A Brief Introduction to Bandits

CSCI2951-f Ron Parr Brown University

One-armed bandits

- Rrepeatable (iid) processes w/constant payoff amount, unknown prob (can usually generalize to unknown payoff amounts)
- Examples (some w/variable payoff):
 - Trials of different drugs
 - Products to suggest to users
 - Routing paths for data
 - Financial portfolios
- Goal: Pick arms in a "smart" way

• Note: entire books & classes on bandit algorithms and extensions thereof (we just scratch the surface here)

Different goals

- Figure out the optimal are in the limit
- Figure out the optimal arm in a finite time (no guaranteed method)
- Some PAC criterion (identify nearly optimal arm WHP)
- Maximize expected reward over a finite horizon
- Maximize expected discounted reward in the limit
- Minimize regret

Methods for updating payoff estimates

- Maximum likelihood
- Bayesian

Maximum likelihood

- Think of arm "a" as a Bernouli random variable w/unknown p_a
- Count number of payoffs: w_a
- Count number of pulls: l_a
- ML estimate of payoff: $p_a = w_{a/}(w_a + l_a)$
- Pros: Easy to compute
- Cons:
 - Behavior for small/no pulls
 - No incorporation of prior knowledge

Bayesian approach

- Prior distribution on possible payoff probs for each arm
- beta(α , β) is conjugate for binomial distribution
- Expectation is: $\alpha/\alpha+\beta$
- Posterior given a positive example is $beta(\alpha+1,\beta)$
- Posterior given a negative example is $beta(\alpha,\beta+1)$

• Interpretation:

- α and β can be thought of as the number of previous positive/negative (heads/tails) examples we have seen
- Used as a prior, it reflects a bias towards a particular value, and encodes the strength of this bias

Bayesian approach summary Advantages: No harder to work with than maximum likelihood Reasonable behavior for low sample size Incorporates prior knowledge Converges to ML estimate in the limit Cons: Where does prior knowledge come from? Extension to multiple outcomes: Binomial -> multinomial Beta -> dirichlet

Simple strategies

• ϵ greedy

Softmax

ϵ -greedy

- Choose greedy action w.p. $1-\epsilon$
- \bullet Choose random action w.p. ϵ
- Advantage: Simple, widely used in RL
- Disadvantages:
 - Not very smart
 - \bullet How to pick ϵ

Softmax

- Given values X1...Xk
- Choose index i with probability:

$$\frac{e^{\lambda X_i}}{\sum_{j=1}^k e^{\lambda X_j}}$$

- Uniform random for λ = 0
- Hard max as $\lambda \rightarrow \infty$

Softmax pro/con

- Advantages:
 - Random choices favor (seemingly) better actions
 - Tunable between uniform and hard max
- Disadvantages:
 - Somewhat more expensive/complicated than $\epsilon\text{-greedy}$
 - How to pick λ ?

PAC approaches

- Goal: Choose an ϵ optimal arm w/prob 1- δ
- Main tool: Hoeffding inequality
 - Given iid X1...Xm with empirical mean p, true mean $\boldsymbol{\theta}$
 - True mean τ is in inside: $[p-z/\sqrt[2]{m}, p+z/\sqrt[2]{m}]$ w.p. 1- δ
 - $z = \sqrt[2]{1/2\ln(2/\delta)}$
- Take c samples of each arm $c = 2\epsilon^2 \ln(\frac{2k}{\delta})$
- Use union bound to show that this suffices

PAC approach summary

- Similar arguments can be used for strategies for
 - Choosing suboptimal arm bounded number of times WHP
 - Achieve average reward that is close to optimal WHP
- Nice approach overall simple to execute
- Cost of achieving guarantees can still be high
- Some probability of making lots of costly mistakes remains

Dynamic programming/MDP approach

- Consider some finite horizon
- Number of possible outcomes is determined by number of steps (but exponential in number of steps)
- Define a state as counts of each outcome
- Define reward as payoff
- Policy that maximizes expected (discounted) reward is solution to the finite horizon MDP

MDP Approach Pros/Cons

- Pro: Solution is optimal for finite horizon
- Con: Exponential size makes it impractical for long horizons and/or large numbers of arms

Gittins indices

- Surprising result:
 - Finite horizon MDP formulation is intractable for long horizons
 - Infinite horizon discounted approach has a quirky, but efficient
- Idea behind Gittins indices
 - · Compute an index (Gittins index) for each arm
 - Function of discount and distribution over possible payoffs given current knowledge
 - Computation of Gittens index also gives an optimal time to stick with each arm
 - Pick arm with highest Gittens index, and stick with it for recommended time
 - After time is up, recompute indices and pick a new arm

Gittins index comments

- Viewed as a very complicated and cool result
- Computation is Gittens indices is not trivial
- Considered brittle: Works for maximizing discounted sum of rewards, but technique does not generalize to slight changes in problem setting or optimality criterion

Regret Minimization

- Regret is the difference between actual returns and what you could have gotten if you picked the best arm from the beginning
- Methods discussed so far do not provide bounds on regret
- Choosing an epsilon optimal arm could have regret that grows linearly with the number of time steps

Thompson sampling

- For each arm, compute the probability that it is optimal given your current distribution over payoffs
- Pick an arm to play by sampling from this distribution
- Regret is logarithmic in sqrt(KT log T)

Conclusions

- Bandits are the gateway drug to MDPs
- Simplest case is essentially a single state
- Different views of optimality criteria lead to different algorithms