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Vector Calculus Review

We will start with a review of some calculus. We start with one dimension to give intuition for higher
dimensions.

Given a function from one variable to one variable, for example, f(x) = x2, we can approximate it via
its derivatives. The most trivial approximation is without derivatives: we can approximate f(x) near c by
just the constant f(c). But if f is rapidly changing (has large derivative) then this estimate will become
rapidly bad. Approximating f(x) = x2 near c = 1 yields the approximation x2 ≈ 1 near 1. How bad is
this approximation? If we evaluate the function at 1.1 then 1.12 = 1.21, and our trivial approximation
is off by 0.21. Why does this number make sense? Well, our constant approximation is ignoring the first
derivative – the derivative of x2 is 2x, which is 2 when evaluated at our center, c = 1. Thus if we move
0.1 away from our center and ignore a derivative of 2, we would expect our estimate to be off by roughly
0.2. And indeed, 0.21 is pretty close to 0.2. This suggests a more sophisticated approximation: the constant
approximation at 1, plus our difference from 1 multiplied by the derivative at 1. This is the first-order
approximation around c: f(x) ≈ f(c) + f ′(c) · (x− c). In our case, for f(x) = x2, the approximation around
1 is x2 ≈ 1 + 2 · (x− 1) = 2x− 1. How accurate is this approximation? Well, for x = 1.1 the approximation
yields 1.2 as compared to x2 = 1.21; namely, we are off by 0.01, which is much better than before. Where
does this 0.01 come from? The second derivative.

Analogously with what we just saw, where ignoring the 1st derivative gives an error proportional to the
first derivative and proportional to the distance from the center c, ignoring the second derivative will yield
error that is proportional to the second derivative and proportional to the distance from the center squared.
The second-order approximation near c, analogously, will be f(x) ≈ f(c)+f ′(c)·(x−c)+ 1

2f
′′(c)·(x−c)2. For

the case of f(x) = x2 the second derivative is 2, and thus the approximation around 1 is 1+2(x−1)+(x−1)2

which is exactly x2. This makes sense since any errors in this approximation would come from the 3rd
derivative, which is 0 everywhere for f(x) = x2. (If you were wondering why we scale f ′′ by a half, this
equality justifies why it cannot be any other way; in general, the nth derivative is scaled by n!, because the
nth derivative corresponds to a term involving (x− c)n, and its nth derivative is n!, which we need to cancel
out.) Some of the approximations of this form which are particularly useful are that xa near 1 is roughly
1 + a(x− 1), ex near 0 is roughly 1 + x (and log x near 1 is roughly x− 1), sin(x) near 0 is roughly x, and
cos(x) near 0 is roughly 1− x2/2. If any of the above is unclear, draw diagrams with Matlab.

Two dimensions:
We now move to functions from two inputs to one output, for example f(x, y) = x2 + y2. We can plot

this in Matlab as follows (see Figure 1):
[x,y]=meshgrid(-2:.1:2,-2:.1:2);

figure(1);clf;surf(x,y,x.^2+y.^2,’EdgeColor’,’none’,’FaceColor’,’interp’);axis([-2 2 -2 2 0 12])

The meshgrid function creates two dimensional matrices x and y which specify the x and y coordinates
of a grid of points with x and y coordinates specified by the two arguments respectively. (Remember that
-2:.1:2 constructs the vector that starts from −2 and goes in increments of 0.1 until it hits 2.) Play with
this command on your own if you are confused.

The surf command plots a surface, with x, y, z coordinates specified by its first three arguments. The dot
in x.^2 tells Matlab to square each element of x; ordinarily, Matlab would interpret x as a matrix and take
its matrix square, which is not what we want. The remaining arguments in surf are parameter-value pairs,
specifying in this case that it should not draw edges on the graph, and that it should draw the faces with

1



Figure 1: The function f(x, y) = x2 + y2

interpolated colors. The axis command specifies the axis limits, which Matlab usually sets automatically;
here setting a high limit on the z axis gives the graph a better perspective.

Returning to our calculus thread: suppose we have the point (x, y) = (1, 2) and want to approximate
values of f(x, y) = x2 + y2 near it. The constant approximation near (1, 2) is obvious: f(x, y) ≈ 12 + 22 = 5.
How inaccurate do we expect this to be as we move away from (1, 2)? Well, the x derivative of x2 + y2

is 2x, which is 2 for x = 1 which means that the function is changing at a rate of 2 in the x direction;
correspondingly, it is changing at a rate of 4 in the y direction, since the y derivative is 2y, evaluated at
y = 2. Thus at the point (1.1, 2.1) we might expect our estimate to be off by 0.1 · 2 + 0.1 · 4 = 0.6 since
our approximation ignores both of these rates of change. Viewed differently, a better approximation for
1.12 + 2.12 would be to add 0.6 to our constant estimate, yielding 5.6. The actual value, of course, is
5.62. As you can guess, the general expression for the first-order approximation of f(x, y) near (c, d) is
f(c, d) + f (c)(c, d) · (x− c) + f (d)(c, d) · (y − d). We can express this more compactly using vector notation:
let ∇f(c, d) denote the vector of first derivatives (called the gradient of f , namely [f (c)(c, d) f (d)(c, d)] ).
Then, letting X denote the column vector [x; y], and C denote the column vector [c; d], we may express
the first-order approximation of f(x, y) near (c, d) as ∇f(C) · (X − C) where the “·” now denotes vector-
vector multiplication (the dot product). This expression looks very similar to the expression from the
one-dimensional case, but there is now a lot more going on. (Note, the square brackets notation is Matlab
notation. [a b] or [a, b] is a row vector, but [a; b] is a column vector.) See if you can derive approximations
of two-dimensional functions based on second (or higher) derivatives.

A different way of arriving at the same answer is to imagine x and y as (smooth) functions of time,
as x(t) and y(t), yielding that f is also a function of time: f(x(t), y(t)). We can now ask about the time
derivative of f . This is provided by the chain rule as: f (x)(x, y)x′(t) + f (y)(x, y)y′(t). Thus to approximate
f(a, b) near (c, d), we can imagine a particle that at time 0 is at position (c, d), and moves with velocity
(a− c, b− d) so that at time 1 it is at (a, b), and we can now treat f(x(t), y(t)) as a function of one variable,
t, and approximate it with the one-dimensional methods above, yielding that f(a, b) = f(x(1), y(1)) ≈
f(x(0), y(0)) + 1 · ddtf(x(t), y(t))|t=0 = f(c, d) + f (x)(c, d)(a− c) + f (y)(c, d)(b− d), as above.

It is worth emphasizing that the expression, besides the constant f(c, d) term, is a dot product, between
the vector [f (x)(c, d) f (y)(c, d)] which is the gradient, and the vector [a− c; b− d] which is the displacement
vector from the center, (c, d). This dot product means that, if you want to move “uphill” as fast as possible,
you should head in the direction of the gradient; and if you want to keep the value of f constant then you
should head perpendicular to the gradient; and if you want to head downhill as fast as possible, you should
head in the direction opposite the gradient. If the gradient is the 0 vector, then it is possible we are at the
minimum or maximum of the function; otherwise, we cannot possibly be at the minimum or maximum, as
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moving a tiny bit along the gradient in either direction will raise or lower the function respectively.

Lagrange Multipliers:
A slightly more subtle test for whether we are at a local extreme of the function is referred to as the

method of Lagrange multipliers. This applies when, in addition to having a function f(X) that we, say,
are minimizing, we also have a constraint, for example, conservation of energy, which can be expressed
as h(X) = 0 for some smooth function h. Near some certain point X such that satisfies the constraint
h(X) = 0, we can ask, locally, what the set of points X+∆ for which h(X+∆) = 0 looks like. This can also
be analyzed via the gradient, at least approximately, for small ∆: the linear approximation to h centered
at X is just h(X) +∇h(X) ·∆ = ∇h(X) ·∆. Thus, near X, the set of directions ∆ we can go in and still
conserve h(X + ∆) = 0 is the set of ∆ that is orthogonal to the gradient of h. We can now ask, under what
conditions might X be a local minimum of f , subject to the constraint h(X) = 0? And the answer is that if
there exists a direction ∆ that is orthogonal to ∇h, but not orthogonal to ∇f , then moving a tiny amount
in direction ∆ will (roughly) preserve h(x) = 0, but will linearly change f(x), and hence X must not be a
local minimum. (The image to have in mind is, if you have a fence on a hill, and you are standing at a point
on the fence, trying to figure out if you are at the lowest point on the fence, then one test is the following:
stare perpendicularly through the fence, and if you are not looking either directly downhill or uphill – if you
are looking slantwise, somehow – then it must be that you can move left or right along the fence and get
lower.) Conversely, if every direction ∆ that is orthogonal to ∇h is also orthogonal to ∇f , then f is “flat”
at X (subject to the constraint h(X) = 0) and thus a candidate for a local optimum. If we had a second
contraint g(X) = 0, then the condition would be: for any ∆ that is orthogonal to both ∇h(X) and ∇g(X),
it is orthogonal to ∇f(X). Linear algebra tells us that this can only be the case if ∇f(X) can be expressed
as a linear combination of ∇h(X) and ∇g(x). This is the famous Lagrange multipliers condition: X is a
candidate for a minimum or maximum of f subject to constraints h(X) = 0 and g(X) = 0 provided that
their exist multipliers λh, λg such that λh∇h(X) + λg∇g(X) = ∇f(X).

Symmetry:
The function f(x, y) = x2 + y2 is called spherically symmetric because its value depends only on the

radius, f(X) = |X|2, and hence its gradient is always in the radial direction, while movement in the transverse
direction will preserve the radius and thus have “directional derivative” of 0. If we change coordinates from
(x, y) to rotated coordinates such as (z, w) = (x+y√

2
, x−y√

2
) then the form of the function will not change:

x2 + y2 = f(x, y) = f(z, w) = z2 + w2. In high dimensions, we can recognize a rotation by checking that
it is a linear function, and then writing it out as a matrix: rotations correspons to orthonormal matrices,
matrices where every column has length 1, and the dot product of any pair of different columns is 0.

Functions from many variables to many variables:
Functions from many variables to many variables can be analyzed analogously – instead of a single

function f(x, y), if there is a second function g(x, y) then we can approximate both f and g near a center
(c, d) of our choice, computing each approximation separately, without any more conceptual work. We work
this out in a little more detail.

The pair of functions f and g together form a map from two variables (x, y) to two variables (f, g). As
we considered the derivative of both f and g as a row vector, we may now consider the derivative of this
map as a two by two matrix: (

f (x)(x, y) f (y)(x, y)
g(x)(x, y) g(y)(x, y)

)
Denoting the map as F = [f ; g] we can denote this matrix as ∇F . We can thus express the first-order

approximation of F at X = [x; y] near C = [c; d] as F (X) ≈ F (C) + ∇F · (X − C), exactly as above,
though with the notation now meaning something even more complicated, the “·” now being a matrix-vector
multiplication. This approximation is a linear map from two dimensions to two dimensions, and we can ask,
as a standard linear algebra question, what this map does to area. The answer is that a linear map via the
matrix M scales area via the determinant of M , and hence near (c, d), area is scaled as roughly det∇F , a
quantity which is called the Jacobian. Though we will likely not use multivariate integration in this course,
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Figure 2: The bell curve, f(x) = e−x
2

the change of variables formula for multivariate integration fundamentally uses the Jacobian, for the basic
reason that if you change coordinates so that somehow a patch of area ε in the old coordinates has an area of,
say, 5ε in the new coordinates, then we must divide by 5 after integrating in the new coordinates. Explicitly,∫ ∫

R

h(x, y) dx dy =

∫ ∫
F (R)

h(f, g)

det∇F
df dg

where R denotes the region of integration, and F (R) denotes the result of mapping this region by F .
Finally, as an obvious corollary: a map is area-preserving if its Jacobian is everywhere 1.

The Gaussian Distribution

One of the most fundamental things in the areas of probability and statistics is the Gaussian distribution,
often called the normal distribution, and whose shape is called the bell curve. This distribution is fundamental
because it shows up exactly or approximately in many different places, and because it can be manipulated
in many beautiful ways.

In one variable, the Gaussian distribution is specified by a center, and a width; changing the center just
shifts the distribution; changing the width rescales the distribution in the natural way (if you make the
distribution twice as thin, you also need to scale it by 2 so that its total integral remains 1 – probability
distributions must have integral 1.) Ignoring all the constants and tweaks, the Gaussian distribution is

defined by the function e−x
2

. This is a probability density function, which defines a probability distribution
over the real numbers, defined via calculus: given a probability density function f , to compute the probability

that a sample from f lies in the interval between 1 and 2, we take the integral :
∫ 2

1
f(x) dx. Thus for f to

be a probability distribution over the reals, we need
∫∞
−∞ f(x) dx = 1, meaning that the “total” probability

is 1. If we try this for e−x
2

, we find that its integral is the slightly odd quantity
√
π, meaning that to make

e−x
2

into a distribution, we should divide it by
√
π, to yield 1√

π
e−x

2

, which is now a legitimate probability

density function. In general, the Gaussian distribution is defined as 1
a
√
π
e−( x−b

a )
2

, encompassing all possible

shifts (b) and scalings (a).

Actually, how could we compute
∫∞
−∞ e−x

2

dx? We can of course plot it in Matlab (see Figure 2):
x=-10:.001:10; plot(x,exp(-x.^2),’LineWidth’,3)

and further, we can approximate the integral by just adding up the values of the function, every .001, and
then dividing by 1000, as x=-10:.001:10; sum(exp(-x.^2))/1000, which yields 1.775. How close is this
to
√
π? Well, we can ask Matlab: x=-10:.001:10; sum(exp(-x.^2))/1000-sqrt(pi) yields 1.5543e-015,

which is very small. In fact, when numerically approximating an integral like this, we would not usually ex-
pect to get accuracy down to 10−15 with only 1000 samples per unit. We can repeat the experiment with even
fewer samples, for example, with samples spaced only every half unit: x=-10:.5:10; sum(exp(-x.^2))*.5-sqrt(pi)

and we get 2.2204e-016 – the approximation is at the limit of machine precision, even with very coarsely
spaced samples. This is just a hint at how amazingly well-behaved the Gaussian distribution is.

Back to our original thread, let us see how to rigorously compute this integral. One curious trick is to
add a dimension: instead of the single dimensional Gaussian, we can consider the two-dimensional function
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Figure 3: The two-dimensional Gaussian, f(x, y) = e−(x
2+y2)

f(x, y) = e−x
2 · e−y2 = e−(x

2+y2). We can plot this in Matlab (see Figure 3) with:
[x,y]=meshgrid(-2:.1:2,-2:.1:2);surf(x,y,exp(-(x.^2+y.^2)),’EdgeColor’,’none’,...

’FaceColor’,’interp’,’FaceLighting’,’Phong’);axis([-2 2 -2 2 0 2]);light

(The “...” at the end of a line in Matlab tells Matlab you will continue entering the statement on the
next line. When you type this in, you can omit the “...” and just type the statement all on one line. The
“FaceLighting” parameter gives options for how “light” should interact with the faces of the surface when
Matlab draws them – google “Phong lighting” if you are curious. Matlab’s light actually creates a light,
which will interact with the surface according to the “Phong” method.)

Because f(x, y) can be expressed as the product of a Gaussian of x alone, and a Gaussian of y alone, the
integral of their product (over all of space) is exactly the product of their integrals (over all of space), or just

the square of the integral
∫∞
−∞ e−x

2

dx. Keep this in mind as we evaluate
∫∞
−∞

∫∞
−∞ e−(x

2+y2) dx dy a different

way. Letting r be the radius of a point, r =
√
x2 + y2, we note that e−(x

2+y2) = e−r
2

. For each r, there
is a circle of points (x, y) at radius r, having circumference 2πr, so thus we may alternatively evaluate our

two-dimensional integral as just a one-dimensional integral over radii from 0 to infinity, as
∫∞
0
e−r

2 · 2πr dr
(this change of coordinates could be justified more explicitly, but the basic point is that, for small ε, the
set of points between radius r and radius r + ε has area roughly 2πrε). This integral is surprisingly easy to

compute, since the derivative of e−r
2

is −2r · e−r2 , yielding that this integral equals −πe−r2
∣∣∣∞
0

= π. Thus

the two-dimensional integral of e−(x
2+y2) is π, which implies that the one-dimensional integral of e−x

2

is
√
π,

as we claimed above.

Marginal distributions:
Given a two-dimensional distribution f(x, y), we can ask what the marginal distribution of x is, which

means, if we draw a random point (x, y) from the distribution specified by f , what is the distribution
(probability density function) of x alone? If the distribution f is the standard two-variable Gaussian,
1
π e
−(x2+y2), then the answer is obvious: we designed this distribution so that the distribution of x is just the

standard one-variable Gaussian. However, in general, we find the marginal by integrating over all possible
values of y. (Think of this in analogy with the discrete version: if x and y have just two outcomes each, say
0 and 1, then if I give you the matrix f specifying a probability for each of the four outcomes (x is 0 and y
is 0; x is 0 and y is 1; x is 1 and y is 0; x is 1 and y is 1), then you can compute the marginal probabilities
of x alone by summing up over all possibilities for y – the probability that x is 0 is the probability that x
is 0 and y is 0 plus the probability that x is 0 and y is 1. For the continuous case, we integrate instead of
summing: Prf [x] =

∫∞
−∞ f(x, y) dy. A distribution f(x, y) that can be decomposed as the product of two
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distributions g(x) and h(y) will have g(x) and h(y) as its marginals of x and y respectively.
Instead of just asking about the probability distributions of x and y, we can also ask about, say, the

distribution of x+ y. Before we figure out what this is, we’ll note one particularly interesting way of looking
at this: let x be drawn randomly from a Gaussian distribution; let y be drawn independently from the same
Gaussian distribution; what does the sum of these two independent random variables look like? It is a
folklore fact that many quantities drawn from nature are distributed roughly like Gaussian distributions, for
example, the height of a random human. If the histogram of heights of humans looks like a bell curve, what
does the histogram of the sum of heights of pairs of random humans look like? We could assemble some
messy integrals to tackle this problem, or instead go back to a familiar theme: spherical symmetry. Since
the two-dimensional Gaussian is symmetric, we can rotate it any way we want without changing it. (See
Figure 3 again to see just how symmetrical it is.)

So the distribution of x + y is the same as, say, x + y rotated so that it lies on the x-axis. If we rotate
x+ y to lie on the x axis, what will it be? Well expressing x+ y as the vector (1, 1), it has length

√
2, which

if we rotated it to the x axis must be ±(
√

2, 0). Thus x + y has the same distribution as
√

2x, under the
Gaussian distribution, namely, it is a Gaussian that is “

√
2 times as fat”, or more technically, drawn from the

distribution 1√
2π
e−x

2/2. Many deep facts about Gaussians can be derived by returning to this perspective.

It is worth noting that, if you draw (x, y) from the two-dimensional Gaussian 1
π e
−(x2+y2), then x and

y will be independent, meaning they behave as though they were constructed independently. On the other
hand, say, x and x+ y are not independent, for essentially obvious reasons (they both depend on x). These
concepts become more intricate if the Gaussian is stretched in different directions: consider the process of
drawing (x, y) from 1

π e
−(x2+y2) but then multiplying the vector (x, y) by a matrix M . Instead of points

being distributed in a circular blob about the origin, they may now be distributed in a “stretched” blob.
The simplest form of this is if we just scale x by some amount a, and y by some amount b. So now, instead
of yielding a blob with size ≈ 1 in the x and y directions, the blob now has size a in the x direction and b
in the y direction.

We can now ask, what is the probability density function of this (stretched) Gaussian? To compute this,
we simply replace x by x

a and y by y
a , and, finally, to make sure the total integral stays 1, we must divide by

ab. (A different way of looking at this is that we transform (x, y) by the matrix
(

1/a 0
0 1/b

)
, so an integral,

under this transformation, is scaled by the determinant of this matrix, namely 1
ab ). Thus the probability

density function is 1
πabe

−(x2/a2+y2/b2). This can of course be generalized to n variables (with the π in the

denominator becoming πn/2).

The central limit theorem:
One of the main reasons why the Gaussian distribution shows up so often is that if you add up many

independent random variables, the sum is often distributed close to a Gaussian. For example, the Matlab
command rand returns a random real number between 0 and 1, and rand(n,m) returns an n by m matrix
of random numbers between 0 and 1. This distribution is called the “uniform distribution between 0 and
1” because each possibility between 0 and 1 is uniformly likely. We can see this by drawing 100,000 random
numbers and plotting their histogram: hist(rand(1,100000),100) – the 100 at the end specifies that the
histogram has 100 bins (see Figure 4). This histogram is a way of approximately drawing the probability
density function, and from this perspective, the “shape” of the uniform distribution looks like a rectangle.
If we take pairs of samples from the uniform distribution and add them, we get something rather differ-
ent: hist(sum(rand(2,100000)),100), a distribution which now looks like a triangle. The more random
numbers we sum up, the more it looks like a Gaussian: hist(sum(rand(40,100000)),100). There are
many ways of formally stating this fact, which is generally called the “central limit theorem” – there are
many different conditions under which the distribution converges to Gaussian, and many different notions
of what “close to Gaussian” means. In fact, it has been said that the modern history of statistics can be
described by the history of central limit theorems. But for the moment, just remember that if you add up
lots of independent random variables, their sum will be distributed essentially like a Gaussian, under a wide
variety of conditions. (In particular, we have already derived the special case that if you add up two random
numbers that are distributed as Gaussians, then their sum will be exactly Gaussian.)
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(a) Uniform distribution (b) Sum of 2 uniform distributions (c) Sum of 40 uniform distributions

Figure 4: An illustration of convergence of the central limit theorem

Mean and Variance:
The two simplest ways of measuring a distribution are by its mean and variance. In one dimension, given

a probability density function f , the mean is the expected value of the distribution; if you take many samples
from the distribution and average them, the average will be close to the mean, and will converge to the mean
as the number of samples goes to infinity. The formula for the mean is: µ =

∫∞
−∞ x f(x) dx, where µ (the

Greek letter “mu”) is commonly used to denote the mean. The second thing we generally want to know
about a distribution is whether it is concentrated about its mean, or spread out. We measure this with the
variance, which is the expected value of the square of the distance from the mean: σ2 =

∫∞
−∞(x−µ)2 f(x) dx,

where the variance is denoted σ2. The variable σ alone is the square root of the variance, which is called the
standard deviation.

If you have two random variables x and y, then their means add: the mean of x + y equals the mean
of x plus the mean of y. (This is equivalent to what is referred to as “linearity of expectation”.) If x
and y are independent, then their variances will also add. The mean and variance characterize Gaussians
in a nice way: for any (positive) mean and variance, the Gaussian of corresponding mean and variance is

f(x) = 1√
π·2σ2

e−(x−µ)
2/(2σ2). We have already seen that if we take x and y distributed according to a certain

Gaussian, then their sum x + y will be distributed according to a Gaussian of
√

2 times the width – where√
2 times the width means twice the variance; this is an explicit example of variance adding. Note, however,

that if x is distributed according to a Gaussian then x + x will have four times its variance, not twice its
variance, because x is not independent of x.

Simulating Physics

Armed with some basics of multivariate calculus and probability, we return to the topics of Lecture 3.

Energy Conservation

As we have seen in the previous lecture the energy of the system that we discussed is divided into kinetic
energy T (v) =

∑
i
1
2miv

2
i and potential energy U(p), where for the purposes of this lecture, we consider U

to be an arbitrary smooth function of the vector of particle positions – explicitly, if we have n particles, then
position is described by 3n coordinates, and U is a function from 3n variables to 1 variable (the potential
energy). The force can be easily determined using the equation F (p) = −∇U(p) (this is the gradient of the
function U , as discussed in the first section; the gradient of U for a given p will be a vector also with 3n
coordinates, as we would expect, given that the gradient describes the x, y, z components of the forces on
each of the n particles).

The differential equations describing how this system will evolve, under the simplifying assumption that
each particle has mass 1, will be (where a dot over a variable denotes the time derivative):
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ṗ = v (1)

v̇ = f = −∇U(p) (2)

So all we need to have in order to study the physics of systems of particles (as in, atoms in a molecule)
is the potential and kinetic energy functions. For this lecture, we will not write out the potential energy
function explicitly – as we did in lecture 1 – as the analysis we will see today holds in general.

First, we show that evolving the system through differential equations 1 and 2 conserves energy. In order
to do so, we have to study how the potential and the kinetic energy change. The potential energy depends
only on position, so we have (by the chain rule, which for multivariate functions involves a dot product):

∂

∂t
U(p) = ṗ · ∇U(p) = v · ∇U(p) (3)

Explicitly, if U is a function of two variables with gradient (−3, 2) at location (p1, p2), this means that if
we increase p1 by a tiny amount epsilon, then U(p1+ε, p2) will be roughly U(p1, p2)−3ε; and if we increase p2
by epsilon, then U(p1, p2 + ε) will be roughly U(p1, p2) + 2ε. Thus if (p1, p2) is moving with velocity (v1, v2),
then after epsilon time, U will be U(p1 + v1ε, p2 + v2ε) which will roughly equal U(p1, p2) + ε(−3v1 + 2v2),
namely, the time derivative of U will be the dot product between v and the gradient of U .

The kinetic energy changes as follows, using the product rule (recall that the “v2” in the definition of
kinetic energy really means length of v, squared; this can be alternatively expressed as the dot product of v
with itself):

∂

∂t

1

2
v · v =

1

2
v̇ · v +

1

2
v · v̇ = v · v̇ = −v · ∇U(p)

The sum of this with Equation 3 equals zero, so the energy is conserved.

The Leapfrog Method

As we have seen in the previous lecture, if we evaluate and update the discretized forms of Equations 1
and 2 simultaneously, the results behave badly after a few iterations. Discretizing Equations 1 and 2 with a
timestep of “dt” yields:

p← p+ vdt (4)

v ← v −∇U(p)dt (5)

We will now follow an interleaved approach to updating the values of p and v, computing a new value
for p via Equation 4, and then using this new value of p to evaluate Equation 5, etc. Leapfrog integration is
equivalent to updating positions p and velocities v at interleaved time points. This is illustrated in Figure 5:
the red arrows on top correspond to updates via Equation 4, while the blue arrows on bottom correspond
to updates via Equation 5. We can stop the evaluation at any point, but if we stop after updating p via
Equation 4, then the most recently computed value of v will be effectively “half a timestep old”; conversely,
if we stop after updating v via Equation 5, then the most recently computed value of p will be effectively
“half a timestep old”. This is the reason for the time labels in Figure 5.

Explicitly, in Figure 5 if we stop the process at 2dt after having computed “p3”, the most recently
computed value of v is “v2” which was computed for the time 3

2dt, which is awkward, because we do not
know p and v at the same time, as we might like to if we wanted to, say, estimate the total energy of the
system at time 2dt; even if we compute another iteration, we will just compute velocities “v3” for time 5

2dt.
If we want to estimate v at time 2dt, we must interpolate, for example by averaging 1

2 (v 3
2dt

+ v 5
2dt

).
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Figure 5: An illustration of the Leapfrog Method

Figure 6: An illustration of the area conservation property

Symplectic Simulations

One of the key benefits of the leapfrog scheme, which is worth analyzing in some detail, is that it is “area
preserving”, or in more technical language, symplectic. Namely, if we consider a region of (p, v)-space of a
certain area, and then apply several steps of the leapfrog method, the claim is that the resulting region will
have the same area.

We will present this notion with an illustrative example. Suppose that variables v and p are in one
dimension. According to the Leapfrog method, if we evaluate, say, Equation 5, then variable v is going to
change while p will remain the same. So the question here is, why does this transformation preserves the
area? Take a small region (the box in the upper right) draw it in the p-v plane as in Figure 6. Then see if
the area remains the same after each step of the leapfrog method.

After an iteration of Equation 5, the box will be translated vertically (in the v direction), and might also
be skewed. The amount that a point will be translated vertically by Equation 5 depends only on the value
of p, and not on its vertical position v. Thus the right edge of the box might be translated down to a value
b1, and the left edge translated down to a different value b2, which yields a parallelogram. Since the amount
of vertical translation does not depend on the vertical position, each vertical line in the box may only be
translated vertically, and may not be stretched or displaced horizontally. Thus the image of this box under
the map of Equation 5 will be (roughly) a parallelogram of the same width and height as the original box,
and hence have the same area.

This intuition can be formalized using calculus: in one dimension we can approximate a function locally
by its value and derivative at a point – f(x) near c can be approximated as f(c) + (x − c) f ′(c), and the
map f rescales length by f ′(c). In two dimensions, the generalization of this says that f(X) near C can be
approximated locally as f(C) + (X −C) ·∇f , where ∇f is the 2 by 2 matrix of first derivatives; further, the
map f rescales area by the determinant of the matrix ∇f . (This determinant is called the Jacobian of the
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map; the matrix itself is sometimes called the Jacobian matrix, or just the matrix of first derivatives.)
We can thus compute the matrix of first derivatives of the map of Equation 5: the derivative of the new

value of p with respect to p is just 1, since Equation 5 does not modify p; thus the top left entry of the
Jacobian matrix is 1. The derivative of the new value of p with respect to v is 0, which is the bottom left
entry. The derivative of the new value of v with respect to v is d

dvv = 1, which is the bottom right entry.

The derivative of the new value of v with respect to p is d
dp (−∇U(p)dt) which is just negative dt times the

second derivative of U , for the case where p is one dimensional. Thus the Jacobian matrix is:

A1 =

(
1 −U ′′(p)dt
0 1

)
(6)

Taking the determinant of this (the product of the top left and bottom right entries, minus the product
of the top right and bottom left entries) tells us that the map of Equation 5 exactly preserves area:

det(A1) = 12 + 0 · U ′′(p)dt = 1

The corresponding analysis of Equation 4, with the roles of p and v swapped, yields an analogous result,
with the Jacobian matrix being

B1 =

(
1 0
dt 1

)
(7)

where the element in the bottom left is the derivative of the new value of v with respect to v, which is
d
dv (vdt) = dt.

The Jacobian of B1 is thus also 1, indicating that Equation 4 also preserves the area:

det(B1) = 12 − 0 · dt = 1

Using the fact that the area is preserved we can claim that our system will never present the dilation
effect that we observed in the previous lecture when simulating a spring with the simultaneous update rule
(simultaneously updating via Equations 4 and 5).

Notice that if we apply both transformations simultaneously, the Jacobian matrix has both the top right
and bottom left entries filled in, as (

1 −U ′′(p) · dt
dt 1

)
which has determinant 1+U ′′(p) ·dt2, which in general is not one, and can lead to rapid blowup as we saw in
the last lectue. One thing to note: the amount this differs from 1 is controlled by dt2, and thus this method
is called a “second-order method”.

While it is clear that symplectic integration schemes rule out certain kinds of blow-up, there is a very
important and much more general theorem that shows that such schemes are very well behaved in an
unexpected sense:

Theorem. For any symplectic (area-preserving) scheme, such as the leapfrog method, for small enough dt
there is a conserved quantity which is close to the energy E, and converges to E as dt approaches 0.

We will get another sense of the power of symplectic integrators by considering the following natural
question: suppose we have a symplectic system, if you let the system evolve enough, what is the long-term
distribution of states?

For concreteness, consider the possible configurations of a simple harmonic oscillator (a spring), as we
saw in the last lecture, where we plot the position and velocity on two axes (see Figure 7). Since the energy
of the spring is proportional to the square of the distance of a configuration from the origin, the system will
be restricted to evolve along a certain circle.

We are going to try to determine the long-term distribution of configurations along the circle. (The fact
that we are dealing with a spring, with configurations along a circle, will not affect the analysis at all – it is
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Figure 7: Distribution of the potential positions in a Harmonic oscillator.

completely general; we use this simple example so that we can easily draw a diagram.) The kind of situation
that we want to rule out is the following: suppose that the particle has twice as high a probability of being
at each point in the left semicircle (blue) as being in each point in the right (red). Let us now consider what
happens as we evaluate the leapfrog method. We split the analysis into cases:

Case 1a: Physics sometimes moves from the red region to the blue region.
Case 1b: Physics sometimes moves from the blue region to the red region.
Case 2: Physics always “conserves color”.

By assumption, the probability density of each blue point is twice as high as the probability density of
the red; however, if Case 1a holds, then there is a region of red, of length, say, ` which physics will map to
the blue region after some amount of time. Since physics is symplectic, the length of this region is preserved,
and thus the blue region that gets mapped to must also have length `. However, the probability must also be
preserved, and since the probability of being in a region of length ` is twice as high for red regions as blue
regions – if d is the probability density of red then 2d is the probability density of blue, and the probability
of being in a red region of length ` is d` while the probability of being in a blue region of length ` is 2d` –
thus Case 1a contradicts conservation of probability. Similarly, Case 1b is ruled out.

Thus the only way red and blue regions can have different probability densities is if there is a new
conservation law, in this case what we call “conservation of color”. This result can be stated slightly more
formally as:

Theorem (Liouville’s theorem). At equilibrium (that is, after enough time), every configuration of the
system that is allowed by the conservation laws has the same probability density (is equally likely).

This fundamental result underlies statistical mechanics, and underlies the derivation of the final result of
this lecture, the Boltzmann distribution, which we derive from two different perspectives.

The Boltzmann distribution

Multi-Dimensional Harmonic Oscillators

We first derive a useful special case of the Boltzmann distribution that involves multivariate Gaussians and
makes use of the central limit theorem.

Consider n one-dimensional harmonic oscillators, namely n particles where the ith particle has a one-
dimensional position pi and velocity vi; potential energy

∑
i
1
2p

2
i and kinetic energy

∑
i
1
2v

2
i . If we consider
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the system as parameterized by these 2n numbers, as a vector, then the total energy of the system is just
half the square of the length of this vector. Thus energy conservation yields that the system will evolve on
the surface of a 2n-sphere, of radius the square root of twice whatever energy the system started with.

Further, if we assume that energy is the only conserved quantity (technically this requires adding an
arbitrarily small amount of interaction between the harmonic oscillators so that energy can transfer between
them, but we will ignore this arbitrarily small correction here), then Liouville’s theorem yields that, at
equilibrium, the probability distribution of configurations of our system will be distributed uniformly over
the surface of this sphere.

Given that the 2n-element vector consisting of (p, v) for each of the n coordinates of position and velocity
is distributed uniformly over the surface of a 2n-sphere, we may now ask, what is the marginal distribution
of an individual coordinate? We could calculate this explicitly, but it will be more informative to use an
approximation that converges as the number of particles increases: “high-dimensional Gaussians stay close
to the surface of a sphere”.

How might we prove something like this? We have already seen that the Gaussian distribution is spheri-
cally symmetric – its probability density depends only on radius and not on the direction from the origin. All
that remains to show is that the radii of samples from a high-dimensional Gaussian will be tightly clustered
around some value away from 0, which will imply that the Gaussian behaves like a slightly blurry version of
the uniform distribution over the surface of a sphere.

Suppose we have samples (v1, . . . , vn, p1, . . . , pn) from a 2n-dimensional Gaussian. Thus each of pi and
and vi will behave like independent samples from a one-dimensional Gaussian. Further, while it is hard to
work with the radius

√∑
i p

2
i + v2i directly, the square of the radius is very well behaved:

∑
i p

2
i + v2i is just

the sum of 2n independent samples from a certain distribution, the distribution of the result of taking a
Gaussian sample and squaring it. Let us call this the Gaussian-squared distribution.

We could explicitly figure out some properties of the Gaussian-squared distribution: it has a mean µ, and
a standard deviation σ2, which are some positive constants, but fortunately we do not have to. Instead we
simply appeal to the central limit theorem: the distribution of

∑
i p

2
i+v

2
i is the sum of 2n independent samples

from the Gaussian-squared distribution; since means and variances add for independent distributions, the
mean of this distribution will be 2nµ and the variance will be 2nσ2, and as n increases, the central limit
theorem implies that this distribution will look increasingly like a simple Gaussian with mean 2nµ and
variance 2nσ2.

The crucial thing to note here is that the “width” of a Gaussian is its standard deviation, the square root
of its variance, which in this case is

√
2nσ2. So whatever constants µ and σ2 happen to be, as n increases,

the mean will eventually dwarf the standard deviation because n will eventually dwarf
√
n. For example,

for n = 10, 000 we have n is 100 times as big as
√
n, which would imply, roughly, that the square of the

radius of our multivariate Gaussian is constant to within 1%, or, taking square roots, that our multivariate
Gaussian stays on a spherical shell, to within 1%. For this reason, we consider a multivariate Gaussian as
being a good model of the equilibrium distribution of a harmonic oscillator, when n is large.

Thus, assuming we are satisfied with this approximation, we can now say that the marginal distribution
of, say, v17, the velocity of the 17th particle, is approximately the marginal of the multivariate Gaussian,
which is simply a one-dimensional Gaussian centered at 0, namely 1

w
√
π
e−v

2
17/w

2

, for some width w. Indeed,

instead of just looking at the marginal of v17, we could look at the 200-dimensional marginal of, say, the
positions and velocities of the first 100 particles. As long as 2n is enough larger than 200, by the same
argument, the distribution will be very close to the 200-dimensional Gaussian 1

(w
√
π)200

e−(1/w
2)

∑100
i=1 v

2
i+p

2
i .

The startling thing here is that the quantity in the exponent exactly negative the total energy of the first

100 particles divided by w2

2 . The proportionality constant w2

2 remains to be specified, and in fact we will
dodge this issue entirely by defining temperature T to be that thing for which the proportionality constant
w2

2 equals kB · T where kB is a physical constant known as Boltzmann’s constant. The result we have just
shown for harmonic oscillators is stated more generally as:

Theorem (Boltzmann distribution). Given a system in thermal equilibrium with a large enough collection
of particles at temperature T , the probability of configuration S is proportional to e−E(S)/(kBT ) where kB is
Boltzmann’s constant and E(S) is the energy of the configuration S.
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(It is worth noting one interesting distinction: n harmonic oscillators being at constant energy means
the configuration is on the surface of a sphere; being at constant temperature means being drawn from a
multivariate Gaussian that hugs the surface of the sphere. The distinction between constant energy and
constant temperature is subtle, and good to be aware of, and something corresponding is true for systems
beyond n harmonic oscillators.)

In general, the total energy of the system will not just be half the sums of the squares of all the positions
and velocities – when we simulate molecular dynamics, the potential energy function will be a much more
complicated function of the positions of all the atoms. However, the kinetic energy function will always be just∑
i
1
2mi(v

2
ix+v2iy+v2iz), and this will be the only way in which the velocities enter the energy function. Hence

the only dependence on velocity in the Boltzmann distribution will be a factor of e−
∑

i
1
2mi(v

2
ix+v

2
iy+v

2
iz)/(kBT ),

meaning that the probability distribution of the velocities of our atoms will be a (squashed) multivariate
Gaussian, no matter how complicated our potential energy function is. This is essentially the equipartition
theorem:

Theorem (Equipartition theorem). Given a system of particles in thermal equilibrium, the energy in each
coordinate of each particle is 1

2kBT on average.

(How could you derive the 1
2kBT from the Boltzmann distribution?)

The equipartition theorem is actually somewhat more general than what we have stated here, as you
might guess from the spherical symmetry of the multivariate Gaussian – it’s not as though the x-coordinate
of v1 enjoys any special properties that a rotated coordinate system would not. In particular, if you consider
an arbitrary linear combination of the velocities, for example twice the x-velocity of the 1st particle minus
three times the z-velocity of the 8th particle, this quantity too is distributed like a single-variable Gaussian,
and has average energy 1

2kBT , provided you figure out the appropriate way to define the “mass” that you
would multiply by half the square of this odd quantity to yield its energy. Explicitly, the expected square of
the x velocity of the first particle will be proportional to the inverse of its mass, 1

m1
, and the expected square

of the z velocity of the 8th particle will be proportional to 1
m8

, and since these velocities are distributed as

independent Gaussians, the expected square of our quantity 2v1x − 3v8z will be proportional to 4
m1

+ 9
m8

,

so thus, we call the inverse of this the effective mass of the particle: 1
4

m1
+ 9

m8

. We have thus shown that a

“fictitious particle” with velocity 2v1x− 3v8z and mass 1
4

m1
+ 9

m8

will obey the equipartition theorem just like

any other particle. Work through an intuitive example yourself to get a sense for what is going on here. The
second and third problems in Homework 1 were examples of this.

Standard derivation of the Boltzmann distribution

What follows is the standard textbook derivation of the Boltzmann distribution, which might be slightly
less intuitive than the multivariate Gaussian derivation above, and also abuses math notation, but applies
to more general systems.1

Suppose we discretize the system, by considering all the possible states the system can be in; we denote
the energy of the ith state by εi. We consider many copies of the system, and let ni denote the number of
copies of the system that are in state i. The two conservation laws we use here are that energy is conserved:

E =
∑
i

niεi

and that the number of particles is conserved:

N =
∑
i

ni

By Liouville’s theorem, any combination of states that is allowed by the conservation laws is equally likely.
Given a certain vector (n1, n2, . . .) describing how many of the N copies of the system are in each state, how

1This derivation is taken from http://bouman.chem.georgetown.edu/S98/boltzmann/boltzmann.htm
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many ways are there to assign this combination of states to the N copies of the system? Just the standard
formula for choosing multiple subsets at once:

W =
N !

n1!n2! . . .

Our goal here is to find the vector (n1, n2, . . .) that maximizes W subject to the constraints on energy
and particle number. We invoke the standard Stirling approximation, that for large k, log k! ≈ k log k − k,
which leads to

logW ≈ N logN −
∑
i

(ni log ni)−

(
N −

∑
i

ni

)
,

where the last term equals 0 by conservation of particle number, and the first term is constant. Hence
we must optimize

∑
i(ni log ni) subject to our constraints. We take a slightly sketchy math step here and

assume that for large enough numbers of particles, we can treat everything as continuous instead of discrete,
and will use the Lagrange multipliers condition (discussed above) to tell us how to optimize this constrained
function. The gradient of

∑
i(ni log ni) is the vector

∇ logW ≈ (1 + log n1, 1 + log n2, . . .),

and the gradients of the two constraints are ∇E = (ε1, ε2, . . .) and ∇N = (1, 1, 1, . . .). The Lagrange
multipliers condition says that (n1, n2, . . .) can only be an optimum of logW subject to the constraints on
energy and particle number if there exist multipliers λ1, λ2 such that

∇ logW = λ1∇E + λ2∇N,

which for the ith coordinate yields the condition 1 + log ni = λ1ε1 + λ2. Moving the 1 to the other side and
taking the exponent of both sides yields ni = eλ1ε1 · eλ2−1, namely that given many copies of our system at
thermal equilibrium at a certain temperature, the probability that a given copy of the system is in the ith
possible state is proportional to the exponential of some constant λ1 times the energy of the ith state. We
define temperature T so that λ1 = −kBT , yielding the Boltzmann distribution, as desired.
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