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Two-Process Systems 

Two-process systems can 
be captured by elementary 

graph theory 
gentle introduction to more 
general structures needed 

later for larger systems 
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2 

Presenter
Presentation Notes
It is remarkable that to obtain the characterization of two-process task solvability, we need only a fewnotions from graph theory, namely, maps between graphs and connectivity.
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A Vertex 

Distributed Computing through 
Combinatorial Topology 

5 

Presenter
Presentation Notes
From a purely combinatorial point of view, a vertex is just an element from some domain. It is often convenient to visualize a vertex as a point in some Euclidean space.



A Vertex 
Combinatorial: an element of a set. 
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Presenter
Presentation Notes
From a purely combinatorial point of view, a vertex is just an element from some domain. It is often convenient to visualize a vertex as a point in some Euclidean space.



A Vertex 
Combinatorial: an element of a set. 

Geometric: a point in Euclidean Space 
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Presenter
Presentation Notes
From a purely combinatorial point of view, a vertex is just an element from some domain. It is often convenient to visualize a vertex as a point in some Euclidean space.



An Edge 

8 

Presenter
Presentation Notes
A pair of vertices can be linked by an edge. An edge is just a set of two vertices.



An Edge 
Combinatorial: a set of two vertexes. 
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Presenter
Presentation Notes
A pair of vertices can be linked by an edge. An edge is just a set of two vertices.



An Edge 
Combinatorial: a set of two vertexes. 

Geometric: line segment joining two points 
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Presenter
Presentation Notes
A pair of vertices can be linked by an edge. An edge is just a set of two vertices.
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Presenter
Presentation Notes
Informally, a graph is a set of vertices with some pairs linked by edges. This definition is standard.



A Graph 
Combinatorial: a set of sets of vertices. 
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Presenter
Presentation Notes
Informally, a graph is a set of vertices with some pairs linked by edges. This definition is standard.



A Graph 
Combinatorial: a set of sets of vertices. 

Geometric: points joined by line segments 
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Presenter
Presentation Notes
Informally, a graph is a set of vertices with some pairs linked by edges. This definition is standard.



Graphs 

finite set V with a collection 
G of subsets of V, 
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Presenter
Presentation Notes
Formally, a graph is given by a set V of vertices, and a collection of subsets of vertices, satisfying certain properties.



Graphs 

simplices 
(singular: simplex) 

finite set V with a collection 
G of subsets of V, 

vertices 

Distributed Computing through 
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Presenter
Presentation Notes
The set V is called the set of vertices, and the subsets are called simplices, sing: simplex.



Graphs 

Distributed Computing through 
Combinatorial Topology 

(1) If X 2 G, then |X| · 2 

finite set V with a collection 
G of subsets of V, 

16 

Presenter
Presentation Notes
A graph is a set of sets of vertices, satisfying [animation]



Graphs 

Distributed Computing through 
Combinatorial Topology 

(1) If X 2 G, then |X| · 2 

finite set V with a collection 
G of subsets of V, 

vertex: |X| = 1 
edge: |X|= 2  
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Presenter
Presentation Notes
A graph is a set of sets of vertices, satisfying [animation]



Graphs 

(1) If X 2 G, then |X| · 2 
(2) for all v 2 V, {v} 2 G 

finite set V with a collection 
G of subsets of V, 
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Presenter
Presentation Notes
The singleton set containing each vertex is in the graph. Usually we will be casual about the distinction between a vertex and its singleton set.



Graphs 

(1) If X 2 G, then |X| · 2 
(2) for all v 2 V, {v} 2 G 

(3) for all X 2 G, and Y ½ X, Y 2 G 

finite set V with a collection 
G of subsets of V, 
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Presenter
Presentation Notes
Graphs are closed under inclusion. If X is a simplex in \cG, and Y is a subset of X, then X is also in \cG. For graphs, this just says that if an edge is in the graph, so are its two vertices.



Dimension 

dim(X) = |X|-1.  

dimension 0 

dimension 1 
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Presenter
Presentation Notes
A vertex has dimension zero, an edge has dimension one. The dimension of a simplex is one less than its cardinality. We will revisit this later when we introduce simplices of higher dimension.



Pure Graphs 

pure of dim 0 

pure of dim 1 

Distributed Computing through 
Combinatorial Topology 

21 

Presenter
Presentation Notes
A graph is pure if either no vertex is in an edge, or they all are. The first is pure of dimension 0, and the second is pure of dimension 1.
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Distributed Computing through 
Combinatorial Topology 

22 

Presenter
Presentation Notes
Assume $C$ is a~set.  A \emph{coloring} of a graph $\cG$ is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of $\cG$, $\chi(s_0) \neq \chi(s_1)$.  We say that a graphis \emph{chromatic}, or that it is \emph{colored by $C$}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where $A$ and $B$ are the names of the two processes.



Graph Coloring 

Â: G ! C 
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Presenter
Presentation Notes
Assume $C$ is a~set.  A \emph{coloring} of a graph $\cG$ is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of $\cG$, $\chi(s_0) \neq \chi(s_1)$.  We say that a graphis \emph{chromatic}, or that it is \emph{colored by $C$}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where $A$ and $B$ are the names of the two processes.



Graph Coloring 

Â: G ! C 
for each edge (s0, s1) 2 G, Â(s0) ≠ Â(s1). 
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Presenter
Presentation Notes
Assume $C$ is a~set.  A \emph{coloring} of a graph $\cG$ is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of $\cG$, $\chi(s_0) \neq \chi(s_1)$.  We say that a graphis \emph{chromatic}, or that it is \emph{colored by $C$}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where $A$ and $B$ are the names of the two processes.



Graph Coloring 

Â: G ! C 
for each edge (s0, s1) 2 G, Â(s0) ≠ Â(s1). 

usually process names chromatic graphs 
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Presenter
Presentation Notes
Assume $C$ is a~set.  A \emph{coloring} of a graph $\cG$ is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of $\cG$, $\chi(s_0) \neq \chi(s_1)$.  We say that a graphis \emph{chromatic}, or that it is \emph{colored by $C$}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where $A$ and $B$ are the names of the two processes.



Graph Labeling 

1 0 

0 

1 
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Presenter
Presentation Notes
More generally, given a set $L$, an \emph{$L$-labeling} of $\cG$ is defined as a function $f$ that assigns to each vertex an element of $L$, without any further conditions imposed by the existence of edges. We say the graph is \emph{labeled} by~$L$.  A coloring is a labeling, but not vice-versa.



Graph Labeling 

1 0 

0 

1 f: G ! L 
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Presenter
Presentation Notes
More generally, given a set $L$, an \emph{$L$-labeling} of $\cG$ is defined as a function $f$ that assigns to each vertex an element of $L$, without any further conditions imposed by the existence of edges. We say the graph is \emph{labeled} by~$L$.  A coloring is a labeling, but not vice-versa.



Graph Labeling 

1 0 

0 

1 f: G ! L 
usually values from some domain 
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Presenter
Presentation Notes
More generally, given a set $L$, an \emph{$L$-labeling} of $\cG$ is defined as a function $f$ that assigns to each vertex an element of $L$, without any further conditions imposed by the existence of edges. We say the graph is \emph{labeled} by~$L$.  A coloring is a labeling, but not vice-versa.



Labeled Chromatic Graph 

0 1 

1 

0 

name(s) = Â(s)  view(s) = f(s)  
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Presenter
Presentation Notes
For distributed computing, if $s$ is a vertex in a labeled chromatic graph, we denote by $\name(s)$ the value $\chi(s)$, and by $\view(s)$ the value $f(s)$.  Moreover, we assume that each vertex in a labeled  chromatic graph is uniquely identified by its values of $\name(\cdot)$ and $\view(\cdot)$. 



Simplicial Maps 

Vertex-to-vertex map … 

that also sends edges to edges. 
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Presenter
Presentation Notes
Given two graphs $\cG$ and $\cH$, a \emph{vertex map} $\mu:~V(\cG)~\rightarrow~V(\cH)$ carries each vertex of $\cG$ to a vertex of $\cH$.  However, for the map to preserve structure, it must also carry edges to edges.  The vertex map $\mu$ is a \emph{simplicial map} if it also carries simplices to simplices: that is, if $\set{\vs_0,\vs_1}$ is a simplex in $\cG$, then $\set{\mu(\vs_0),\mu(\vs_1)}$ is a simplex of $\cH$. Notice that $\mu(\vs_0)$ and $\mu(\vs_1)$ need not be distinct: the image of an edge may be a vertex.



Rigid Simplicial Maps 

A simplicial map can send 
an edge to a vertex … 
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Presenter
Presentation Notes
Notice that $\mu(\vs_0)$ and $\mu(\vs_1)$ need not be distinct: the image of an edge may be a vertex.  If, for $\vs_0 \neq \vs_i$, $\mu(\vs_0) \neq \mu(\vs_1)$, then the map is said to be \emph{rigid}. In the terminology of graph theory, a~rigid simplicial map is called a~\emph{graph homomorphism}.



Rigid Simplicial Maps 

A simplicial map can send 
an edge to a vertex … 

A simplicial map that sends 
distinct vertices to distinct 
vertices is rigid. 
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Presenter
Presentation Notes
Notice that $\mu(\vs_0)$ and $\mu(\vs_1)$ need not be distinct: the image of an edge may be a vertex.  If, for $\vs_0 \neq \vs_i$, $\mu(\vs_0) \neq \mu(\vs_1)$, then the map is said to be \emph{rigid}. In the terminology of graph theory, a~rigid simplicial map is called a~\emph{graph homomorphism}.



A Path Between two Vertices 
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A Path Between two Vertices 

A graph is connected if 
there is a path between 
every pair of vertices 
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Presenter
Presentation Notes
 A graph is connected if there is a path between every pair of vertices.



Not Connected 

A graph is connected if 
there is a path between 
every pair of vertices 

Distributed Computing through 
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Presenter
Presentation Notes
Here is an example of a graph that is not connected.



Theorem 
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Theorem 

Á 

The image of a connected 
graph under a simplicial map 
is connected. 
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Carrier Maps 
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©: G ! 2H 

For graphs G, H, a carrier map  

Carries each simplex of G to a subgraph of H … 

© 

satisfying monotonicity: 
for all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿). 
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Presenter
Presentation Notes
While a simplicial map carries simplices to simplices, it is also useful in the context of distributed computing to define maps  that carry simplices to subgraphs.



Monotonicity 

Strict Carrier Maps 

Distributed Computing through 
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For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿). 

Equivalent to … 
©(¾Å¿) µ ©(¾) Å ©(¿) 

Definition 
© is strict if ©(¾Å¿) = ©(¾) Å ©(¿) 
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Models of Computation 

Approximate Agreement 

Task Solvability 
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Two Processes 
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Hello! I’m 
Alice 

Hello! I’m 
Bob 

40 



Informal Task Definition 
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Processes start with input values … 

They communicate … 

They halt with output values … 

legal for those inputs. 
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Formal Task Definition 
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Input graph I 
all possible assignments of input values 
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Formal Task Definition 
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Input graph I 
all possible assignments of input values 

Output graph O 
all possible assignments of output values 
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Formal Task Definition 

Distributed Computing through 
Combinatorial Topology 

Input graph I 
all possible assignments of input values 

Output graph O 
all possible assignments of output values 

Carrier map ¢: I ! 2O 

all possible assignments of output values 
for each input 
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Task Input Graph: Consensus 
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1 0 

0 

I 
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Presenter
Presentation Notes
 $\cI$ is a pure chromatic \emph{input graph} of dimension~$1$colored by $\set{A,B}$ and labeled by $\Vin$; 



Task Input Graph 
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0 1 

1 0 

I 
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Presenter
Presentation Notes
 $\cI$ is a pure chromatic \emph{input graph} of dimension~$1$colored by $\set{A,B}$ and labeled by $\Vin$; 



Task Input Graph 
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1 1 

0 0 

Pure 

Colored by process names 

Labeled by input values 
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Presenter
Presentation Notes
 $\cI$ is a pure chromatic \emph{input graph} of dimension~$1$colored by $\set{A,B}$ and labeled by $\Vin$; 



Task Output Graph 
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1 1 

0 0 

O 
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Presenter
Presentation Notes
$\cO$ is a pure chromatic \emph{output graph}of dimension~$1$ colored by $\set{A,B}$ and labeled by $\Vout$;



Task Carrier Map 

Distributed Computing through 
Combinatorial Topology 

1 1 

0 0 

1 1 

0 0 

¢: I ! 2O I O 
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Task Carrier Map 
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1 1 

0 0 

1 1 

0 0 

¢: I ! 2O I O 

If Bob runs alone with input 1 … 

then he decides output 1. 
50 



Task Carrier Map 
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1 1 

0 0 

1 1 

0 0 

¢: I ! 2O I O 

If Bob and Alice both have input 1 … 

then they both decide output 1. 
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Task Carrier Map 
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1 1 

0 0 

1 1 

0 0 

¢: I ! 2O I O 

If Bob has 1 and Alice 0 … 

then they must agree, on either one. 
52 



Example: Coordinated Attack 

53 

Alice and Bob win 
If they both attack 

together 

Alice Bob 
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Enemy 



Indifferent 

Attack at dawn! Attack at noon! 

Input Graph 

Distributed Computing through 
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I 
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Presenter
Presentation Notes
Here is how to consider this problem using the combinatorial approach, encompassing all possible scenarios in a single geometric object, a graph.Alice has two possible initial states: she intends to attack either at dawn, or at noon the next day. Each such state is a black vertex. Bob has only one possible initial state: he await's Alice's order. This state is the white vertex linking the two edges, representing Bob's uncertainty whether he is in a world where Alice intends to attack at dawn, on the left, or in a world where she intends to attack at noon, on the right.



Output Graph 
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dawn! noon! 

failed! 

O 
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Carrier Map 
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Carrier Map 
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dawn! failed! 

dawn! I 
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Carrier Map 
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¢ 

noon! failed! 

noon! I 

O 
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Carrier Map 
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dawn! 

dawn! I 

O 
59 



Example: Coordinated Attack 
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Alice Bob 
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Enemy 



Example: Coordinated Attack 
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Alice Bob 
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Enemy 

Alice and Bob realize that 
they do not need to agree 

on an exact time … 



Example: Coordinated Attack 
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Alice Bob 
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Enemy 

Alice and Bob realize that 
they do not need to agree 

on an exact time … 
they will win if attack times 

are sufficiently close. 
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Coordinated Attack Graphs 
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Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.
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Coordinated Attack Graphs 
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Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.
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Coordinated Attack Graphs 
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Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.
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0 1/5 2/5 3/5 4/5 1 

Coordinated Attack Graphs 
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Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.
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Protocols 
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Models of Computation 
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Presenter
Presentation Notes
Now consider a protocol execution in which the processes exchange information through the channels (message-passing, read-write memory, or other) provided by the model. At the end of the execution, each process has its own view (final state). The set of all possible final views themselves form a chromatic graph. Each vertex is a pair $(P,p)$, where $P$ is a process name, and $p$ is $P$'s view (final state) at the end of some execution. A pair of such vertices $\set{(A,a),(B,b)}$ is an edge if there is some execution where $A$ halts with view $a$ and $B$ halts with view $b$. This graph is called the \emph{protocol graph}.



Alice’s Protocol 

69 

shared mem array 0..1 of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[A] := view; 
  view := view + mem[A] + mem[B]; 
return δ(view) 

Finite program 

Bob’s protocol is symmetric 

Distributed Computing through 
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shared mem array 0..1 of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[A] := view; 
  view := view + mem[B]; 
return δ(view) 

Alice’s Protocol 

70 Distributed Computing through 
Combinatorial Topology 

shared two-element memory 



shared mem array 0..1 of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[A] := view; 
  view := view + mem[B]; 
return δ(view) 

Alice’s Protocol 
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Start with input value 



shared mem array 0..1 of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[A] := view; 
  view := view + mem[B]; 
return δ(view) 

Alice’s Protocol 
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Run for L layers 



shared mem array 0..1 of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[A] := view; 
  view := view + mem[B]; 
return δ(view) 

Alice’s Protocol 
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Alice writes her value, read Bob’s 
value, and concatenate it to my view 



shared mem array 0..1 of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[A] := view; 
  view := view + mem[B]; 
return δ(view) 

Alice’s Protocol 
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Alice writes her value, read Bob’s 
value, and concatenate it to my view 



shared mem array 0..1 of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[A] := view; 
  view := view + mem[B]; 
return δ(view) 

Alice’s Protocol 
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finally, apply task-specific 
decision map to view 



Formal Protocol Definition 
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Input graph I 
all possible assignments of input values 
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Formal Protocol Definition 
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Input graph I 
all possible assignments of input values 

Protocol graph P 
all possible process views after execution 
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Formal Protocol Definition 

Distributed Computing through 
Combinatorial Topology 

Input graph I 
all possible assignments of input values 

Protocol graph P 
all possible process views after execution 

Carrier map ¥: I ! 2O 

all possible assignments of views 
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One-Round Protocol Graph 
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0? 01 01 ?1 

¥ 

I 

P 
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Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.



One-Round Protocol Graph 
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0? 01 01 ?1 

Colored by process names 

Labeled with final views 

P 
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Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.



One-Round Protocol Graph 
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0? 01 01 ?1 

Alice finishes before Bob 
starts, doesn’t see his value 

P 

81 

Presenter
Presentation Notes
Each vertex represents a view. Alice has two possible views. Of course, in a longer execution, she would have many more views.



One-Round Protocol Graph 
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0? 01 01 ?1 

Alice and Bob run together, 
she sees his value. 

P 
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Presenter
Presentation Notes
Each vertex represents a view. Alice has two possible views. Of course, in a longer execution, she would have many more views.



One-Round Protocol Graph 
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0? 01 01 ?1 

Alice finishes, then Bob starts 

P 
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Presenter
Presentation Notes
Each edge represents an execution. A vertex on the boundary of two edges is a view that can’t distinguish which execution actually happened.



One-Round Protocol Graph 
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0? 01 01 ?1 

Alice and Bob run together 

P 
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Presenter
Presentation Notes
Each edge represents an execution. A vertex on the boundary of two edges is a view that can’t distinguish which execution actually happened.



One-Round Protocol Graph 
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0? 01 01 ?1 

Bob can’t tell whether Alice saw him 

P 
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Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.



Execution Carrier Map 
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0? 01 01 ?1 

¥ 

I 
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Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.



Execution Carrier Map 
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1 0 

0? 01 01 ?1 

¥ 

I 

P 

¥: I ! 2P 

strict carrier map 
¥(¾) Å ¥(¿) = ¥(¾ Å ¿) 87 

Presenter
Presentation Notes
There is  a strict carrier map $\Xi$ from $\cI$ to $\cP$, called the \emph{execution carrier map}, that carries each input simplex to a subgraph of the protocol graph. $\Xi$ carries each input vertex $(P,v)$ to the solo execution in which $P$ finishes the protocol without hearing from the other process. It carries each input edge $\set{(A,a),(B,b)}$ to the subgraph of executions where $A$ starts with input $a$ and $B$ with $b$.



Output graph 0 2/3 1/3 1 

0? 01 01 ?1 Protocol graph 

δ 

The Decision Map 
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Presenter
Presentation Notes
The protocol graph is related to the output graph by a \emph{decision map} $\delta$ that sends each protocol graph vertex $(P,p)$ to an output graph vertex $(P,w)$, labeled with the same name. Operationally, this map should be understood as follows: if there is a protocol execution in which $P$ finishes with view $p$ and then chooses output $w$, then $(P,p)$ is a vertex in the protocol graph, $(P,w)$ a vertex in the output graph, and $\delta((P,p)) = (P,w)$. It is easy to see that $\delta$ is a simplicial map, carrying edges to edges, because any pair of mutually compatible final views yields a pair of mutually compatible decision values. 



All Together 
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0 2/3 1/3 1 

0? 01 01 ?1 ¢ 

δ 

I 

P 

O 

¥ 
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Presenter
Presentation Notes
Here is how the various graphs and maps fit together.



Definition 
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Decision map δ is carried by carrier map ¢ if 

for each input vertex s, 

for each input edge ¾, 

δ(¥(s)) µ ¢(s) 

δ(¥(¾)) µ ¢(¾). 
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The protocol (I,P,¥) solves the task (I, O, ¢) 
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Definition 

Solving a Task 
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The protocol (I,P,¥) solves the task (I, O, ¢) 

if there is … 
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Definition 

Solving a Task 
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The protocol (I,P,¥) solves the task (I, O, ¢) 

if there is … 

a simplicial decision map 
δ:P ! O 
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The protocol (I,P,¥) solves the task (I, O, ¢) 

if there is … 

a simplicial decision map 
δ:P ! O 
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such that δ is carried by ¢. 
(δ agrees with ¢) 



Layered Read-Write Model 
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Layered Read-Write Protocol 

Distributed Computing through 
Combinatorial Topology 

96 

shared mem array 0..1,0..L of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[i][A] := view; 
  view := view + mem[A] + mem[B]; 
return δ(view) 



shared mem array 0..1,0..L of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[i][A] := view; 
  view := view + mem[A] + mem[B]; 
return δ(view) 

As before, run for L layers 

Layered Read-Write Protocol 

Distributed Computing through 
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shared mem array 0..1,0..L of Value 
view: Value := my input value; 
for i: int := 0 to L do 
  mem[i][A] := view; 
  view := view + mem[A] + mem[B]; 
return δ(view) 

Layered Read-Write Protocol 
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Each layer uses a distinct, “clean” memory 
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Layered R-W Protocol Graph 
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1 0 

0? 01 01 ?1 

¥ 

I 

P 
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Presenter
Presentation Notes
As we have already seen, the one-round layered read-write protocol for a single input simplex is a subdivision of that simplex.



Layered R-W Protocol Graph 
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¥ 

P is always a subdivision of I 

I P 
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Road Map 
Elementary Graph Theory 

Tasks 

Models of Computation 

Approximate Agreement 

Task Solvability 
Distributed Computing through 
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Alice’s 1/3-Agreement 
Protocol 
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mem[A] := 0 
other := mem[B] 
if other == ? then 
  decide 0 
else 
  decide 1/3 
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Alice’s 1/3-Agreement 
Protocol 
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mem[A] := 0 
if mem[B] == ? then 
  decide 0 
else 
  decide 1/3 

Alice writes her value to memory 
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Alice’s 1/3-Agreement 
Protocol 
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mem[A] := 0 
if mem[B] == ? then 
  decide 0 
else 
  decide 1/3 

If she doesn’t see Bob’s value, decide her own. 
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Alice’s 1/3-Agreement 
Protocol 
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mem[A] := 0 
if mem[B] == ? then 
  decide 0 
else 
  decide 1/3 

If she see’s Bob’s value, jump to the middle 
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0 2/3 1/3 1 

0 2/3 1/3 1 

0 2/3 1/3 1 
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Here is why this works: one process must see the other, and jump to the middle. If each one sees the other, and jumps, they are still within 1/3 of one anpther.



One-Layer 1/3-Agreement 
Protocol 
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0 1 

0 2/3 1/3 1 

0? 01 01 ?1 

δ 

I 

P 

O 

¥ 
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Presentation Notes
Here is how the various graphs and maps fit together.



No 1-Layer 1/5-Agreement 
Protocol 
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0 1 

1/5 3/5 2/5 4/5 

0? 01 01 ?1 

δ 

P 

O 

¥ 

1 0 

(no map possible) 

I 
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1 0 

0 1/5 2/5 3/5 4/5 1 

¥ 

0? 01 01 ?1 

2-Layer 1/5-Agreement  
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¥ 

I 

O 

layer 1 

layer 2 

δ 
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Fact 
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In the layered read-write model, 

The 1/K-Agreement Task 

Has a dlog3 Ke–layer protocol 
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Elementary Graph Theory 

Tasks 

Models of Computation 

Approximate Agreement 

Task Solvability 
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Fact 
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The protocol graph for any L-layer protocol with 
input graph I is a subdivision of I, where each 
edge is subdivided 3L times. 
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Main Theorem 
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The two-process task (I, O, ¢) is solvable in the 
layered read-write model if and only if there 
exists a connected carrier map ©: I ! 2O 
carried by ¢. 
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Corollary 
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The consensus task has no layered 
read-write protocol 
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Corollary 
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Any ²–agreement task has a layered 
read-write protocol 
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