Matrix Games

Ronald Parr
 CSCI 2951-F
 Brown University

With thanks to Vince Conitzer for some content

What is Game Theory? I

- Very general mathematical framework to study situations where multiple agents interact, including:
- Popular notions of games
- Everything up to and including multistep, multiagent, simultaneous move, partial information games
- Example RP \& collaborators research: Aiming sensors to catch hiding enemies, assigning guards to posts
- Can even include negotiating, posturing and uncertainty about the players and game itself
- von Neumann and Morgenstern (1944) was a major launching point for modern game theory
- Nash: Existence of equilibria in general sum games

What is game theory? II

- Study of settings where multiple agents each have
- Different preferences (utility functions),
- Different actions
- Each agent's utility (potentially) depends on all agents' actions
- What is optimal for one agent depends on what other agents do
- Can be circular
- Game theory studies how agents can rationally form beliefs over what other agents will do, and (hence) how agents should act
- Useful for acting and (potentially) predicting behavior of others
- Not necessarily descriptive

Real World Game Theory Examples

- War
- Auctions
- Animal behavior
- Networking protocols
- Peer to peer networking behavior
- Road traffic
- Related: Mechanism design:
- Suppose we want people to do X?
- How to engineer situation so they will act that way?

Rock, Paper, Scissors Zero Sum Formulation

- In zero sum games, one player's loss is other's gain
- Payoff matrix:

- Minimax solution maximizes worst case outcome

Rock, Paper, Scissors Equations

- R,P,S = probability that we play rock, paper, or scissors respectively ($\mathrm{R}+\mathrm{P}+\mathrm{S}=1$)
- U is our expected utility
- Bounding our utility:
- Opponent rock case: $\mathrm{U} \leq \mathrm{P}-\mathrm{S}$
- Opponent paper case: $\mathrm{U} \leq \mathrm{S}-\mathrm{R}$
- Opponent scissors case: $\mathrm{U} \leq \mathrm{R}-\mathrm{P}$
- Want to maximize U subject to constraints
- Solution: ($1 / 3,1 / 3,1 / 3$)

Rock, Paper, Scissors LP Formulation

- Our variables are: $x=[U, R, P, S]^{\top}$
- We want:
- Maximize U
$-U \leq P-S$
$-U \leq S-R$
$-U \leq R-P$
$-R+P+S=1$
- How do we make this fit:

$$
\begin{aligned}
\operatorname{maximize} & : c^{\top} x \\
\text { subject to: } & \mathbf{A} x \leq b \\
: & x \geq 0
\end{aligned}
$$

Rock Paper Scissors LP Formulation

$$
x=[U, R, P, S]^{\top}
$$

$A=\left(\begin{array}{cccc}1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1\end{array}\right)$

maximize: $c^{T} x$ subject to: $\mathbf{A x} \leq b$
$: x \geq 0$

$b=[0,0,0,1,-1]^{\top}$
$c=[1,0,0,0]^{\top}$

First row of $A x: U-P+S \leq 0$

Rock, Paper, Scissors Solution

- If we feed this LP to an LP solver we get:
- $\mathrm{R}=\mathrm{P}=\mathrm{S}=1 / 3$
$-\mathrm{U}=0$
- Solution for the other player is:
- The same...
- By symmetry
- This is the minimax solution
- This is also an equilibrium
- No player has an incentive to deviate
- (Defined more precisely later)

Tangent: Why is RPS Fun?

- OK, it's not...
- Why might RPS be fun?
- Try to exploit non-randomness in your friends
- Try to be random yourself

Generalizing

- We can solve any two player, simultaneous move, zero sum game with an LP
- One variable for each of player 1's actions
- Variables must be a probability distribution (constraints)
- One constraint for each of player 2's actions (Player 1's utility must be less than or equal to outcome for each player 2 action.)
- Maximize player 1's utility
- Can solve resulting LP using an LP solver in time that is (weakly) polynomial in total number of actions

Minimax Solutions in General

- What do we know about minimax solutions?
- Can a suboptimal opponent trick minimax?
- When should we abandon minimax?
- Minimax solutions for 2-player zero-sum games can always be found by solving a linear program
- The minimax solutions will also be equilibria (more on that later)
- For general sum games:
- Minimax does not apply
- Solutions (equilibria) may not be unique
- Search for equilibria using more computationally intensive methods

General Sum Games

"Chicken"

- Two players drive cars towards each other
- If one player goes straight, that player wins
- If both go straight, they both die

Reasoning About General Sum Games

- Can't approach as an optimization problem
- Minimax doesn't apply
- Other players' objectives might be aligned w/ yours
- Might be partially aligned
- Need a solution concept where each players is "satisfied" WRT his/her objectives

Dominance

- Player i's strategy s_{i} strictly dominates $\mathrm{s}_{\mathrm{i}}{ }^{\prime}$ if
- for any $s_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$
- s_{i} weakly dominates s_{i} ' if $-i=$ "the player(s) other
- for any $s_{-i}, u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$; and
- for some $s_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$

Prisoner's Dilemma

- Pair of criminals has been caught
- District attorney has evidence to convict them of a minor crime (1 year in jail); knows that they committed a major crime together (3 years in jail) but cannot prove it
- Offers them a deal:
- If both confess to the major crime, they each get a 1 year reduction
- If only one confesses, that one gets 3 years reduction

" $2 / 3$ of the average" game

- Everyone writes down a number between 0 and 100
- Person closest to $2 / 3$ of the average wins
- Example:
- A says 50
- B says 10
- C says 90
- Average(50, 10, 90) $=50$
$-2 / 3$ of average $=33.33$
- A is closest (|50-33.33|=16.67), so A wins
"2/3 of the average" game revisited

Iterated dominance

- Iterated dominance: remove (strictly/weakly) dominated strategy, repeat
- Iterated strict dominance on Seinfeld's RPS:

Mixed strategies

- Mixed strategy for player $\mathbf{i}=$ probability distribution over player i's (pure) strategies
- E.g. 1/3 1/3 $\square, 1 / 3$
- Example of dominance by a mixed strategy:

Best Responses

- Let A be a matrix of player 1's payoffs
- Let σ_{2} be a mixed strategy for player 2
- $A \sigma_{2}=$ vector of expected payoffs for each strategy for player 1
- Highest entry indicates best response for player 1
- Any mixture of ties is also BR, but can only tie a pure BR
- Generalizes to >2 players

Nash equilibrium [Nash 50]

- A vector of strategies (one for each player) = a strategy profile
- Strategy profile $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ is a Nash equilibrium if each σ_{i} is a best response to σ_{-i}
- That is, for any i, for any $\sigma_{i}^{\prime}, u_{i}\left(\sigma_{i}, \sigma_{i j}\right) \geq u_{i}\left(\sigma_{i}^{\prime}, \sigma_{i}\right)$
- Does not say anything about multiple agents changing their strategies at the same time
- In any (finite) game, at least one Nash equilibrium (possibly using mixed strategies) exists [Nash 50]
- (Note - singular: equilibrium, plural: equilibria)

Equilibrium Strategies VS.
 Best Responses

- equilibrium strategy -> best response?
- best response -> equilibrium strategy?
- Consider Rock-Paper-Scissors
- Is $(1 / 3,1 / 3,1 / 3)$ a best response to $(1 / 3,1 / 3,1 / 3)$?
- Is $(1,0,0)$ a best response to $(1 / 3,1 / 3,1 / 3)$?
- Is $(1,0,0)$ a strategy for any equilibrium?

- (D, S) and (S, D) are Nash equilibria
- They are pure-strategy Nash equilibria: nobody randomizes
- They are also strict Nash equilibria: changing your strategy will make you strictly worse off
- No other pure-strategy Nash equilibria

- (D, S) and (S, D) are Nash equilibria
- Which do you play?
- What if player 1 assumes (S, D), player 2 assumes (D, S)
- \quad Play is $(S, S)=(-5,-5)!!!$
- This is the equilibrium selection problem

Nash equilibria of "chicken"...

- Is there a Nash equilibrium that uses mixed strategies -- say, where player 1 uses a mixed strategy?
- If a mixed strategy is a best response, then all of the pure strategies that it randomizes over must also be best responses
- So we need to make player 1 indifferent between D and S
- Player 1's utility for playing $D=-p^{c}$ s
- Player 1's utility for playing $S=p^{c}{ }_{D}-5 p^{c}{ }_{S}=1-6 p^{c}{ }_{S}$
- So we need $-p^{c}{ }_{S}=1-6 p^{c}{ }_{S}$ which means $p^{c}{ }_{S}=1 / 5$
- Then, player 2 needs to be indifferent as well
- Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))
- People may die! Expected utility $-1 / 5$ for each player

Does This Technique Generalize?

- Sort of...
- For two players:
- If you guess which actions have non-zero probability in equilibrium
- Can solve for equilibrium probabilities
- (exponential time in worst case)
- For >2 players, things get more complicated
- Searching through all subsets of actions is exponential, but
- Iterating in order of increasing support works surprisingly well
- Why? Empirically, many games with large action spaces often have equilibria using only a small(ish) number of actions

Strategy Generation (Double Oracle)

- Assumptions:
- You can afford to solve small games (small \# of actions)
- You can efficiently compute a best response with a best response oracle (not a crazy assumption)
- Double Oracle Algorithm:
- Initialize each player with one available action each
- Repeat
- Compute equilibrium
- Compute best responses
- If best responses use actions already available, return equilibrium
- Else, add best responses to set of available actions
- Guaranteed to converge, often w/o using all possible actions
- For zero-sum games, Double Oracle can be viewed as an instance of constraint generation for linear programs

NE as a Non-linear Program

$U^{i}(\boldsymbol{\pi})=\sum_{\mathbf{a} \in \mathcal{A}} R^{i}(\mathbf{a}) \prod_{j \in \mathcal{I}} \pi^{j}\left(a^{j}\right) \Longleftarrow \quad \begin{aligned} & \text { Utility of joint policy } \pi \\ & \text { from perspective of player } \mathrm{i}\end{aligned}$
$\underset{\pi, U}{\operatorname{minimize}} \sum_{i}\left(U^{i}-U^{i}(\boldsymbol{\pi})\right)$
subject to $U^{i} \geq U^{i}\left(a^{i}, \pi^{-i}\right)$ for all i, a^{i}

$$
\begin{aligned}
& \sum_{a^{i}} \pi^{i}\left(a^{i}\right)=1 \text { for all } i \\
& \pi^{i}\left(a^{i}\right) \geq 0 \text { for all } i, a^{i}
\end{aligned}
$$

Other formulations exist, but none are polynomial time

Computational Issues

- Zero-sum games - solved efficiently as LP
- Equilibria of general sum games are guaranteed to exist (Nash), but may require exponential time (in \# of actions) to find a single equilibrium
- Determining whether an equilibrium exists that has certain properties (e.g., utility > x for player i?) is NP-hard
- Producing any equilibrium is PPAD complete (PPAD is like NP, but problems are not decision problems.)
- Despite bad worst-case, many games solved with existing algorithms
- Many tractable special cases exist

Other Approaches (not guaranteed to converge)

- Iterated best response
- Iterate over players in some (random) order
- Adopt best response strategy given other players' strategies
- Converges in some cases
- Limiting behavior (avg. of best responses) may approximate NE
- Fictitious play
- Estimate opponent stochastic strategies averaging over previous plays
- Play best response to opponent strategies
- Repeat for all players
- Converges in some cases
- These methods can get into cycles

Correlated Equilibrium

- So far, assumed agents choose actions independently, i.e., probability of joint action is product of probabilities of individual actions
- Correlated equilibrium (CE) allows joint action distribution to be an arbitrary distribution
- Pros:
- More natural model in some problems
- Compute in poly time in number of parameters of the distribution
- Cons:
- Correlation mechanism not natural for some domains
- Size of joint distribution over action space of all agents can be large
- NE for n agents with k actions is $n x k$ numbers
- CE for n agents with k actions is k^{n} numbers
(though same can be said about payoff matrix itself)

Computing CE

> a is a vector, so this is a sum over all possible joint actions $\begin{aligned} \operatorname{maximize}_{\pi} & \sum_{i} \sum_{\mathbf{a}} R^{i}(\mathbf{a}) \pi(\mathbf{a})\end{aligned}$ subject to $\sum_{\mathbf{a}^{-i}} R^{i}\left(a^{i}, \mathbf{a}^{-i}\right) \pi\left(a^{i}, \mathbf{a}^{-i}\right)$ $\begin{aligned} & \geq \sum_{\mathbf{a}^{-i}} R^{i}\left(a^{i}, \mathbf{a}^{-i}\right) \pi\left(a^{i}, \mathbf{a}^{-i}\right) \\ \sum_{\mathbf{a}} \pi(\mathbf{a}) & =1 \\ \pi(\mathbf{a}) & \geq 0 \text { for all } \mathbf{a}\end{aligned}$

- Good news: This is a linear program
- Bad news: Can have a large number of variables
- NE $\subseteq C E$

Game Theory Issues

- How descriptive is game theory?
- Some evidence that people play equilibria
- Also, some evidence that people act irrationally
- If it is computationally intractable to solve for equilibria of large games, seems unlikely that people are doing this
- How reasonable is (basic) game theory?
- Are payoffs known?
- Are situations really simultaneous-move with no information about how the other player will act?
- Are situations really single-shot? (repeated games?)
- How is equilibrium selection handled in practice?

Extensions

- Partial information
- Uncertainty about the game parameters, e.g., payoffs (Bayesian games)
- Repeated games: Simple learning algorithms can converge to equilibria in some repeated games
- Multistep games with distributions over next states (game theory + MDPs = stochastic games)
- Multistep + partial information (Partially observable stochastic games)
- Game theory is so general, that it can encompass essentially all aspects of strategic, multiagent behavior, e.g., negotiating, threats, bluffs, coalitions, bribes, etc.

Conclusions

- Game theory tells us how to act in strategic situations different agents with different goals acting with awareness of other agents
- Zero sum case is relatively easy
- General sum case is computationally hard - though some nice results exist for special cases
- Extensions address some shortcomings/assumptions of basic model but at additional computational cost

