
CSCI 2951G: Assignment 2

Paul Valiant

September 25, 2012

Due: Monday, October 1.

Turn in: A file myforces.m that computes the forces on each atom of a molecule, given the positions of
the atoms and physics parameters, along with a brief analysis of its performance: pick a sequence of 20
amino acids and describe, roughly, the computational cost of your code, counting (scalar) additions and
multiplications as taking time 1, division, square root, trigonometric functions, exp and log as taking time
100. If your code needs additional explanation to run, please include it, and also explain if you made any
unusual choices or discovered anything interesting in the process. As usual, be sure to credit others (from
the internet or from class) for ideas you used.

The Problem:

Write a Matlab function myforces.m that computes the forces yielded by our energy function:
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Two inputs will be provided to your function: 1) the positions of all the atoms, as a matrix pos with 3
columns and one row per atom, and 2) a structure specifying physics phys, as outlined below (similar to the
structure p2 we have been using, but different in many details).

The fields of the structure phys are as follows:

• bonds: A four column matrix with each row specifying a term from the first term of Equation 1: the
first two entries specify a pair of bonded atoms; the third entry specifies the spring constant Kr; the
fourth entry specifies the equilibrium length req. (This is exactly as for p2.)

• angles: A five column matrix with each row specifying a term from the second term of Equation 1:
the first three entries specify three atoms bonded in sequence which are to have their angle constrained
by a spring; the fourth entry specifies the spring constant Kθ in units relative to radians; the fifth
entry specifies the equilibrium angle θeq in degrees. (This differs from the corresponding entry in p2

as the atoms are specified by a pair instead of a triple there.)

• dihedrals: A seven column matrix with each row specifying a term from the third term of Equation
1: the first four entries specify four atoms, not necessarily bonded in order, whose dihedral angle is
denoted φ in Equation 1; the fifth entry specifies the multiplier Vn

2 ; the sixth entry specifies the offset
γ in degrees; the seventh entry specifies the order n (which will always be an integer).

• vdw: A three column matrix with one row per atom, specifying the atom’s Lennard-Jones radius
ρi, its Lennard-Jones coefficient ci, and its charge qi. As discussed in Lecture 5, to compute the
interaction between a pair of atoms i and j, the radii are added and the coefficients ci, cj are combined

via their geometric mean
√
cicj to yield a Lennard-Jones term of

√
cicj

[(
ρi+ρj
Rij

)12
− 2

(
ρi+ρj
Rij

)6]
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where Rij is the distance between atoms i and j. Thus in the fourth term of Equation 1, we have
Aij =

√
cicj(ρi + ρj)

12 and Bij = 2
√
cicj(ρi + ρj)

6. The value of ε in the denominator of the last term
should be 1/332.0636 (as in, 332.0636 should be in the numerator).

Crucially, these “non-bonded” terms must be computed for every pair of atoms except those that are
closer than three bond lengths apart (graph theoretically), and for atoms that are exactly 3 bond
lengths apart the Lennard-Jones force must be divided by 2 and the electrostatic force must be divided
by 1.2

There should be no unit conversion necessary for this assignment (except between degrees and radians
as appropriate). The nontrivial part will be taking the gradient of Equation 1 to compute the forces. For
some of the terms, you might be able to derive the correct answer with intuition, or by remembering things
from your last physics course. The dihedral angle term is messy enough that I will derive the force for you
(below). The term for (regular) angles you will have to derive yourself, but be careful not to be misled by
your intuition: if an angle is not at equilibrium, this will induce a force on all three of its atoms, not just the
two endpoints as you might expect. (As a further sanity check, remember that the total force on the system
should always be 0.)

Dihedral angles

Given four points in three dimensional space, p1, p2, p3, p4, to find their dihedral angle φ, construct the three
vectors v1 = p2−p1, v2 = p3−p2, v3 = p4−p3, and then, provided these vectors are all nonzero and v2 is not
collinear with either of the others, φ is the angle counterclockwise from −v1 to v3 if the vectors are rotated
so that v2 points straight at you. Wikipedia lists the formula as atan2(|v2|v1 · (v2× v3) , (v1× v2) · (v2× v3))
where the function atan2(y,x) computes the angle, counterclockwise from the x-axis to the point (y, x) –
look this function up in Matlab or Wikipedia.

We also need to know the gradient of the dihedral angle expression. Since the dihedral angle is a
function of v1, v2, v3, the gradient will have 3 parts: the gradient of the dihedral angle with respect to v1
equals G1 = (v1 × v2) |v2|

|v1×v2|2 – it makes sense that to change v1 so as to most increase the dihedral angle

you should change it in a direction orthogonal to itself, and orthogonal to the axis v2, and it also makes
sense that the gradient is independent of v3, independent of the length of v2 (since v2 appears twice in the
numerator and denominator), and depends inversely on the length of v1. Correspondingly, the gradient with

respect to v3 equals G3 = (v2 × v3) |v2|
|v2×v3|2 . The expression for the gradient with respect to v2 is more

complicated: G2 = −(v1 × v2) v1·v2
|v2|·|v1×v2|2 − (v2 × v3) v2·v3

|v2|·|v2×v3|2 . Since we actually want the gradients with

respect to p1, p2, p3, and p4, we can use the chain rule to deduce that these four gradients are, respectively,
−G1, G1 − G2, G2 − G3, and G3. Of course, if the potential energy depends on the dihedral angle as f(φ)
then the chain rule yields that the force on, say, atom 2 is −f ′(φ) (G1 −G2).

Matlab snippets

If, for fun, you want to run a physics simulation from your force calculations, you could use the following
function, which takes as arguments the same pos and phys arguments as above, but also new arguments
vel which stores velocities in Angstroms per femtosecond, masses for the masses of each atom in atomic
mass units, and timestep for the timestep in femtoseconds, and outputs posnew and velnew via the leapfrog
method:

function [posnew,velnew]=myleapfrog(pos,phys,vel,masses,timestep)

forces=myforces(pos,phys);

velnew=vel+forces./repmat(masses(:),1,3)*timestep*.0004184;

posnew=pos+velnew*timestep;

While I would suggest constructing your own test cases as you debug your code, if you want to run
your code on real protein data I have included a function homeworkapplyphys.m which behaves like the
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original applyphys function except it outputs a structure in the special form given in this homework, so you
can (hopefully!) run your myforces function on a position matrix and this physics structure. You could
then compare your output directly with the forces output by proteins. When setting up for a comparison,
make sure to call applyphys without implicit water, and with its last line commented out (as I mentioned
previously, I accidentally included an experimental feature in the proteins code, which should be removed by
commenting out the call to the function dihedralbump – comments in Matlab start with the % character.)
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