ree Search

CSCI 2951-F
Ron Parr

Brown University

A different view of how to plan

 So far, we have (mostly) assumed that we can compute a value
function or policy in one big computation and use them for execution

e But search has classically been used in Al

* What if we emphasized search more?

S

AAAAARARANAN

depth 2: S1 82 83 51 52 8351 828351 825351 825381 82853 S1S2 583851 8283818283851 5283851 528538515283

depth 1:

Figure 9.1. A forward s
for a pro bl m with three states and

p. 194 of text two actions

Searching before acting — “on line planning”

* Requires an accurate simulator
* True for some robotics problems
* Sensible assumption for most games
* May or may not be reasonable in general

* Requires time to plan/search before each action - may not be
practical for control problems

* Does not necessarily require planning for the entire state space, but

* Potentially wastes resources by continually replanning

Straw man

* Build a complete search tree out to depth d
e Alternate between action nodes and chance nodes
* Choose d so that y°R

* Solve for policy in this tree recursively from leaves to root

max 1S Small

* Problem:

* b = branching factor = (#of actions x #possible next states)
* b9 nhodes

Branch and Bound

* Smarter approach:
* Maintain upper and lower bounds on the root utility
* Prune nodes of the search that are provably suboptimal

* Can be combined with heuristics, in which case A* is a special case

* Comment: This is a good approach that can save a lot of unnecessary
searching in the best case, but don’t expect it to be a big win unless
you have auxiliary information (heuristics) that are highly informative

Remove dependence on #next states

* Kearns et al. introduced trajectory trees

* Instead of considering all next states, sample next states
e Still branch on all actions

* Generate multiple trees instead one fat tree

* Evaluate potential policies against trees — value of policy is average
value across trees

* Replaces dependence on #of next states with:
* Dependence on VC dimension of policy space (linear), 1/¢2, log(1/3)
» # of trees needed to get good average evaluation of policies

Trajectory tree example

Kearns et al.

Trajectory tree limitations

* Main problem remains exponential dependence on d

* Each tree can still be very big

* Even if the number of trees isn’t as bad as you might expect, may still
very expensive to do in practice

A different approach: Bandits

* Bandit pr0b|em:) Covered in more detail later
* Multiple slot machines with unknown expected payoffs

* Need strategy for playing arms so that learn which slot machine is
best without too much opportunity cost of learning

* Regret: Difference between what you got and what you
could have gotten if you played optimally

* Goal: Algorithms with bounded regret

UCB1

Deterministic policy: ucal.
Initialization: Play each machine once.
Loop:

Exploration bonus

2Inn
— Play machine j that maximizes z; + — where z; Is the

J
average reward obtained from machine j, n; is the number of
times machine 5 has been played so far, and n is the overall

number of plays done so far.

From Auer et al.,, who show that UCB1 has regret logarithmicin n

Application to online planning

 Since we are using a simulator, we don’t care so much about regret
* BUT: Don’t still don’t want to waste time

* Idea: What if we view each state as a sort of bandit problem when we
explore a tree of possible outcomes from our current state?

Generic Monte Carlo Tree Search

function MonteCarloPlanning(state)
repeat
search(state, 0)
until Timeout
return bestAction(state,0)

AN e

6: function search(state, depth)

7: if Terminal(state) then return 0

8: if Leaf(state,d) then return Evaluate(state)

9: action := selectAction(state, depth)

10: (nextstate, reward) := simulateAction(state, action)
11: q := reward + ~ search(nextstate, depth + 1)

12: UpdateValue(state, action, q, depth)

13: return g

From Kocsis & Szepsesvari

Understanding UpdateValue

* Update value computes average value of descendants in the tree

* UCT includes an exploration bonus:
logN(s)
N(s,a)
e C=sqrt(2) for bandits

e [ssues:

* Unlike bandits, some updates can include “stale” values from children, i.e.,
value of a node should reflect value of acting optimally for node’s children,
but we update as we learn, so child values may not be right

 How do you pick C?
* Memory

Staleness

* K&S show that for sufficiently large C, we will converge to the correct
values and action at the root

* |[ntuition:
* Eventually, the leaf values will start converging to the correct values

* If Cis big enough, then we’ll get enough samples for parents of these nodes
to converge, overwhelming errors from earlier iterations

* Apply this idea inductively

How to pick C

* Not much practical guidance here
* In practice, this will need to be very large

* Why?
 Leaf values still matter
* May need exponential number of steps to find leaf values with high rewards

* No inherent way around this

* |n practice:
* Make C big enough so that you burn all the time you have

* Works better than it should in many cases

Memory

 What if you can’t afford to maintain value estimates for every node
you encounter?

* On modern computers, you can run out of memory very quickly!

* When you hit a node you don’t want to store the value for:

e “Rollout”

* Forward simulate to the end of the horizon using the current or random
policy, and use this value

* Does this make sense?

Go

* Ancient game that involves placing black/white
stones on a lattice

* 9x9, 13x13, 19x19 (standard) versions

e Surround other players stones to capture and
remove from board

* Objective: Maximize number of stones of your
color on the board

Why Go is hard

e ~200 moves per turn vs. ~37 in chess

e ~300 turns per game vs. ~“57 in chess
* 10179 possible positions vs. 10%7 in chess

e Evaluation is subtle — number of pieces on the board at any time is
not in itself very predictive of outcome

* Very difficult to learn/invent a good evaluation function

MCTS for Go

* Classical approaches to Go did not do very well — nowhere close to
master level play

* MCTS was a big improvement

* Tricks:
 Parallelization
* When/how to do rollouts
* What policy to use for rollouts
* Sharing information across subtrees
* Using databases of expert moves when possible

Go Player ranking vs. time

...

w4 Relatively flat progress
| for decades until MCTS

1 kyt M;myhmzA)f;l/

o e comes on the scene (2006),
iyt 1 then rapid progress,

i | (AlphaGo defeats 9 dan

Lee Sedol in 2016.)

From Gelly et al.

Does this work for other games?
* Kind of, but not all
* Not a big win for chess (w/o additional tricks; see alphazero)

 What’s happening?
* No practical way to pick C big enough to satisfy conditions for theoretical
convergence to optimal behavior
* Can’t explore the entire (remaining) tree except very close to end of game
* Rollouts are very important for estimating the value of the truncated tree

* Rollouts not reliable for games with important but narrow paths

Rollouts: Chess vs. Go speculation

* Go positions are hard to evaluate, but perhaps at a certain point, the
good ones and bad ones have wide paths towards certain outcomes
that are hard to miss with sampling

* Chess tends to have very narrow paths, so that even towards the end
of the game, getting towards a particular outcome can be like
threading a needle — hard to find with sampling

Search vs. Value Function Approximation

* In practice, this is a false dichotomy

* Many practical approaches combine both:

» Search to given depth
* Use value function approximation for the state values at the leaves

* Discussion: Why does this combination make sense?

