timating a policy gradient using
finite differences for an MDP 𝒫,
a stochastic parameterized policy
π(θ, s), and a policy parameter-
ization vector θ. Policy variation
vectors are generated by normal-
izing normally distributed sam-
ples and scaling by a perturbation
scalar δ. A total of m parameter per-
turbations are generated, and each
is evaluated in a rollout from an
initial state drawn from b to depth
d and compared to the original pol-
icy parameterization.

Hence,

∇U(θ) = ∇θ
∫

pθ(τ)R(τ)dτ (11.10)

=
∫

∇θpθ(τ)R(τ)dτ (11.11)

=
∫

pθ(τ)
∇θpθ(τ)

pθ(τ)
R(τ)dτ (11.12)

= Eτ

[

∇θpθ(τ)
pθ(τ)

R(τ)

]

(11.13)

The name for this method comes from this trajectory likelihood ratio. This likeli-
hood ratio can be seen as a weight in likelihood weighted sampling (section 3.7)
over trajectory rewards.

Applying the log derivative trick,9 we have 9 The log derivative trick was intro-
duced in section 10.5. It uses the
following equality:

∇θ log pθ(τ) = ∇θpθ(τ)/pθ(τ)

∇U(θ) = Eτ [∇θ log pθ(τ)R(τ)] (11.14)

We can estimate this expectation using trajectory rollouts. For each trajectory
τ, we need to compute the product ∇θ log pθ(τ)R(τ). Recall that R(τ) is the
return associated with trajectory τ. If we have a stochastic policy,10 the gradient 10 We use πθ(a | s) to represent

the probability (either density or
mass) the policy πθ assigns to tak-
ing action a from state s.

∇θ log pθ(τ) is

∇θ log pθ(τ) =
d

∑
k=1

∇θ log πθ(a(k) | s(k)) (11.15)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2024-02-06 20:54:49-08:00, comments to bugs@algorithmsbook.com
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The log trick:

13.3. REINFORCE: MONTE CARLO POLICY GRADIENT 341

which is exactly what we want, a quantity that we can sample on each time step
whose expectation is equal to the gradient. Using this sample to instantiate our
generic stochastic gradient ascent algorithm (13.1), we obtain the update

✓t+1
.
= ✓t + ↵�tGt

r✓⇡(At|St, ✓)

⇡(At|St, ✓)
. (13.6)

We call this algorithm REINFORCE (after Williams, 1992). Its update has an
intuitive appeal. Each increment is proportional to the product of a return Gt and a
vector, the gradient of the probability of taking the action actually taken, divided by
the probability of taking that action. The vector is the direction in parameter space
that most increases the probability of repeating the action At on future visits to state
St. The update increases the parameter vector in this direction proportional to the
return, and inversely proportional to the action probability. The former makes sense
because it causes the parameter to move most in the directions that favor actions
that yield the highest return. The latter makes sense because otherwise actions that
are selected frequently are at an advantage (the updates will be more often in their
direction) and might win out even if they do not yield the highest return.

Note that REINFORCE uses the complete return from time t, which includes all
future rewards up until the end of the episode. In this sense REINFORCE is a
Monte Carlo algorithm and is well defined only for the episodic case with all updates
made in retrospect after the episode is completed (like the Monte Carlo algorithms
in Chapter 5). This is shown explicitly in the boxed pseudocode below.

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓), 8a 2 A, s 2 S, ✓ 2 Rd

Initialize policy parameter ✓
Repeat forever:

Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
For each step of the episode t = 0, . . . , T � 1:

G return from step t
✓  ✓ + ↵�tGr✓ log ⇡(At|St, ✓)

The vector r✓⇡(At|St,✓)
⇡(At|St,✓) in the REINFORCE update is the only place the policy

parameterization appears in the algorithm. This vector has been given several names
and notations in the literature; we will refer to it simply as the eligibility vector. The
eligibility vector is often written in the compact form r✓ log ⇡(At|St, ✓), using the
identity r log x = rx

x
. This form is used in all the boxed pseudocode in this chapter.

In earlier examples in this chapter we considered exponential softmax policies (13.2)
with linear action preferences (13.3). For this parameterization, the eligibility vector
is

r✓ log ⇡(a|s, ✓) = x(s, a)�
X

b

⇡(b|s, ✓)x(s, b). (13.7)

11.3. l ikelihood ratio 235

struct RegressionGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
δ # step size

end

function gradient(M::RegressionGradient, π, θ)
𝒫, b, d, m, δ, γ = M.𝒫, M.b, M.d, M.m, M.δ, M.𝒫.γ
ΔΘ = [δ.*normalize(randn(length(θ)), 2) for i = 1:m]
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
U(θ) = R(simulate(𝒫, rand(b), s->π(θ,s), d))
ΔU = [U(θ + Δθ) - U(θ) for Δθ in ΔΘ]
return pinv(reduce(hcat, ΔΘ)') * ΔU

end

Algorithm 11.3. A method for es-
timating a policy gradient using
finite differences for an MDP 𝒫,
a stochastic parameterized policy
π(θ, s), and a policy parameter-
ization vector θ. Policy variation
vectors are generated by normal-
izing normally distributed sam-
ples and scaling by a perturbation
scalar δ. A total of m parameter per-
turbations are generated, and each
is evaluated in a rollout from an
initial state drawn from b to depth
d and compared to the original pol-
icy parameterization.

Hence,

∇U(θ) = ∇θ
∫

pθ(τ)R(τ)dτ (11.10)

=
∫

∇θpθ(τ)R(τ)dτ (11.11)

=
∫

pθ(τ)
∇θpθ(τ)

pθ(τ)
R(τ)dτ (11.12)

= Eτ

[

∇θpθ(τ)
pθ(τ)

R(τ)

]

(11.13)

The name for this method comes from this trajectory likelihood ratio. This likeli-
hood ratio can be seen as a weight in likelihood weighted sampling (section 3.7)
over trajectory rewards.

Applying the log derivative trick,9 we have 9 The log derivative trick was intro-
duced in section 10.5. It uses the
following equality:

∇θ log pθ(τ) = ∇θpθ(τ)/pθ(τ)

∇U(θ) = Eτ [∇θ log pθ(τ)R(τ)] (11.14)

We can estimate this expectation using trajectory rollouts. For each trajectory
τ, we need to compute the product ∇θ log pθ(τ)R(τ). Recall that R(τ) is the
return associated with trajectory τ. If we have a stochastic policy,10 the gradient 10 We use πθ(a | s) to represent

the probability (either density or
mass) the policy πθ assigns to tak-
ing action a from state s.

∇θ log pθ(τ) is

∇θ log pθ(τ) =
d

∑
k=1

∇θ log πθ(a(k) | s(k)) (11.15)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
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ples and scaling by a perturbation
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Hence,
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The name for this method comes from this trajectory likelihood ratio. This likeli-
hood ratio can be seen as a weight in likelihood weighted sampling (section 3.7)
over trajectory rewards.

Applying the log derivative trick,9 we have 9 The log derivative trick was intro-
duced in section 10.5. It uses the
following equality:

∇θ log pθ(τ) = ∇θpθ(τ)/pθ(τ)

∇U(θ) = Eτ [∇θ log pθ(τ)R(τ)] (11.14)

We can estimate this expectation using trajectory rollouts. For each trajectory
τ, we need to compute the product ∇θ log pθ(τ)R(τ). Recall that R(τ) is the
return associated with trajectory τ. If we have a stochastic policy,10 the gradient 10 We use πθ(a | s) to represent

the probability (either density or
mass) the policy πθ assigns to tak-
ing action a from state s.

∇θ log pθ(τ) is

∇θ log pθ(τ) =
d

∑
k=1

∇θ log πθ(a(k) | s(k)) (11.15)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
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Probability of a trajectory

• Probability of a trajectory is product of probability of action choices
• Product decomposes into sum inside log
• For trajectory of length t, d=t
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timating a policy gradient using
finite differences for an MDP 𝒫,
a stochastic parameterized policy
π(θ, s), and a policy parameter-
ization vector θ. Policy variation
vectors are generated by normal-
izing normally distributed sam-
ples and scaling by a perturbation
scalar δ. A total of m parameter per-
turbations are generated, and each
is evaluated in a rollout from an
initial state drawn from b to depth
d and compared to the original pol-
icy parameterization.

Hence,

∇U(θ) = ∇θ
∫

pθ(τ)R(τ)dτ (11.10)

=
∫

∇θpθ(τ)R(τ)dτ (11.11)

=
∫

pθ(τ)
∇θpθ(τ)

pθ(τ)
R(τ)dτ (11.12)

= Eτ

[

∇θpθ(τ)
pθ(τ)

R(τ)

]

(11.13)

The name for this method comes from this trajectory likelihood ratio. This likeli-
hood ratio can be seen as a weight in likelihood weighted sampling (section 3.7)
over trajectory rewards.

Applying the log derivative trick,9 we have 9 The log derivative trick was intro-
duced in section 10.5. It uses the
following equality:

∇θ log pθ(τ) = ∇θpθ(τ)/pθ(τ)

∇U(θ) = Eτ [∇θ log pθ(τ)R(τ)] (11.14)

We can estimate this expectation using trajectory rollouts. For each trajectory
τ, we need to compute the product ∇θ log pθ(τ)R(τ). Recall that R(τ) is the
return associated with trajectory τ. If we have a stochastic policy,10 the gradient 10 We use πθ(a | s) to represent

the probability (either density or
mass) the policy πθ assigns to tak-
ing action a from state s.

∇θ log pθ(τ) is

∇θ log pθ(τ) =
d

∑
k=1

∇θ log πθ(a(k) | s(k)) (11.15)
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Basic Policy Gradient Algorithm
 (trajectory based REINFORCE)
• Sample a trajectory, compute discounted sum of returns

•Multiply by

• Take gradient step in policy space

•Repeat 

11.3. l ikelihood ratio 235

struct RegressionGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
δ # step size

end

function gradient(M::RegressionGradient, π, θ)
𝒫, b, d, m, δ, γ = M.𝒫, M.b, M.d, M.m, M.δ, M.𝒫.γ
ΔΘ = [δ.*normalize(randn(length(θ)), 2) for i = 1:m]
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
U(θ) = R(simulate(𝒫, rand(b), s->π(θ,s), d))
ΔU = [U(θ + Δθ) - U(θ) for Δθ in ΔΘ]
return pinv(reduce(hcat, ΔΘ)') * ΔU

end

Algorithm 11.3. A method for es-
timating a policy gradient using
finite differences for an MDP 𝒫,
a stochastic parameterized policy
π(θ, s), and a policy parameter-
ization vector θ. Policy variation
vectors are generated by normal-
izing normally distributed sam-
ples and scaling by a perturbation
scalar δ. A total of m parameter per-
turbations are generated, and each
is evaluated in a rollout from an
initial state drawn from b to depth
d and compared to the original pol-
icy parameterization.

Hence,

∇U(θ) = ∇θ
∫

pθ(τ)R(τ)dτ (11.10)

=
∫

∇θpθ(τ)R(τ)dτ (11.11)

=
∫

pθ(τ)
∇θpθ(τ)

pθ(τ)
R(τ)dτ (11.12)

= Eτ

[

∇θpθ(τ)
pθ(τ)

R(τ)

]

(11.13)

The name for this method comes from this trajectory likelihood ratio. This likeli-
hood ratio can be seen as a weight in likelihood weighted sampling (section 3.7)
over trajectory rewards.

Applying the log derivative trick,9 we have 9 The log derivative trick was intro-
duced in section 10.5. It uses the
following equality:

∇θ log pθ(τ) = ∇θpθ(τ)/pθ(τ)

∇U(θ) = Eτ [∇θ log pθ(τ)R(τ)] (11.14)

We can estimate this expectation using trajectory rollouts. For each trajectory
τ, we need to compute the product ∇θ log pθ(τ)R(τ). Recall that R(τ) is the
return associated with trajectory τ. If we have a stochastic policy,10 the gradient 10 We use πθ(a | s) to represent

the probability (either density or
mass) the policy πθ assigns to tak-
ing action a from state s.

∇θ log pθ(τ) is

∇θ log pθ(τ) =
d

∑
k=1

∇θ log πθ(a(k) | s(k)) (11.15)
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How well does this work?

• Digression…
• ~20 years ago, when very little worked, people had strong opinions 

about what would eventually work
• Value function proponents:
• Value functions use the Bellman equation to enforce consistency
• Should be more efficient than ignoring the Bellman equation

• Policy search proponents:
• Value function approximation is unstable
• Policy gradient directly optimizes the thing we care about
• “Guaranteed” to find a local optimum in policy space
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What actually happened

• Basic policy gradient has a huge problem with variance
• Probability of a trajectory of length n is a product of O(n) random 

events (both policy randomness and environment randomness)
• Variance grows with n
• Gradient signal for PG was very noisy

• Getting PG to work at all required:
• Averaging over many trajectories and/or
• Taking very small step sizes

A comment about gradients

• A gradient gives us 2 types of information
• A direction
• A magnitude

• For gradient descent, we tend to care most about getting direction right
• (GD algorithms use their own step size tricks)

• Noise corrupts the gradient direction information
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Variance reduction

240 chapter 11. policy gradient estimation

rewards across time steps. The reward-to-go approach attempts to reduce the
variance in the estimate.

To derive this approach, we begin by expanding equation (11.14):

∇U(θ) = Eτ

[(

d

∑
k=1

∇θ log πθ(a(k) | s(k))

)(

d

∑
k=1

r(k)γk−1

)]

(11.19)

Let f (k) replace ∇θ log πθ(a(k) | s(k)) for convenience. We then expand as
follows:

∇U(θ) = Eτ

[(

d

∑
k=1

f (k)
)(

d

∑
k=1

r(k)γk−1

)]

(11.20)

= Eτ

[(

f (1) + f (2) + f (3) + · · ·+ f (d)
)(

r(1) + r(2)γ + r(3)γ2 + · · ·+ r(d)γd−1
)]

(11.21)

= Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(1) + f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(1) + f (3)r(2)γ + f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(1) + f (d)r(2)γ + f (d)r(3)γ2 + · · ·+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.22)

The first reward, r(1), is affected only by the first action. Thus, its contribution to
the policy gradient should not depend on subsequent time steps. We can remove
other such causality-violating terms as follows:12 12 The term ∑

d
ℓ=k r(ℓ)γℓ−k is often

called the reward-to-go from step k.

∇U(θ) = Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.23)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

d

∑
ℓ=k

r(ℓ)γℓ−1

)]

(11.24)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

γk−1
d

∑
ℓ=k

r(ℓ)γℓ−k

)]

(11.25)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go

]

(11.26)
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rewards across time steps. The reward-to-go approach attempts to reduce the
variance in the estimate.

To derive this approach, we begin by expanding equation (11.14):

∇U(θ) = Eτ

[(

d

∑
k=1

∇θ log πθ(a(k) | s(k))

)(

d

∑
k=1

r(k)γk−1

)]

(11.19)

Let f (k) replace ∇θ log πθ(a(k) | s(k)) for convenience. We then expand as
follows:

∇U(θ) = Eτ

[(

d

∑
k=1

f (k)
)(

d

∑
k=1

r(k)γk−1

)]

(11.20)

= Eτ

[(

f (1) + f (2) + f (3) + · · ·+ f (d)
)(

r(1) + r(2)γ + r(3)γ2 + · · ·+ r(d)γd−1
)]

(11.21)

= Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(1) + f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(1) + f (3)r(2)γ + f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(1) + f (d)r(2)γ + f (d)r(3)γ2 + · · ·+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.22)

The first reward, r(1), is affected only by the first action. Thus, its contribution to
the policy gradient should not depend on subsequent time steps. We can remove
other such causality-violating terms as follows:12 12 The term ∑

d
ℓ=k r(ℓ)γℓ−k is often

called the reward-to-go from step k.

∇U(θ) = Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.23)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

d

∑
ℓ=k

r(ℓ)γℓ−1

)]

(11.24)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

γk−1
d

∑
ℓ=k

r(ℓ)γℓ−k

)]

(11.25)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go

]

(11.26)
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(Notation)

Variance reduction
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rewards across time steps. The reward-to-go approach attempts to reduce the
variance in the estimate.

To derive this approach, we begin by expanding equation (11.14):

∇U(θ) = Eτ

[(

d

∑
k=1

∇θ log πθ(a(k) | s(k))

)(

d

∑
k=1

r(k)γk−1

)]

(11.19)

Let f (k) replace ∇θ log πθ(a(k) | s(k)) for convenience. We then expand as
follows:

∇U(θ) = Eτ

[(

d

∑
k=1

f (k)
)(

d

∑
k=1

r(k)γk−1

)]

(11.20)

= Eτ

[(

f (1) + f (2) + f (3) + · · ·+ f (d)
)(

r(1) + r(2)γ + r(3)γ2 + · · ·+ r(d)γd−1
)]

(11.21)

= Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(1) + f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(1) + f (3)r(2)γ + f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(1) + f (d)r(2)γ + f (d)r(3)γ2 + · · ·+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.22)

The first reward, r(1), is affected only by the first action. Thus, its contribution to
the policy gradient should not depend on subsequent time steps. We can remove
other such causality-violating terms as follows:12 12 The term ∑

d
ℓ=k r(ℓ)γℓ−k is often

called the reward-to-go from step k.

∇U(θ) = Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.23)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

d

∑
ℓ=k

r(ℓ)γℓ−1

)]

(11.24)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

γk−1
d

∑
ℓ=k

r(ℓ)γℓ−k

)]

(11.25)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go

]

(11.26)
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Terms that multiply rewards by later actions contribute to magnitude by not direction
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The REINFORCE Algorithm (Step based)

• Sample a trajectory
• Compute discounted sum of returns from each step as r(k)

to-go for each k
• Compute gradient for trajectory as

• Take one gradient step in policy space for each state in trajectory
• Repeat 

240 chapter 11. policy gradient estimation

rewards across time steps. The reward-to-go approach attempts to reduce the
variance in the estimate.

To derive this approach, we begin by expanding equation (11.14):

∇U(θ) = Eτ

[(

d

∑
k=1

∇θ log πθ(a(k) | s(k))

)(

d

∑
k=1

r(k)γk−1

)]

(11.19)

Let f (k) replace ∇θ log πθ(a(k) | s(k)) for convenience. We then expand as
follows:

∇U(θ) = Eτ

[(

d

∑
k=1

f (k)
)(

d

∑
k=1

r(k)γk−1

)]

(11.20)

= Eτ

[(

f (1) + f (2) + f (3) + · · ·+ f (d)
)(

r(1) + r(2)γ + r(3)γ2 + · · ·+ r(d)γd−1
)]

(11.21)

= Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(1) + f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(1) + f (3)r(2)γ + f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(1) + f (d)r(2)γ + f (d)r(3)γ2 + · · ·+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.22)

The first reward, r(1), is affected only by the first action. Thus, its contribution to
the policy gradient should not depend on subsequent time steps. We can remove
other such causality-violating terms as follows:12 12 The term ∑

d
ℓ=k r(ℓ)γℓ−k is often

called the reward-to-go from step k.

∇U(θ) = Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.23)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

d

∑
ℓ=k

r(ℓ)γℓ−1

)]

(11.24)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

γk−1
d

∑
ℓ=k

r(ℓ)γℓ−k

)]

(11.25)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go

]

(11.26)
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How does step based reinforce work?

• Very, very slowly

• Still can be tricky to get to work in practice

• Variance can still be large

• Small step sizes needed for robust performance
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Further variance reduction

240 chapter 11. policy gradient estimation

rewards across time steps. The reward-to-go approach attempts to reduce the
variance in the estimate.

To derive this approach, we begin by expanding equation (11.14):

∇U(θ) = Eτ

[(

d

∑
k=1

∇θ log πθ(a(k) | s(k))

)(

d

∑
k=1

r(k)γk−1

)]

(11.19)

Let f (k) replace ∇θ log πθ(a(k) | s(k)) for convenience. We then expand as
follows:

∇U(θ) = Eτ

[(

d

∑
k=1

f (k)
)(

d

∑
k=1

r(k)γk−1

)]

(11.20)

= Eτ

[(

f (1) + f (2) + f (3) + · · ·+ f (d)
)(

r(1) + r(2)γ + r(3)γ2 + · · ·+ r(d)γd−1
)]

(11.21)

= Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(1) + f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(1) + f (3)r(2)γ + f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(1) + f (d)r(2)γ + f (d)r(3)γ2 + · · ·+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.22)

The first reward, r(1), is affected only by the first action. Thus, its contribution to
the policy gradient should not depend on subsequent time steps. We can remove
other such causality-violating terms as follows:12 12 The term ∑

d
ℓ=k r(ℓ)γℓ−k is often

called the reward-to-go from step k.

∇U(θ) = Eτ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(d)γd−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11.23)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

d

∑
ℓ=k

r(ℓ)γℓ−1

)]

(11.24)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

γk−1
d

∑
ℓ=k

r(ℓ)γℓ−k

)]

(11.25)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go

]

(11.26)
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11.5. baseline subtraction 241

Algorithm 11.5 provides an implementation of this.
Notice that the reward-to-go for a state-action pair (s, a) under a policy param-

eterized by θ is really an approximation of the state-action value from that state,
Qθ(s, a). The action value function, if known, can be used to obtain the policy
gradient:

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1Qθ
(

s(k), a(k)
)

]

(11.27)

struct RewardToGoGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood

end

function gradient(M::RewardToGoGradient, π, θ)
𝒫, b, d, m, ∇logπ, γ = M.𝒫, M.b, M.d, M.m, M.∇logπ, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ, j) = sum(r*γ^(k-1) for (k,(s,a,r)) in zip(j:d, τ[j:end]))
∇U(τ) = sum(∇logπ(θ, a, s)*R(τ,j) for (j, (s,a,r)) in enumerate(τ))
return mean(∇U(simulate(𝒫, rand(b), πθ, d)) for i in 1:m)

end

Algorithm 11.5. A method that
uses reward-to-go for estimating
a policy gradient of a policy π(s)
for an MDP 𝒫 with initial state dis-
tribution b. The gradient with re-
spect to the parameterization vec-
tor θ is estimated from m rollouts to
depth d using the log policy gradi-
ent ∇logπ.

11.5 Baseline Subtraction

We can further build on the approach presented in the previous section by sub-
tracting a baseline value from the reward-to-go13 to reduce the variance of the 13 We could also subtract a baseline

from a state-action value.gradient estimate. This subtraction does not bias the gradient.
We now subtract a baseline rbase(s

(k)):

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1
(

r
(k)
to-go − rbase(s

(k))
)

]

(11.28)

To show that baseline subtraction does not bias the gradient, we first expand:

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go −

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1rbase(s
(k))

]

(11.29)
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Does not depend on action

• Why would this help?
• Further reduces variance
• Does not bias gradient since it does not depend upon actions
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Baselines in practice

11.6. summary 245

It is common to use likelihood ratio policy gradient estimation with this base-
line subtraction (algorithm 11.6).15. Figure 11.3 compares the methods discussed 15 This combination is used in

the class of algorithms called
REINFORCE as introduced by
R. J. Williams, “Simple Statistical
Gradient-Following Algorithms
for Connectionist Reinforcement
Learning,”Machine Learning, vol. 8,
pp. 229–256, 1992.

here.
Qualitatively, when considering the gradient contribution of state-action pairs,

what we really care about is the relative value of one action over another. If all
actions in a particular state produce the same high value, there is no real signal
in the gradient, and baseline subtraction can zero that out. We want to identify
the actions that produce a higher value than others, regardless of the mean value
across actions.

An alternative to the action value is the advantage, A(s, a) = Q(s, a)−U(s).
Using the state value function in baseline subtraction produces the advantage.
The policy gradient using the advantage is unbiased and typically has much lower
variance. The gradient computation takes the following form:

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1 Aθ
(

s(k), a(k)
)

]

(11.44)

As with the state and action value functions, the advantage function is typically
unknown. Other methods, covered in chapter 13, are needed to approximate it.

11.6 Summary

• A gradient can be estimated using finite differences.

• Linear regression can also be used to provide more robust estimates of the
policy gradient.

• The likelihood ratio can be used to derive a form of the policy gradient that
does not depend on the transition model for stochastic policies.

• The variance of the policy gradient can be significantly reduced using the
reward-to-go and baseline subtraction.
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Baseline

Advantage
function

Comments

• This combines REINFORCE with Q-function approximation

• Good news: We no longer need to feud about which is better

• Bad news: Some motivation for policy gradient is lost
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Conclusions

• Policy search originally viewed as alternative to value function methods

• Increasingly, we see these methods combined

• Compare with modified policy iteration

• Next: More advanced ways of combining these concepts


