Two-Process Systems

Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Two-Process Systems

Two-process systems can be captured by elementary *araph theory*

gentle introduction to more general structures needed later for larger systems

Combinatorial Topology

Road Map

Elementary Graph Theory

Models of Computation

Approximate Agreement

Road Map

Elementary Graph Theory

Models of Computation

Approximate Agreement

Task Solvability

A Vertex

A Vertex

Combinatorial: an element of a set.

A Vertex

Combinatorial: an element of a set

Geometric: a point in Euclidean Space

An Edge

An Edge

Combinatorial: a set of two vertexes.

An Edge

Combinatorial: a set of two vertexes

Geometric: line segment joining two points

A Graph

A Graph

Combinatorial: a set of sets of vertices.

A Graph

Combinatorial: a set of sets of vertices

Geometric: points joined by line segments

Graphs

finite set V with a collection G of subsets of V,

Dimension

Pure Graphs

Graph Labeling

Graph Labeling

$$f:\mathcal{G}
ightarrow L$$

Graph Labeling

Labeled Chromatic Graph

$$name(s) = \chi(s)$$

Олтанаюта Соличтика Сонелкатонал Токолог Сонелкатонал Токолог

Distributed Computing through Combinatorial Topology

view(s) = f(s)

Simplicial Maps

Rigid Simplicial Maps

Rigid Simplicial Maps

A Path Between two Vertices

A Path Between two Vertices

A graph is *connected* if there is a path between every pair of vertices

Not Connected

Theorem

Theorem

The image of a connected graph under a simplicial map is connected.

Carrier Maps

For graphs \mathcal{G} , \mathcal{H} , a carrier map

Carries each simplex of \mathcal{G} to a subgraph of \mathcal{H} ...

satisfying monotonicity: for all $\sigma, \tau \in \mathcal{G}$, if $\sigma \subseteq \tau$, then $\Phi(\sigma) \subseteq \Phi(\tau)_{37}$

Combinatorial Topology

Strict Carrier Maps

Road Map

Elementary Graph Theory

Models of Computation

Approximate Agreement

Task Solvability

Two Processes

Informal Task Definition

Processes start with input values ...

They communicate ...

They halt with output values ...

legal for those inputs.

Formal Task Definition

Input graph \mathcal{I}

all possible assignments of input values

Formal Task Definition

Input graph \mathcal{I}

all possible assignments of input values

Output graph \mathcal{O}

all possible assignments of output values

Formal Task Definition

Input graph \mathcal{I}

all possible assignments of input values

Output graph \mathcal{O}

all possible assignments of output values

Carrier map $\Delta: \mathcal{I} \to \mathbf{2}^{\mathcal{O}}$

all possible assignments of output values for each input

Task Input Graph: Consensus \mathcal{I} Distributed Computing throu 45 Combinatorial Topology

Task Input Graph

Task Input Graph

Task Output Graph

 \mathcal{O}

0

If Bob runs alone with input 1 ...

then he decides output 1.

If Bob and Alice both have input 1 ...

then they both decide output 1.

Input Graph

Output Graph

Combinatorial Topology

Combinatorial Topology

Coordinated Attack Graphs

Distributed Computing through Combinatorial Topology 63

Coordinated Attack Graphs

 \mathcal{I}

Δ

Distributed Computing through Combinatorial Topology

()

Coordinated Attack Graphs \mathcal{I} \bigcap \varDelta $\left(\right)$ 15

Distributed Computing through Combinatorial Topology

()

65

Coordinated Attack Graphs

Distributed Computing through Combinatorial Topology 66

Road Map

Elementary Graph Theory

Models of Computation

Approximate Agreement

Task Solvability

Protocols

Models of Computation

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[A] + mem[B];
return δ(view)
Finite program

Bob's protocol is symmetric

shared mem array 0..1 of Value
view: Value := my input value;
for i: int Start with input value
 mem[A] := view;
 view := view + mem[B];
return δ(view)

shared mem array 0..1 of Value view: Value := my input value; for i: int := 0 to L do

me view for L layers mem[B]; return δ(view)

Alice's Protocol

Alice's Protocol

Alice's Protocol

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[B];
return δ(view)
 finally, apply task-specific
 decision map to view

Formal Protocol Definition

Input graph \mathcal{I}

all possible assignments of input values

Formal Protocol Definition

Input graph \mathcal{I}

all possible assignments of input values

Protocol graph \mathcal{P}

all possible process views after execution

Formal Protocol Definition

Input graph \mathcal{I}

all possible assignments of input values

Protocol graph \mathcal{P}

all possible process views after execution

One-Round Protocol Graph \mathcal{I} ()01 $\mathbf{01}$

Distributed Computing through Combinatorial Topology

79

The Decision Map

Distributed Computing through Combinatorial Topology 88

All Together

Definition

Decision map δ is carried by carrier map Δ if

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

if there is ...

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

if there is ...

Definition

The protocol $(\mathcal{I}, \mathcal{P}, \Xi)$ solves the task $(\mathcal{I}, \mathcal{O}, \Delta)$

if there is ...

Combinatorial Topology

Layered Read-Write Protocol

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[i][A] := view;
 view := view + mem[A] + mem[B];
return δ(view)

Layered Read-Write Protocol

Layered Read-Write Protocol

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[i][A] := view;
 view := view + mem[A] + mem[B];
 Loturn &(uiou)
 Each layer uses a distinct, "clean" memory

Layered R-W Protocol Graph \mathcal{I} () $\mathbf{01}$

Layered R-W Protocol Graph

 ${\mathcal P} \text{ is always a subdivision of } {\mathcal I}$

Road Map

Elementary Graph Theory

Models of Computation

Approximate Agreement

mem[A] := 0
other := mem[B]
if other == ⊥ then
 decide 0
else
 decide 1/3

mem[A] := 0 if mem[B] == ⊥ then decide 0 If she doesn't see Bob's value, decide her own. decide 1/3

mem[A] := 0
if mem[B] == ⊥ then
 decide 0
else
 decide 1/3

If she see's Bob's value, jump to the middle

One-Layer 1/3-Agreement Protocol

Distributed Computing through Combinatorial Topology 107

2-Layer 1/5-Agreement

Fact

In the layered read-write model,

The 1/K-Agreement Task

Road Map

Elementary Graph Theory

Models of Computation

Approximate Agreement

Task Solvability

Fact

The protocol graph for any *L*-layer protocol with input graph \mathcal{I} is a subdivision of \mathcal{I} , where each edge is subdivided 3^L times.

Main Theorem

The two-process task $(\mathcal{I}, \mathcal{O}, \Delta)$ is solvable in the layered read-write model if and only if there exists a connected carrier map $\Phi: \mathcal{I} \to 2^{\mathcal{O}}$ carried by Δ .

Corollary

The consensus task has no layered read-write protocol

Corollary

Any ϵ -agreement task has a layered read-write protocol

This work is licensed under a <u>Creative Commons Attribution-</u> ShareAlike 2.5 License.

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

