
Two-Process Systems

Companion slides for
Distributed Computing

Through Combinatorial Topology
Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Distributed Computing through
Combinatorial Topology

Two-Process Systems

Two-process systems can
be captured by elementary

graph theory
gentle introduction to more
general structures needed

later for larger systems
Distributed Computing through

Combinatorial Topology
2

Presenter
Presentation Notes
It is remarkable that to obtain the characterization of two-process task solvability, we need only a fewnotions from graph theory, namely, maps between graphs and connectivity.

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
3

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
4

A Vertex

Distributed Computing through
Combinatorial Topology

5

Presenter
Presentation Notes
From a purely combinatorial point of view, a vertex is just an element from some domain. It is often convenient to visualize a vertex as a point in some Euclidean space.

A Vertex
Combinatorial: an element of a set.

Distributed Computing through
Combinatorial Topology

6

Presenter
Presentation Notes
From a purely combinatorial point of view, a vertex is just an element from some domain. It is often convenient to visualize a vertex as a point in some Euclidean space.

A Vertex
Combinatorial: an element of a set.

Geometric: a point in Euclidean Space

Distributed Computing through
Combinatorial Topology

7

Presenter
Presentation Notes
From a purely combinatorial point of view, a vertex is just an element from some domain. It is often convenient to visualize a vertex as a point in some Euclidean space.

An Edge

8

Presenter
Presentation Notes
A pair of vertices can be linked by an edge. An edge is just a set of two vertices.

An Edge
Combinatorial: a set of two vertexes.

9

Presenter
Presentation Notes
A pair of vertices can be linked by an edge. An edge is just a set of two vertices.

An Edge
Combinatorial: a set of two vertexes.

Geometric: line segment joining two points

10

Presenter
Presentation Notes
A pair of vertices can be linked by an edge. An edge is just a set of two vertices.

A Graph

Distributed Computing through
Combinatorial Topology

11

Presenter
Presentation Notes
Informally, a graph is a set of vertices with some pairs linked by edges. This definition is standard.

A Graph
Combinatorial: a set of sets of vertices.

Distributed Computing through
Combinatorial Topology

12

Presenter
Presentation Notes
Informally, a graph is a set of vertices with some pairs linked by edges. This definition is standard.

A Graph
Combinatorial: a set of sets of vertices.

Geometric: points joined by line segments

Distributed Computing through
Combinatorial Topology

13

Presenter
Presentation Notes
Informally, a graph is a set of vertices with some pairs linked by edges. This definition is standard.

Graphs

finite set V with a collection
G of subsets of V,

Distributed Computing through
Combinatorial Topology

14

Presenter
Presentation Notes
Formally, a graph is given by a set V of vertices, and a collection of subsets of vertices, satisfying certain properties.

Graphs

simplices
(singular: simplex)

finite set V with a collection
G of subsets of V,

vertices

Distributed Computing through
Combinatorial Topology

15

Presenter
Presentation Notes
The set V is called the set of vertices, and the subsets are called simplices, sing: simplex.

Graphs

Distributed Computing through
Combinatorial Topology

(1) If X 2 G, then |X| · 2

finite set V with a collection
G of subsets of V,

16

Presenter
Presentation Notes
A graph is a set of sets of vertices, satisfying [animation]

Graphs

Distributed Computing through
Combinatorial Topology

(1) If X 2 G, then |X| · 2

finite set V with a collection
G of subsets of V,

vertex: |X| = 1
edge: |X|= 2

17

Presenter
Presentation Notes
A graph is a set of sets of vertices, satisfying [animation]

Graphs

(1) If X 2 G, then |X| · 2
(2) for all v 2 V, {v} 2 G

finite set V with a collection
G of subsets of V,

18

Presenter
Presentation Notes
The singleton set containing each vertex is in the graph. Usually we will be casual about the distinction between a vertex and its singleton set.

Graphs

(1) If X 2 G, then |X| · 2
(2) for all v 2 V, {v} 2 G

(3) for all X 2 G, and Y ½ X, Y 2 G

finite set V with a collection
G of subsets of V,

19

Presenter
Presentation Notes
Graphs are closed under inclusion. If X is a simplex in \cG, and Y is a subset of X, then X is also in \cG. For graphs, this just says that if an edge is in the graph, so are its two vertices.

Dimension

dim(X) = |X|-1.

dimension 0

dimension 1

Distributed Computing through
Combinatorial Topology

20

Presenter
Presentation Notes
A vertex has dimension zero, an edge has dimension one. The dimension of a simplex is one less than its cardinality. We will revisit this later when we introduce simplices of higher dimension.

Pure Graphs

pure of dim 0

pure of dim 1

Distributed Computing through
Combinatorial Topology

21

Presenter
Presentation Notes
A graph is pure if either no vertex is in an edge, or they all are. The first is pure of dimension 0, and the second is pure of dimension 1.

Graph Coloring

Distributed Computing through
Combinatorial Topology

22

Presenter
Presentation Notes
Assume C is a~set. A \emph{coloring} of a graph \cG is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of \cG, $\chi(s_0) \neq \chi(s_1)$. We say that a graphis \emph{chromatic}, or that it is \emph{colored by C}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where A and B are the names of the two processes.

Graph Coloring

Â: G ! C

Distributed Computing through
Combinatorial Topology

23

Presenter
Presentation Notes
Assume C is a~set. A \emph{coloring} of a graph \cG is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of \cG, $\chi(s_0) \neq \chi(s_1)$. We say that a graphis \emph{chromatic}, or that it is \emph{colored by C}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where A and B are the names of the two processes.

Graph Coloring

Â: G ! C
for each edge (s0, s1) 2 G, Â(s0) ≠ Â(s1).

Distributed Computing through
Combinatorial Topology

24

Presenter
Presentation Notes
Assume C is a~set. A \emph{coloring} of a graph \cG is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of \cG, $\chi(s_0) \neq \chi(s_1)$. We say that a graphis \emph{chromatic}, or that it is \emph{colored by C}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where A and B are the names of the two processes.

Graph Coloring

Â: G ! C
for each edge (s0, s1) 2 G, Â(s0) ≠ Â(s1).

usually process names chromatic graphs

Distributed Computing through
Combinatorial Topology

25

Presenter
Presentation Notes
Assume C is a~set. A \emph{coloring} of a graph \cG is a~function $\chi:~V(\cG)~\rightarrow C$, such that for each edge $\set{s_0,s_1}$ of \cG, $\chi(s_0) \neq \chi(s_1)$. We say that a graphis \emph{chromatic}, or that it is \emph{colored by C}, if it is equipped with a~coloring $\chi:V(\cG)\rightarrow C$. Often we will color vertices with just two colors: $C=\set{A,B}$, where A and B are the names of the two processes.

Graph Labeling

1 0

0

1

Distributed Computing through
Combinatorial Topology

26

Presenter
Presentation Notes
More generally, given a set L, an \emph{L-labeling} of \cG is defined as a function f that assigns to each vertex an element of L, without any further conditions imposed by the existence of edges. We say the graph is \emph{labeled} by~L. A coloring is a labeling, but not vice-versa.

Graph Labeling

1 0

0

1 f: G ! L

Distributed Computing through
Combinatorial Topology

27

Presenter
Presentation Notes
More generally, given a set L, an \emph{L-labeling} of \cG is defined as a function f that assigns to each vertex an element of L, without any further conditions imposed by the existence of edges. We say the graph is \emph{labeled} by~L. A coloring is a labeling, but not vice-versa.

Graph Labeling

1 0

0

1 f: G ! L
usually values from some domain

Distributed Computing through
Combinatorial Topology

28

Presenter
Presentation Notes
More generally, given a set L, an \emph{L-labeling} of \cG is defined as a function f that assigns to each vertex an element of L, without any further conditions imposed by the existence of edges. We say the graph is \emph{labeled} by~L. A coloring is a labeling, but not vice-versa.

Labeled Chromatic Graph

0 1

1

0

name(s) = Â(s) view(s) = f(s)

Distributed Computing through
Combinatorial Topology

29

Presenter
Presentation Notes
For distributed computing, if s is a vertex in a labeled chromatic graph, we denote by $\name(s)$ the value $\chi(s)$, and by $\view(s)$ the value $f(s)$. Moreover, we assume that each vertex in a labeled chromatic graph is uniquely identified by its values of $\name(\cdot)$ and $\view(\cdot)$.

Simplicial Maps

Vertex-to-vertex map …

that also sends edges to edges.

Distributed Computing through
Combinatorial Topology

30

Presenter
Presentation Notes
Given two graphs \cG and \cH, a \emph{vertex map} $\mu:~V(\cG)~\rightarrow~V(\cH)$ carries each vertex of \cG to a vertex of \cH. However, for the map to preserve structure, it must also carry edges to edges. The vertex map μ is a \emph{simplicial map} if it also carries simplices to simplices: that is, if $\set{\vs_0,\vs_1}$ is a simplex in \cG, then $\set{\mu(\vs_0),\mu(\vs_1)}$ is a simplex of \cH. Notice that $\mu(\vs_0)$ and $\mu(\vs_1)$ need not be distinct: the image of an edge may be a vertex.

Rigid Simplicial Maps

A simplicial map can send
an edge to a vertex …

Distributed Computing through
Combinatorial Topology

31

Presenter
Presentation Notes
Notice that $\mu(\vs_0)$ and $\mu(\vs_1)$ need not be distinct: the image of an edge may be a vertex. If, for $\vs_0 \neq \vs_i$, $\mu(\vs_0) \neq \mu(\vs_1)$, then the map is said to be \emph{rigid}. In the terminology of graph theory, a~rigid simplicial map is called a~\emph{graph homomorphism}.

Rigid Simplicial Maps

A simplicial map can send
an edge to a vertex …

A simplicial map that sends
distinct vertices to distinct
vertices is rigid.

Distributed Computing through
Combinatorial Topology

32

Presenter
Presentation Notes
Notice that $\mu(\vs_0)$ and $\mu(\vs_1)$ need not be distinct: the image of an edge may be a vertex. If, for $\vs_0 \neq \vs_i$, $\mu(\vs_0) \neq \mu(\vs_1)$, then the map is said to be \emph{rigid}. In the terminology of graph theory, a~rigid simplicial map is called a~\emph{graph homomorphism}.

A Path Between two Vertices

Distributed Computing through
Combinatorial Topology

33

A Path Between two Vertices

A graph is connected if
there is a path between
every pair of vertices

Distributed Computing through
Combinatorial Topology

34

Presenter
Presentation Notes
 A graph is connected if there is a path between every pair of vertices.

Not Connected

A graph is connected if
there is a path between
every pair of vertices

Distributed Computing through
Combinatorial Topology

35

Presenter
Presentation Notes
Here is an example of a graph that is not connected.

Theorem

Distributed Computing through
Combinatorial Topology

Theorem

Á

The image of a connected
graph under a simplicial map
is connected.

36

Carrier Maps

Distributed Computing through
Combinatorial Topology

©: G ! 2H

For graphs G, H, a carrier map

Carries each simplex of G to a subgraph of H …

©

satisfying monotonicity:
for all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

37

Presenter
Presentation Notes
While a simplicial map carries simplices to simplices, it is also useful in the context of distributed computing to define maps that carry simplices to subgraphs.

Monotonicity

Strict Carrier Maps

Distributed Computing through
Combinatorial Topology

For all ¾,¿2G, if ¾µ¿, then ©(¾)µ©(¿).

Equivalent to …
©(¾Å¿) µ ©(¾) Å ©(¿)

Definition
© is strict if ©(¾Å¿) = ©(¾) Å ©(¿)

38

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
39

Two Processes

Distributed Computing through
Combinatorial Topology

Hello! I’m
Alice

Hello! I’m
Bob

40

Informal Task Definition

Distributed Computing through
Combinatorial Topology

Processes start with input values …

They communicate …

They halt with output values …

legal for those inputs.

41

Formal Task Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

42

Formal Task Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Output graph O
all possible assignments of output values

43

Formal Task Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Output graph O
all possible assignments of output values

Carrier map ¢: I ! 2O

all possible assignments of output values
for each input

44

Task Input Graph: Consensus

Distributed Computing through
Combinatorial Topology

1

1 0

0

I

45

Presenter
Presentation Notes
 \cI is a pure chromatic \emph{input graph} of dimension~1colored by $\set{A,B}$ and labeled by \Vin;

Task Input Graph

Distributed Computing through
Combinatorial Topology

0 1

1 0

I

46

Presenter
Presentation Notes
 \cI is a pure chromatic \emph{input graph} of dimension~1colored by $\set{A,B}$ and labeled by \Vin;

Task Input Graph

Distributed Computing through
Combinatorial Topology

1 1

0 0

Pure

Colored by process names

Labeled by input values

47

Presenter
Presentation Notes
 \cI is a pure chromatic \emph{input graph} of dimension~1colored by $\set{A,B}$ and labeled by \Vin;

Task Output Graph

Distributed Computing through
Combinatorial Topology

1 1

0 0

O

48

Presenter
Presentation Notes
\cO is a pure chromatic \emph{output graph}of dimension~1 colored by $\set{A,B}$ and labeled by \Vout;

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

0 0

1 1

0 0

¢: I ! 2O I O

49

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

0 0

1 1

0 0

¢: I ! 2O I O

If Bob runs alone with input 1 …

then he decides output 1.
50

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

0 0

1 1

0 0

¢: I ! 2O I O

If Bob and Alice both have input 1 …

then they both decide output 1.
51

Task Carrier Map

Distributed Computing through
Combinatorial Topology

1 1

0 0

1 1

0 0

¢: I ! 2O I O

If Bob has 1 and Alice 0 …

then they must agree, on either one.
52

Example: Coordinated Attack

53

Alice and Bob win
If they both attack

together

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Indifferent

Attack at dawn! Attack at noon!

Input Graph

Distributed Computing through
Combinatorial Topology

I

54

Presenter
Presentation Notes
Here is how to consider this problem using the combinatorial approach, encompassing all possible scenarios in a single geometric object, a graph.Alice has two possible initial states: she intends to attack either at dawn, or at noon the next day. Each such state is a black vertex. Bob has only one possible initial state: he await's Alice's order. This state is the white vertex linking the two edges, representing Bob's uncertainty whether he is in a world where Alice intends to attack at dawn, on the left, or in a world where she intends to attack at noon, on the right.

Output Graph

Distributed Computing through
Combinatorial Topology

dawn! noon!

failed!

O

55

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

I

O
56

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

dawn! failed!

dawn! I

O
57

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

noon! failed!

noon! I

O
58

Carrier Map

Distributed Computing through
Combinatorial Topology

¢

dawn!

dawn! I

O
59

Example: Coordinated Attack

60

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Example: Coordinated Attack

61

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Alice and Bob realize that
they do not need to agree

on an exact time …

Example: Coordinated Attack

62

Alice Bob

Distributed Computing through
Combinatorial Topology

Enemy

Alice and Bob realize that
they do not need to agree

on an exact time …
they will win if attack times

are sufficiently close.

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
63

Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
64

Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
65

Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.

0 1

0 1/5 2/5 3/5 4/5 1

Coordinated Attack Graphs

Distributed Computing through
Combinatorial Topology

¢

I

O
66

Presenter
Presentation Notes
If they both run, then any edge in the output graph is acceptable.

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
67

Protocols

Distributed Computing through
Combinatorial Topology

Models of Computation

68

Presenter
Presentation Notes
Now consider a protocol execution in which the processes exchange information through the channels (message-passing, read-write memory, or other) provided by the model. At the end of the execution, each process has its own view (final state). The set of all possible final views themselves form a chromatic graph. Each vertex is a pair (P,p), where P is a process name, and p is P's view (final state) at the end of some execution. A pair of such vertices $\set{(A,a),(B,b)}$ is an edge if there is some execution where A halts with view a and B halts with view b. This graph is called the \emph{protocol graph}.

Alice’s Protocol

69

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[A] + mem[B];
return δ(view)

Finite program

Bob’s protocol is symmetric

Distributed Computing through
Combinatorial Topology

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[B];
return δ(view)

Alice’s Protocol

70 Distributed Computing through
Combinatorial Topology

shared two-element memory

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[B];
return δ(view)

Alice’s Protocol

71 Distributed Computing through
Combinatorial Topology

Start with input value

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[B];
return δ(view)

Alice’s Protocol

72 Distributed Computing through
Combinatorial Topology

Run for L layers

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[B];
return δ(view)

Alice’s Protocol

73 Distributed Computing through
Combinatorial Topology

Alice writes her value, read Bob’s
value, and concatenate it to my view

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[B];
return δ(view)

Alice’s Protocol

74 Distributed Computing through
Combinatorial Topology

Alice writes her value, read Bob’s
value, and concatenate it to my view

shared mem array 0..1 of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[A] := view;
 view := view + mem[B];
return δ(view)

Alice’s Protocol

75 Distributed Computing through
Combinatorial Topology

finally, apply task-specific
decision map to view

Formal Protocol Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

76

Formal Protocol Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Protocol graph P
all possible process views after execution

77

Formal Protocol Definition

Distributed Computing through
Combinatorial Topology

Input graph I
all possible assignments of input values

Protocol graph P
all possible process views after execution

Carrier map ¥: I ! 2O

all possible assignments of views

78

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

1 0

0? 01 01 ?1

¥

I

P
79

Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 01 01 ?1

Colored by process names

Labeled with final views

P

80

Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 01 01 ?1

Alice finishes before Bob
starts, doesn’t see his value

P

81

Presenter
Presentation Notes
Each vertex represents a view. Alice has two possible views. Of course, in a longer execution, she would have many more views.

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 01 01 ?1

Alice and Bob run together,
she sees his value.

P

82

Presenter
Presentation Notes
Each vertex represents a view. Alice has two possible views. Of course, in a longer execution, she would have many more views.

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 01 01 ?1

Alice finishes, then Bob starts

P

83

Presenter
Presentation Notes
Each edge represents an execution. A vertex on the boundary of two edges is a view that can’t distinguish which execution actually happened.

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 01 01 ?1

Alice and Bob run together

P

84

Presenter
Presentation Notes
Each edge represents an execution. A vertex on the boundary of two edges is a view that can’t distinguish which execution actually happened.

One-Round Protocol Graph

Distributed Computing through
Combinatorial Topology

0? 01 01 ?1

Bob can’t tell whether Alice saw him

P

85

Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.

Execution Carrier Map

Distributed Computing through
Combinatorial Topology

1 0

0? 01 01 ?1

¥

I

P
86

Presenter
Presentation Notes
Here is the one-round protocol graph for two processes, where each process writes to memory, reads the other’s value, and then halts. Let’s take a closer look at the protocol graph.

Execution Carrier Map

Distributed Computing through
Combinatorial Topology

1 0

0? 01 01 ?1

¥

I

P

¥: I ! 2P

strict carrier map
¥(¾) Å ¥(¿) = ¥(¾ Å ¿) 87

Presenter
Presentation Notes
There is a strict carrier map Ξ from \cI to \cP, called the \emph{execution carrier map}, that carries each input simplex to a subgraph of the protocol graph. Ξ carries each input vertex (P,v) to the solo execution in which P finishes the protocol without hearing from the other process. It carries each input edge $\set{(A,a),(B,b)}$ to the subgraph of executions where A starts with input a and B with b.

Output graph 0 2/3 1/3 1

0? 01 01 ?1 Protocol graph

δ

The Decision Map

Distributed Computing through
Combinatorial Topology

δ

88

Presenter
Presentation Notes
The protocol graph is related to the output graph by a \emph{decision map} δ that sends each protocol graph vertex (P,p) to an output graph vertex (P,w), labeled with the same name. Operationally, this map should be understood as follows: if there is a protocol execution in which P finishes with view p and then chooses output w, then (P,p) is a vertex in the protocol graph, (P,w) a vertex in the output graph, and $\delta((P,p)) = (P,w)$. It is easy to see that δ is a simplicial map, carrying edges to edges, because any pair of mutually compatible final views yields a pair of mutually compatible decision values.

All Together

Distributed Computing through
Combinatorial Topology

0 1

0 2/3 1/3 1

0? 01 01 ?1 ¢

δ

I

P

O

¥

89

Presenter
Presentation Notes
Here is how the various graphs and maps fit together.

Definition

Distributed Computing through
Combinatorial Topology

Decision map δ is carried by carrier map ¢ if

for each input vertex s,

for each input edge ¾,

δ(¥(s)) µ ¢(s)

δ(¥(¾)) µ ¢(¾).

90

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

91

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

92

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

a simplicial decision map
δ:P ! O

93

Definition

Solving a Task

Distributed Computing through
Combinatorial Topology

The protocol (I,P,¥) solves the task (I, O, ¢)

if there is …

a simplicial decision map
δ:P ! O

94

such that δ is carried by ¢.
(δ agrees with ¢)

Layered Read-Write Model

95

Layered Read-Write Protocol

Distributed Computing through
Combinatorial Topology

96

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[i][A] := view;
 view := view + mem[A] + mem[B];
return δ(view)

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[i][A] := view;
 view := view + mem[A] + mem[B];
return δ(view)

As before, run for L layers

Layered Read-Write Protocol

Distributed Computing through
Combinatorial Topology

97

shared mem array 0..1,0..L of Value
view: Value := my input value;
for i: int := 0 to L do
 mem[i][A] := view;
 view := view + mem[A] + mem[B];
return δ(view)

Layered Read-Write Protocol

Distributed Computing through
Combinatorial Topology

Each layer uses a distinct, “clean” memory

98

Layered R-W Protocol Graph

Distributed Computing through
Combinatorial Topology

1 0

0? 01 01 ?1

¥

I

P
99

Presenter
Presentation Notes
As we have already seen, the one-round layered read-write protocol for a single input simplex is a subdivision of that simplex.

Layered R-W Protocol Graph

Distributed Computing through
Combinatorial Topology

¥

P is always a subdivision of I

I P

100

Presenter
Presentation Notes
twoGenerals-protocolGraph-carrier

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
101

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
other := mem[B]
if other == ? then
 decide 0
else
 decide 1/3

102

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
if mem[B] == ? then
 decide 0
else
 decide 1/3

Alice writes her value to memory

103

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
if mem[B] == ? then
 decide 0
else
 decide 1/3

If she doesn’t see Bob’s value, decide her own.

104

Alice’s 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

mem[A] := 0
if mem[B] == ? then
 decide 0
else
 decide 1/3

If she see’s Bob’s value, jump to the middle

105

0 2/3 1/3 1

0 2/3 1/3 1

0 2/3 1/3 1

Distributed Computing through
Combinatorial Topology

106

Presenter
Presentation Notes
Here is why this works: one process must see the other, and jump to the middle. If each one sees the other, and jumps, they are still within 1/3 of one anpther.

One-Layer 1/3-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

0 1

0 2/3 1/3 1

0? 01 01 ?1

δ

I

P

O

¥

107

Presenter
Presentation Notes
Here is how the various graphs and maps fit together.

No 1-Layer 1/5-Agreement
Protocol

Distributed Computing through
Combinatorial Topology

0 1

1/5 3/5 2/5 4/5

0? 01 01 ?1

δ

P

O

¥

1 0

(no map possible)

I

108

1 0

0 1/5 2/5 3/5 4/5 1

¥

0? 01 01 ?1

2-Layer 1/5-Agreement

Distributed Computing through
Combinatorial Topology

¥

I

O

layer 1

layer 2

δ

109

Presenter
Presentation Notes
5approx.pdf

Fact

Distributed Computing through
Combinatorial Topology

In the layered read-write model,

The 1/K-Agreement Task

Has a dlog3 Ke–layer protocol

110

Road Map
Elementary Graph Theory

Tasks

Models of Computation

Approximate Agreement

Task Solvability
Distributed Computing through

Combinatorial Topology
111

Fact

Distributed Computing through
Combinatorial Topology

The protocol graph for any L-layer protocol with
input graph I is a subdivision of I, where each
edge is subdivided 3L times.

112

Main Theorem

Distributed Computing through
Combinatorial Topology

The two-process task (I, O, ¢) is solvable in the
layered read-write model if and only if there
exists a connected carrier map ©: I ! 2O
carried by ¢.

113

Corollary

Distributed Computing through
Combinatorial Topology

The consensus task has no layered
read-write protocol

114

Corollary

Distributed Computing through
Combinatorial Topology

Any ²–agreement task has a layered
read-write protocol

115

116

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “Distributed Computing through

Combinatorial Topology” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Distributed Computing through
Combinatorial Topology

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

	Two-Process Systems
	Two-Process Systems
	Road Map
	Road Map
	A Vertex
	A Vertex
	A Vertex
	An Edge
	An Edge
	An Edge
	A Graph
	A Graph
	A Graph
	Graphs
	Graphs
	Graphs
	Graphs
	Graphs
	Graphs
	Dimension
	Pure Graphs
	Graph Coloring
	Graph Coloring
	Graph Coloring
	Graph Coloring
	Graph Labeling
	Graph Labeling
	Graph Labeling
	Labeled Chromatic Graph
	Simplicial Maps
	Rigid Simplicial Maps
	Rigid Simplicial Maps
	A Path Between two Vertices
	A Path Between two Vertices
	Not Connected
	Theorem
	Carrier Maps
	Strict Carrier Maps
	Road Map
	Two Processes
	Informal Task Definition
	Formal Task Definition
	Formal Task Definition
	Formal Task Definition
	Task Input Graph: Consensus
	Task Input Graph
	Task Input Graph
	Task Output Graph
	Task Carrier Map
	Task Carrier Map
	Task Carrier Map
	Task Carrier Map
	Example: Coordinated Attack
	Input Graph
	Output Graph
	Carrier Map
	Carrier Map
	Carrier Map
	Carrier Map
	Example: Coordinated Attack
	Example: Coordinated Attack
	Example: Coordinated Attack
	Coordinated Attack Graphs
	Coordinated Attack Graphs
	Coordinated Attack Graphs
	Coordinated Attack Graphs
	Road Map
	Protocols
	Alice’s Protocol
	Alice’s Protocol
	Alice’s Protocol
	Alice’s Protocol
	Alice’s Protocol
	Alice’s Protocol
	Alice’s Protocol
	Formal Protocol Definition
	Formal Protocol Definition
	Formal Protocol Definition
	One-Round Protocol Graph
	One-Round Protocol Graph
	One-Round Protocol Graph
	One-Round Protocol Graph
	One-Round Protocol Graph
	One-Round Protocol Graph
	One-Round Protocol Graph
	Execution Carrier Map
	Execution Carrier Map
	The Decision Map
	All Together
	Definition
	Solving a Task
	Solving a Task
	Solving a Task
	Solving a Task
	Layered Read-Write Model
	Layered Read-Write Protocol
	Layered Read-Write Protocol
	Layered Read-Write Protocol
	Layered R-W Protocol Graph
	Layered R-W Protocol Graph
	Road Map
	Alice’s 1/3-Agreement Protocol
	Alice’s 1/3-Agreement Protocol
	Alice’s 1/3-Agreement Protocol
	Alice’s 1/3-Agreement Protocol
	Slide Number 106
	One-Layer 1/3-Agreement Protocol
	No 1-Layer 1/5-Agreement Protocol
	2-Layer 1/5-Agreement
	Fact
	Road Map
	Fact
	Main Theorem
	Corollary
	Corollary
	Slide Number 116

