

What is game theory? II

- Study of settings where multiple agents each have
 - Different preferences (utility functions),
 - Different actions
- Each agent's utility (potentially) depends on all agents' actions
 - What is optimal for one agent depends on what other agents do
 - Can be circular
- Game theory studies how agents can rationally form beliefs over what other agents will do, and (hence) how agents should act
- Useful for acting and (potentially) predicting behavior of others
- Not necessarily descriptive

Real World Game Theory Examples

- War
- Auctions
- · Animal behavior
- Networking protocols
- · Peer to peer networking behavior
- Road traffic
- Related: Mechanism design:
 - Suppose we want people to do X?
 - How to engineer situation so they will act that way?

Rock, Paper, Scissors Solution

- If we feed this LP to an LP solver we get:
 - R=P=S=1/3
 - U=0
- Solution for the other player is:
 - The same...
 - By symmetry
- This is the minimax solution
- This is also an equilibrium
 - No player has an incentive to deviate
 - (Defined more precisely later)

Generalizing

- We can solve any two player, simultaneous move, zero sum game with an LP
 - One variable for each of player 1's actions
 - Variables must be a probability distribution (constraints)
 - One constraint for each of player 2's actions (Player 1's utility must be less than or equal to outcome for each player 2 action.)
 - Maximize player 1's utility
- Can solve resulting LP using an LP solver in time that is (weakly) polynomial in total number of actions

Reasoning About General Sum Games

- Can't approach as an optimization problem
- Minimax doesn't apply
 - Other players' objectives might be aligned w/ yours
 - Might be partially aligned
- Need a solution concept where each players is "satisfied" WRT his/her objectives

Nash equilibrium [Nash 50]

- A vector of strategies (one for each player) = a strategy profile
- Strategy profile ($\sigma_1, \sigma_2, ..., \sigma_n$) is a Nash equilibrium if each σ_i is a best response to σ_{-i}
 - − That is, for any i, for any σ_i' , $u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma_i', \sigma_{-i})$
- Does not say anything about multiple agents changing their strategies at the same time
- In any (finite) game, at least one Nash equilibrium (possibly using mixed strategies) exists [Nash 50]
- (Note singular: equilibrium, plural: equilibria)

Game Theory Issues

- How descriptive is game theory?
 - Some evidence that people play equilibria
 - Also, some evidence that people act irrationally
 - If it is computationally intractable to solve for equilibria of large games, seems unlikely that people are doing this
- How reasonable is (basic) game theory?
 - Are payoffs known?
 - Are situations really simultaneous-move with no information about how the other player will act?
 - Are situations really single-shot? (repeated games?)
 - How is equilibrium selection handled in practice?

Conclusions

- Game theory tells us how to act in strategic situations different agents with different goals acting with awareness of other agents
- Zero sum case is relatively easy
- General sum case is computationally hard though some nice results exist for special cases
- Extensions address some shortcomings/assumptions of basic model but at additional computational cost