3/19/24

Policy Search

Ron Parr
CSCI 5951-F

Brown University

Some portions adapted from Sutton & Barto ch. 13

Find good policies w/o using Q/Value functions?

* Why bother?

» Approximate value function methods can be unstable
* Values can diverge
* Hard to provide meaningful performance guarantees

* In some problems finding a good approximation for a policy function
may be easier than finding a good approximation for a value function

Example: Inverted pendulum

* Observation from homework: Obtaining a good
functional form to represent the Value
function/Q-functions isn’t trivial

* A (near) optimal policy has a very simple form:
* When angle and angular velocity have same
sign, push in opposite direction

* When angle and angular velocity have
different sign, do nothing

3/19/24

Managing policy space

* Just like value functions, policies defined explicitly over huge state
spaces are unwieldy

* Possible policy representations:
* Lookup tables
* Implicit in Q-functions
* Decision trees
* Neural networks mapping states to distributions over actions
* Arbitrary programs
* Etc. - almost anything goes

3/19/24

Searching policy space

* Natural representation choice for value functions: differentiable functions

* Natural optimization method for value functions: gradient descent

* Many choices for policy functions
* Many optimization methods

* Brief review of black(ish) box optimization methods...

Evaluating policies

* An in homework, we can evaluate a policy at a particular state by:
* Simulating/running the policy
* Recording discounted sum of rewards
* Repeating and average until variance is reduced

* Evaluate policy overall by:
* Sampling a start state from a distribution over start states
* Repeat, average, etc. to get an expected policy value as a single number

3/19/24

Improving policies

* Can view as a generic optimization problem

* Black box tells us f(x)
* Figure out how to adjust x to maximize f(x)

* Starting point:
* Policy is an arbitrary function from states to actions
* We have bounded set of possible changes we can try

Hill Climbing

* Evaluate current policy
* Evaluate set of candidate changes

* Picking a change:
* Steepest ascent (largest improvement) .

* Stochastic — randomly pick one of the
good ones

* First choice
* This is a greedy procedure

* |nefficient

s § IR, e

[0 A
wdaal e =] limiee] 't 1, tom
-

7
| i’

'.,—n-—';. bl J
i

n

i
«,:-(’,f']“ <|rl‘l‘/ J
L T i Ly

[e

-’ |

“:-

N

A

h)

¥ el

Genetic Algorithms
(over discrete spaces)

v“"l.f";“‘ (i’)
SRt [|

GAs run hot and cold (cold now, hotish in 90’s)
Biological metaphors to motivate search
Organism is a word from a finite alphabet (organisms = policies)

Fitness measures performance on task (fitness = policy evaluation)
Uses multiple organisms (parallel search)

Uses mutation (random steps) - asexual reproduction

Uses crossover (combining elements of “fit” solutions) — sexual reproduction

3/19/24

Is this a good idea?

* Has worked well in some examples

* Can be very brittle
* Representations must be carefully engineered
* Sensitive to mutation rate
* Sensitive to details of crossover mechanism

* For the same amount of engineering & computation, other
approaches might do better

3/19/24

Stochastic policies

* But policies are discrete, so how do we do something like gradient descent
in policy space???

* So far, we have assumed a deterministic policy, i.e., we always take the
same action in every state

* Why not 7nt(s,a) = p(a|s)?

* Nothing wrong with doing this, i.e., Bellman equation still works, but...

Deterministic policies are optimal

V'(s)=max_R(s,a)+ yE P(s'|s,a)V(s")
S
* Could use a stochastic policy to break ties for max, but why?

* There always exists an optimal deterministic policy

3/19/24

Why use stochastic policies then?

* Can’t tune a non-differentiable max by gradient descent

* Deterministic policies are optimal for true MDPs, but if
(or our features have the same effect), then stochastic policies
may be better

* Example from Sutton & Barto (assumes all states appear identical)

S =G

An example policy function: Softmax

__exp(h(s,a,0))
m(als, 0) = S~ exp(h(s,b,0)

* Actions with higher h values selected more often

* Optionally add a temperature parameter t that we multiply all h values by
* Low values of t approach uniform random distribution

* High values of T approach a max

From Sutton & Barto ch. 13

3/19/24

But whatis h?

__exp(h(s,a,))
Tl O = S exp (0 (5.,

* Due to normalization, this will always be a distribution

* h can be an arbitrary (family of) function(s)

* One natural choice is to have have one linear function per action
* Other choices could be neural networks

Search in continuous spaces

* Assume function is continuous/differentiable

* Find local optimum

* Black box approaches (no analytic gradient)
* Nelder-Mead
* Hooke-Jeeves
* Bayesian optimziation
* Vaious particle/swarm/genetic approaches

* All use multiple points to explicitly or implicitly
represent the shape of the optimization surface

iR

-2 0 2

z1

Nelder Mead figu by
Cross entropy figure from text Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=51597577

3/19/24

Limitations of black
box search methods

* Ignore that we are solving an MDP
(generic optimization)

* Can be particularly inefficient
* When function evaluation
(return on policy) is noisy

* in high dimensional spaces

Policy gradient

* A family of methods for searching continuous policy space
* Smarter/more specific than black box methods

* Takes advantage of fact that we are solving an MDP

3/19/24

Policy gradient: What are we optimizing?

u(e) = [po(r)R(x) dr

* Note: S&B takes a different (also interesting and useful to read)
approach to deriving policy gradient

* | am using the textbook’s notation and derivation for the slides
e U — utility

* 0 — policy parameters

* T —trajectory

* R(t) — (discounted) sum of rewards accrued on t

Finding the gradient

10

3/19/24

The log trick: Vlega = ¥

X

=St)

2|V log pe (T)R(T)]

Probability of a trajectory

* Probability of a trajectory is product of probability of action choices
* Product decomposes into sum inside log
* For trajectory of length t, d=t

d
Velogpe(t) =) Velogme (a®) | 50
k—1

11

3/19/24

Basic Policy Gradient Algorithm
(trajectory based REINFORCE)

* Sample a trajectory, compute discounted sum of returns

d
* Multiply by Vglogpe(t) = Y Ve log e (a® | sH)
k=1

* Take gradient step in policy space

* Repeat

How well does this work?

* Digression...

» ~20 years ago, when very little worked, people had strong opinions
about what would eventually work

* Value function proponents:
* Value functions use the Bellman equation to enforce consistency
* Should be more efficient than ignoring the Bellman equation

* Policy search proponents:
* Value function approximation is unstable
* Policy gradient directly optimizes the thing we care about
* “Guaranteed” to find a local optimum in policy space

12

3/19/24

What actually happened

* Basic policy gradient has a huge problem with variance

* Probability of a trajectory of length n is a product of O(n) random
events (both policy randomness and environment randomness)

* Variance grows with n
* Gradient signal for PG was very noisy

* Getting PG to work at all required:
* Averaging over many trajectories and/or
* Taking very small step sizes

A comment about gradients

* A gradient gives us 2 types of information
* Adirection
* A magnitude

* For gradient descent, we tend to care most about getting direction right

* (GD algorithms use their own step size tricks)

* Noise corrupts the gradient direction information

13

3/19/24

Variance reduction

VU(G) =E; (Zd: Vo log Ne(a(k) ‘ S(k))> (Zd: r(k)’ykl)]
k=1 =
(Notation) l
d d
VUu(e)=E; (Zf(k>> (Z r(k),yk1>]
k=1 k=1

Variance reduction

Terms that multiply rewards by later actions contribute to magnitude by not direction

14

3/19/24

The REINFORCE Algorithm (Step based)

* Sample a trajectory
* Compute discounted sum of returns from each step as r®), . for each k

* Compute gradient for trajectory as

d

k_zl Ve log e (a®) | s®)<1rh)

» Take one gradient step in policy space for each state in trajectory
* Repeat

How does step based reinforce work?

* Very, very slowly
* Still can be tricky to get to work in practice
e Variance can still be large

* Small step sizes needed for robust performance

15

3/19/24

Further variance reduction

Vu(e) =E. +f<3)r(3)
NP TRCVE
[d
=E|) Velogme(a® |s®) (2 r(l)%l)}
Lk=1 =k
=)
=E.|)_ Velog o (a®) | s0)) <7k1 y r([)q/'k>]
Lk=1 =k

M d
=E.|) Volog o (a®) | s))k= rt(g_)go ;
=i

_Q

d
VU(G) =E; Z Vg lOg TTe (a(k) | S(k))’)/klee (s(k),a(k))]
k=1
Baselines
d k
vu() = Ex Zjihﬂognew“>|ﬂ“r%1Q&go—4%%4s“h)]
k=1

Does not depend on action

* Why would this help?
* Further reduces variance
* Does not bias gradient since it does not depend upon actions

16

3/19/24

Baselines in practice

d
VU(®) =E.|)_ Velogmg (2l | sy k=144 (s(k),a(k)>]
k=1

Advantage R
function A(S’a) - Q(S’a) - U(S)
Baseline
Comments

* This combines REINFORCE with Q-function approximation

* Good news: We no longer need to feud about which is better

* Bad news: Some motivation for policy gradient is lost

17

3/19/24

Conclusions

* Policy search originally viewed as alternative to value function methods
* Increasingly, we see these methods combined
* Compare with modified policy iteration

* Next: More advanced ways of combining these concepts

18

