Reproducibility

Ron Parr CSCI 2951-F Brown University

Recall TRP vs PPO

- PPO originally introduced as a simpler alternative to TRPO
- Was also shown to perform better in many cases
- Engstrom et al. (IMPLEMENTATION MATTERS IN DEEP POLICY GRADIENTS: A CASE STUDY ON PPO AND TRPO) investigate this:
 - Find 9 optimizations in PPO not (clearly) documented as main improvements
 - "We find that much of the PPO's observed improvement in performance comes from seemingly small modifications to the core algorithm that either can be found only in a paper's original implementa- tion, or are described as auxiliary details and are *not* present in the corresponding TRPO baselines."
 - "Ultimately, we discover that the *PPO code-optimizations are more important in terms of final reward achieved* than the choice of general training algorithm (TRPO vs. PPO). "

Performance comparison

Step	WALKER2D-V2	MUJOCO TASK HOPPER-V2	Humanoid-v2
PPO	3292 [3157, 3426]	2513 [2391, 2632]	806 [785, 827]
PPO-M	2735 [2602, 2866]	2142 [2008, 2279]	674 [656, 695]
TRPO	2791 [2709, 2873]	2043 [1948, 2136]	586 [576, 596]
TRPO+	3050 [2976, 3126]	2466 [2381, 2549]	1030 [979, 1083]

[Engstrom et al., ICLR 19]

• PPO = full PPO algorithm

• PPO-M = PPO w/o 9 (seemingly secondary) optimizations

• TRPO = original TRPO algorithm

• TRPO+ = TRPO with PPO optimizations

• [,] = 95% confidence interval

Why reproducibility matters

- Scientific method helps us distinguish facts vs. theory/superstition/intuition etc.
- Scientific method is a process
- Failures:
 - Sow confusion
 - Waste time
 - Undermine public confidence in science
- But keep in mind:
 - We're still human
 - We will make mistakes
 - That's actually part of the process

How mistakes happen

- Honest mistakes
 - Clerical errors
 - Asking the wrong question/not checking the right thing
 - Unconscious biases (e.g., confirmation bias)
 - Statistical errors

Misconduct

- Falsification of data
- Cherry picking
- Reviewer misconduct

Is cherry picking ever OK?

"If you teach a dog to talk, the reviewers won't complain that n=1."

Are things getting worse?

- Yes!
- Why?
- Reason 1 Publication pressure
 - Rapidly growing community and high expectations for publication counts
 - Low reviewing quality, temptation
- Reason 2 Deep learning:
 - Involves many random elements
 - Involves experiments that are expensive to repeat
 - Lack of awareness

Is it worse for RL

- Yes!
- Why?
 - Experiments are particularly expensive (even by deep learning standards)
 - Variance is very high!

Example: Non-determinism

- Often expect computers to perform deterministically
- Deterministic: Same inputs = Same outputs
- Is this really the way computers perform?
- Sources of randomness:
 - Initial parameters (neural network and/or policy)
 - Environment
 - Stochastic policies
 - Minibatch resampling
 - Parallel computation

Removing most non-determinism

- Explicit control of random number seed can eliminate major sources of non-determinism
- Caveats:
 - Unless all operations are performed in the same order, this doesn't help
 - Primarily helps in making a single implementation deterministic, but hard to ensure all calls to random number generator happen in the identical order across a reimplementation
 - Need to make sure that random number generator is the same

Dealing with non-determinism from parallel computation

- Need to introduce synchronization across threads/pipelines
- Some libraries of have switches for this (trades speed for reproducibility)
- Harder to do for custom cluster-based implementations

Where we stand

- Some concern in the field that some commonly accepted results may not be reliable. See, e.g., "MEASURING THE RELIABILITY OF REINFORCEMENT LEARNING ALGORITHMS" ICLR 2020
- Growing sentiment that we need to change how we assess our progress
- Reviewing, publication processes are responding to this

How to promote reproducibility

- Avoid non-determinism
- Average over many random number seeds
- Show error bars
- Report all experimental details
- Do ablation studies on all changes
- Publish code
- Keep these in mind when preparing your presentations and when working on your projects