
CSCI 2951G: Assignment 1

Paul Valiant

September 13, 2012

Due: Wednesday, September 19.

Turn in: Matlab code needed for each problem; any outputs (numerical or plots) needed to justify the
answer; a (brief) explanation of what you did for each problem. Also, answer the following questions, at
whatever length you feel is appropriate: 1) What is the most confusing thing from the course so far? 2)
What is the most intriguing thing about the course so far? 3) Do you have any additional thoughts about
protein folding that you want to contribute to the discussion?

Matlab guidance: Some of these problems require slightly more complicated data processing than we have
seen so far in class. Remember that you can always save several matlab commands to a .m file and run/debug
them interactively. Type edit to open the Matlab editor.

Matlab has some of the best built-in help that I have seen. Type help to get a list of topics, and towards
the top will be some of the most useful things to get further help on: help ops, help lang, help elmat,
help elfun.

Also, google for help, or ask other people in the class, though each of you must write up the assignment
separately, and must say who you collaborated with.

1 Problems

For each of these problems, construct a protein of your choice, which has at least 10 amino acids. You
can choose whether to use implicit water or not (the simulation runs up to 7 times faster without implicit
water). See the other handout from today for all the features of the proteins software; Section 4 outlines
the graphical interface.

1.1 Problem 1:

Start the simulation, as out=proteins(d2.p,d2.edges,d2.types,p2); and after unpausing it with the
spacebar, lower the friction to 0 (the bottom slider), leave the temperature at 300 kelvins, run it for a little
bit, and then right click to output 1000 velocities. Pick an atom and compute its average kinetic energy
from the simulation. (Find its mass, from p2.weights, and remember to include both the x, y, and z
velocities. You can compute the mean in Matlab with the mean command, or just use sum instead and
divide by 1000.) Divide this kinetic energy by the simstep parameter, which is .0004 by default unless
you have changed it. Recall from class that the average kinetic energy at temperature T is 1

2TkB per de-
gree of freedom, where kB is Boltzmann’s constant. Thus since an atom can move in 3 dimensions, the
energy you just computed should equal roughly 3

2TkB , where T = 300; from this, estimate what Boltz-
mann’s constant is, in our units. (To see what Boltzmann’s constant actually is, go to google and enter
boltzmann constant * avogadro’s number /1 kcal. If your estimate was slightly too high, then maybe
the simulation needs to be run longer for it to equilibrate.
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1.2 Problem 2:

Do the same thing as for Problem 1, except find two atoms with the same mass, m, and compute the energy
of a fictitious particle whose velocity is the difference of their velocities, and whose mass is m√

2
. This should

be the same as the energy calculated above. Draw a histogram of the x coordinate of this velocity – by
default, Matlab’s hist function draws histograms with 10 bins; you can change this number by adding a
second argument to the hist function: hist(data,100) draws a histogram of data with 100 bins. (If your
data is along the third dimension, remember to squeeze your data before sending it to histogram or plot
commands.)

1.3 Problem 3:

Do the same thing as for Problem 1, except for the center of mass of the first 20 atoms (or any 20 atoms of
your choice). How can you see which the first 20 atoms are? Run p2.big=1:20 and then these 20 atoms will
be rendered big. More explicitly: if you treat the center of mass of the first 20 atoms as a single particle, of
mass the total mass of the 20 particles, sum(p2.weights(1:20)), see how its energy behaves, and whether
you can estimate Boltzmann’s constant this way too. (Computing the weighted average of the velocities of
these 20 particles might involve a for loop, or you can do trickier Matlab.) Note that it might take 20,000 or
more steps before this center-of-mass energy settles down close to its expected value (why is this?). You can
store data for the entire 20,000 length run by setting p2.output=20000, instead of right clicking to output
just 1,000 velocities, though be sure not to include the early velocities in your average, as they may be from
before the system has equilibrated.

1.4 Problem 4:

Get output from at least 10,000 steps, where, after a few hundred steps the third slider (friction) is moved
to 0, and after about a thousand steps when the temperature (as measured in the top right) looks somewhat
close to 300, the top slider (how tightly to control temperature) is also moved to 0. We are now going to
see to what degree energy is conserved. The GGB field of the output has ten columns, of which the first
column records kinetic energy, and the next 7 columns record different components of potential energy.
The question is, whether energy is being conserved well or not. You can plot the sum of each row as
plot(sum(out.GGB,2)). The plot will probably look nicer if you ignore the first several rows of data; for
example, to plot only the portion starting with the 1000th row, use plot(sum(out.GGB(1000:end,:),2)),
where the end keyword, when used as the index into a matrix, denotes the last possible index (you can also
use end-1 and other variants, for fancier things). If you zoom in, how much does this measure of energy
seem to oscillate?

The reason why this plot is so messy is that kinetic energy is a function of velocity, and potential energy
is a function of position, and the leapfrog method effectively evaluates position and velocity at staggered
timesteps. In order to get a better sense of energy, we should approximate potential and kinetic energy at
the same time. To do this, we can take kinetic energy and interpolate it to estimate its values at timesteps
halfway between the timesteps for which we know its values. Try this. There are two possibilities: kinetic
energy needs to be shifted half a timestep backwards for it to match up with potential energy, or half a
timestep forwards. Try both and add them to the potential energy; the right choice will be the one which
leads to better energy conservation.

You can also try different values of the simstep parameter. For values above .002, there will be very bad
energy conservation; for smaller values energy will look increasingly flat.
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