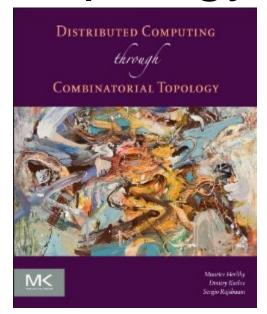
Elements of Combinatorial Topology



Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum Distributed Computing through Combinatorial Topology

1

Road Map

Simplicial Complexes

Standard Constructions

Carrier Maps

Connectivity

Subdivisions

Simplicial & Continuous Approximations

Road Map

Simplicial Complexes

Standard Constructions

Carrier Maps

Connectivity

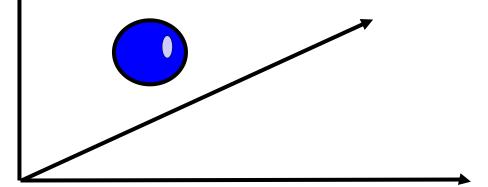
Subdivisions

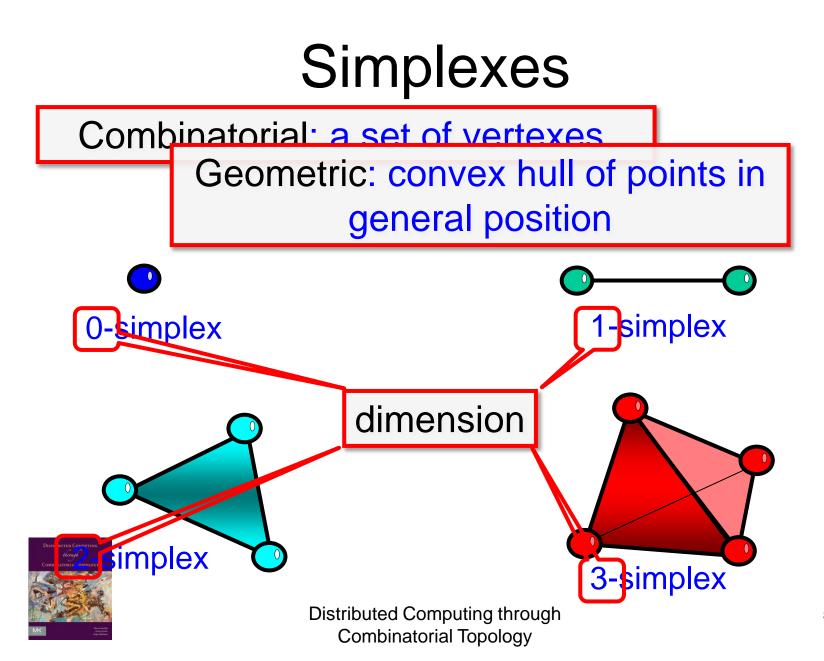
Simplicial & Continuous Approximations

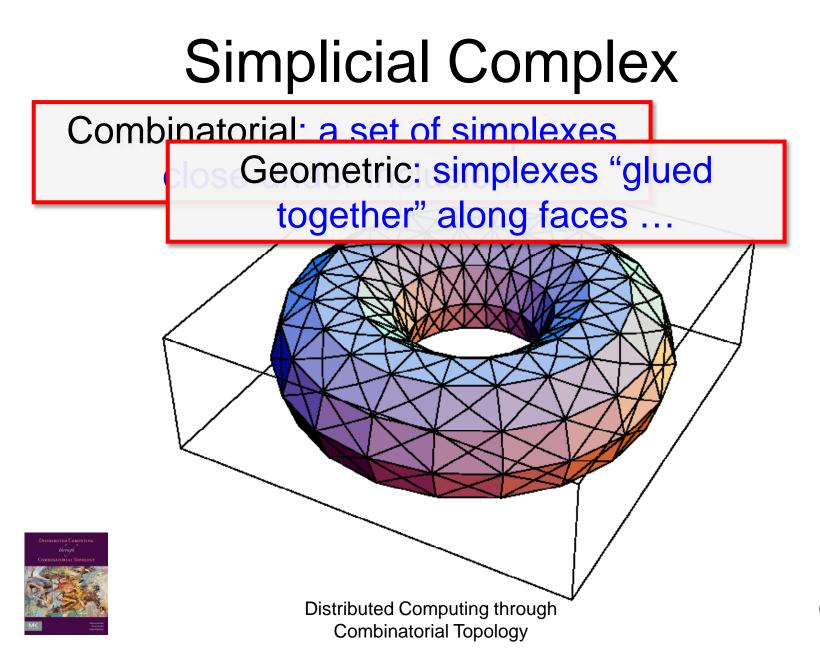
A Vertex

Combinatorial: an element of a set

Geometric: a point in highdimensional Euclidean Space





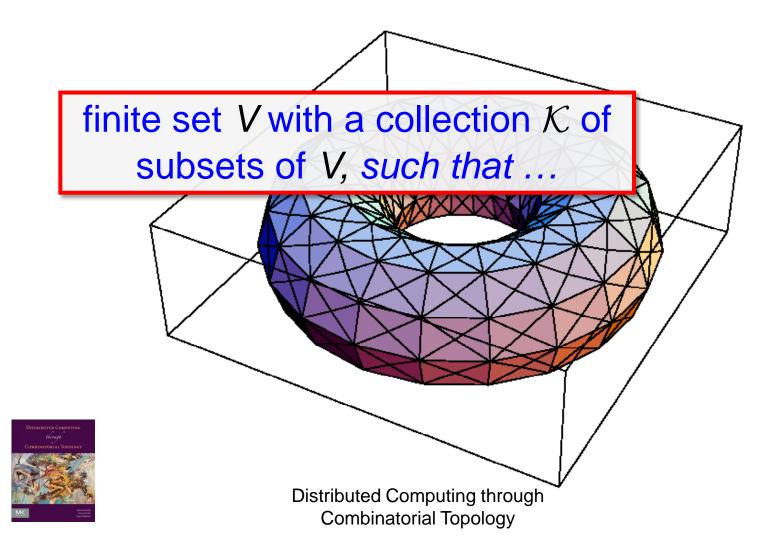


Graphs vs Complexes

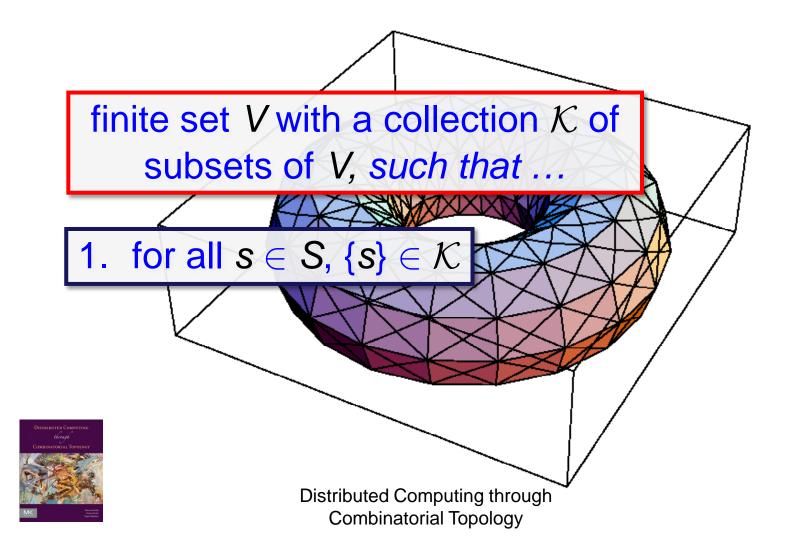


complexes are a natural generalization of graphs

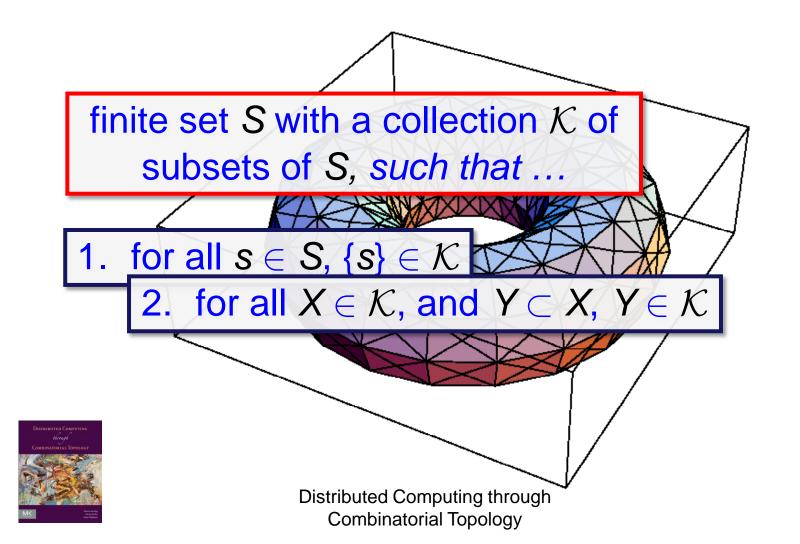
Abstract Simplicial Complex



Abstract Simplicial Complex

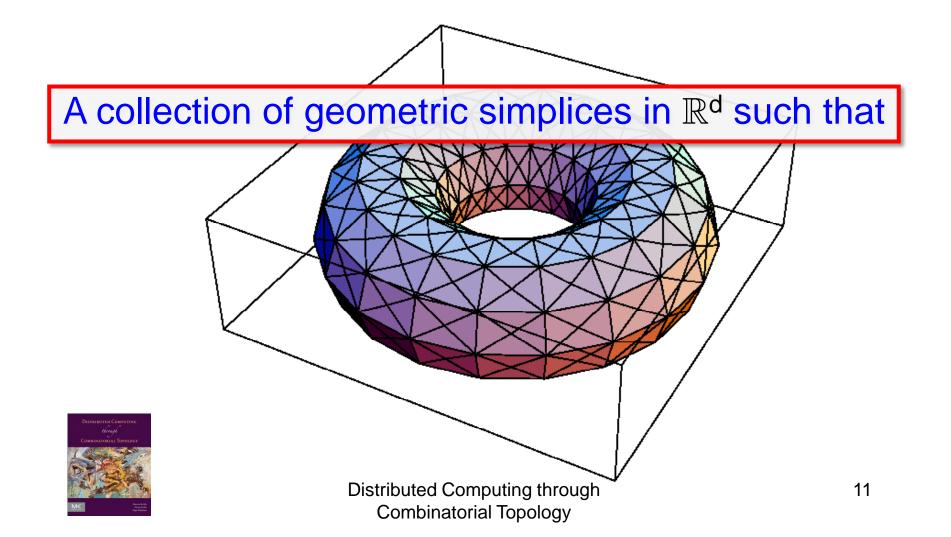


Abstract Simplicial Complex

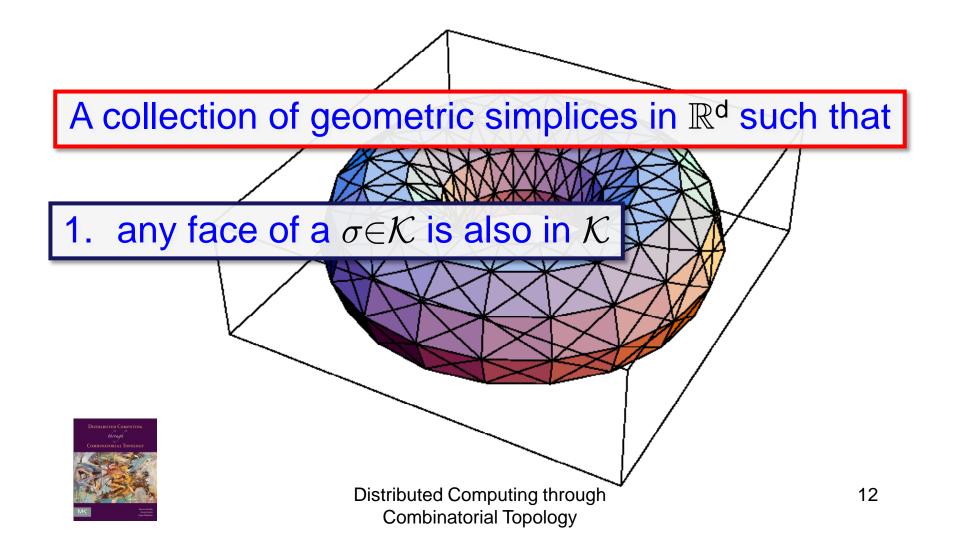


10

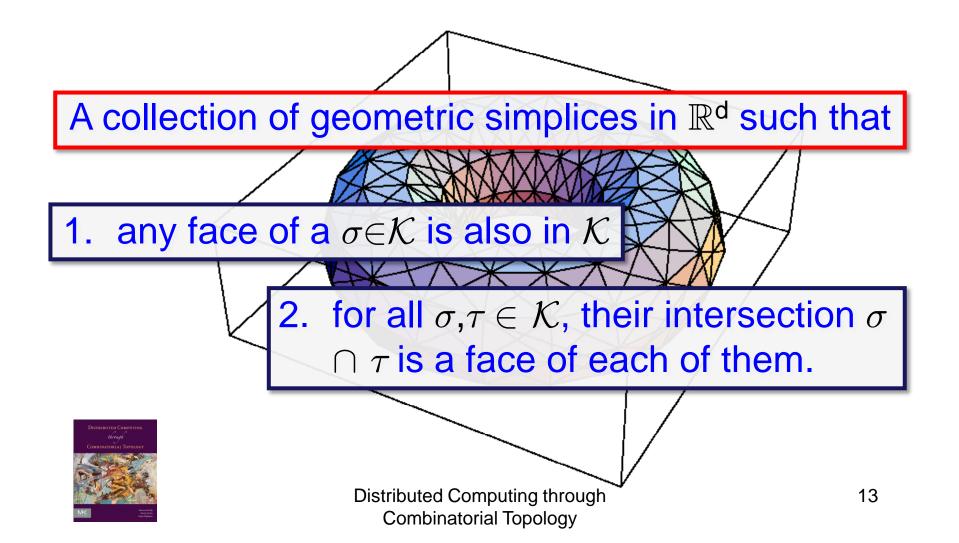
Geometric Simplicial Complex



Geometric Simplicial Complex



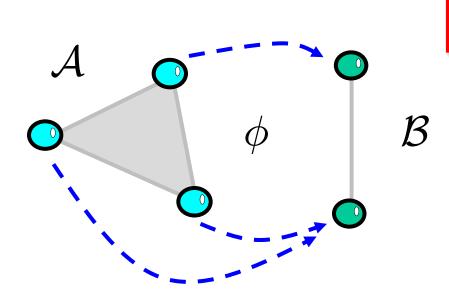
Geometric Simplicial Complex



Abstract vs Geometric Complexes

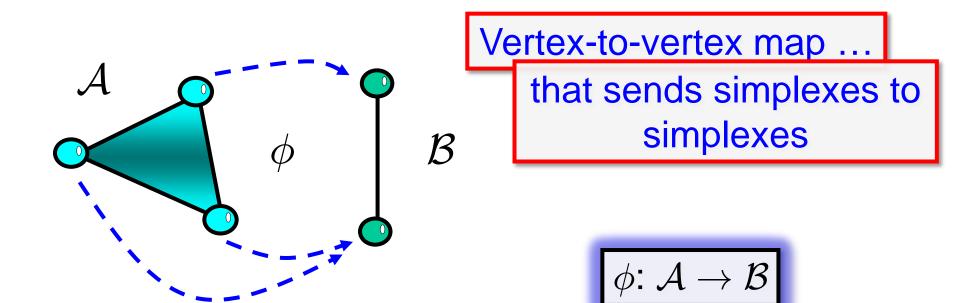
Abstract: A

Simplicial Maps



Vertex-to-vertex map ...

Simplicial Map



Road Map

Simplicial Complexes

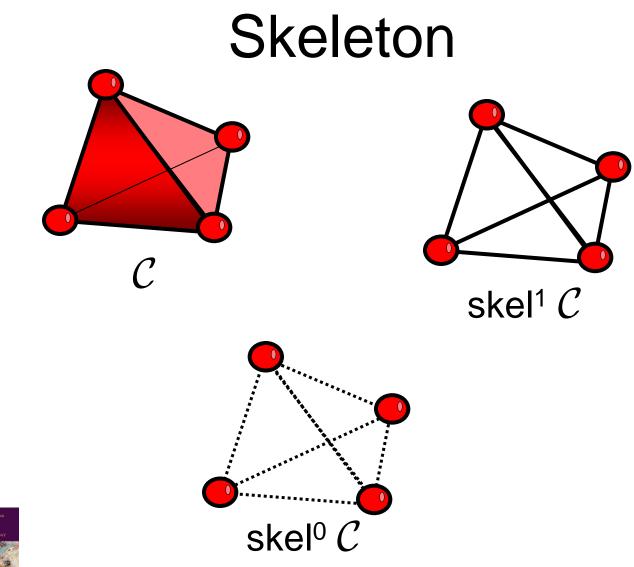
Standard Constructions

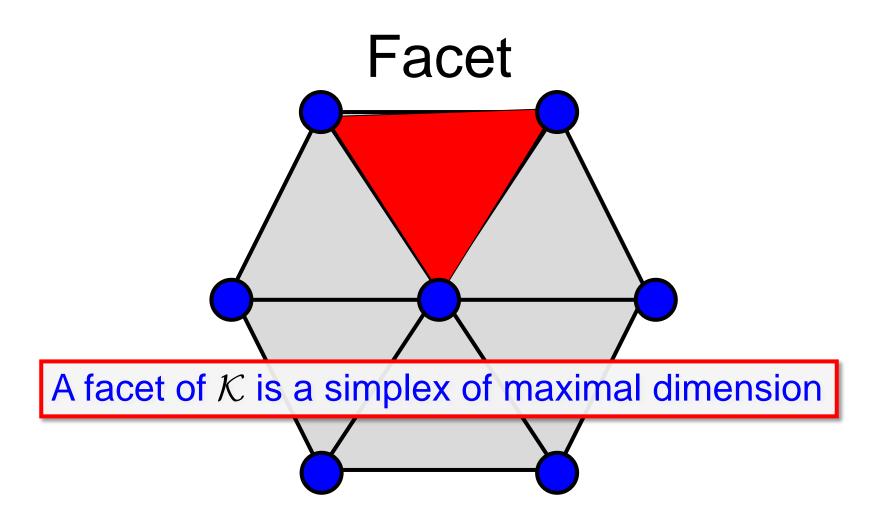
Carrier Maps

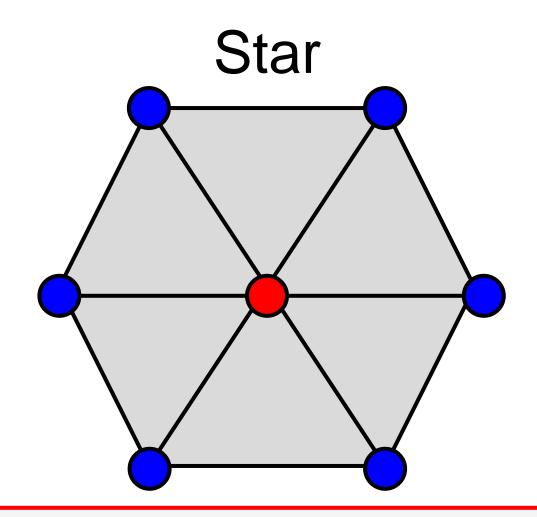
Connectivity

Subdivisions

Simplicial & Continuous Approximations

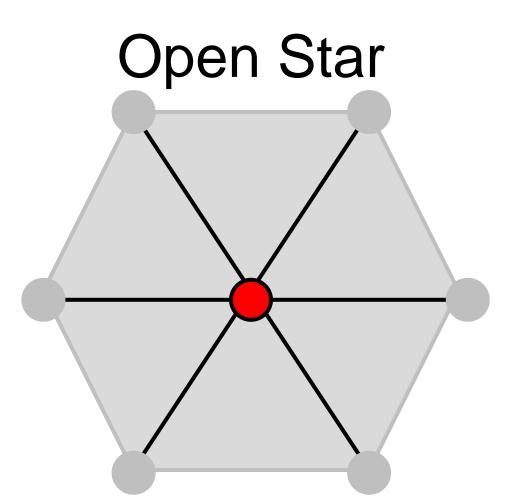






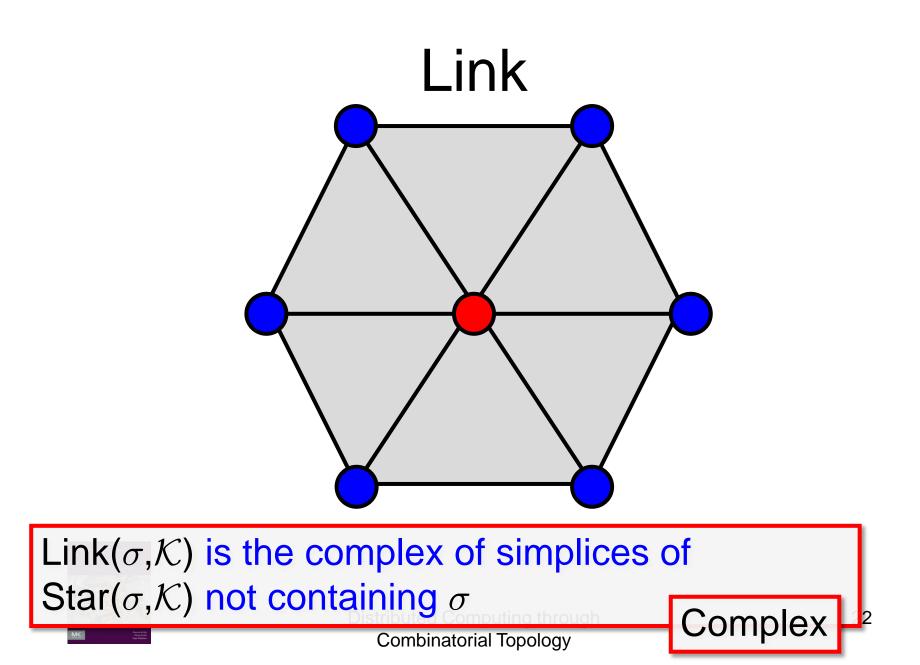
Star(σ , \mathcal{K}) is the complex of facets of \mathcal{K} containing σ

Distributed Computing through Combinatorial Topology Complex

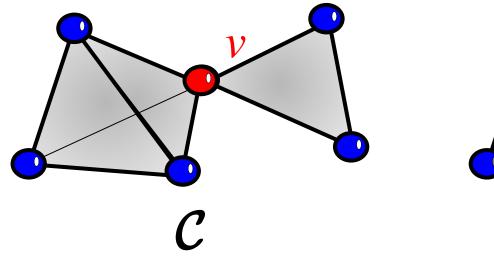


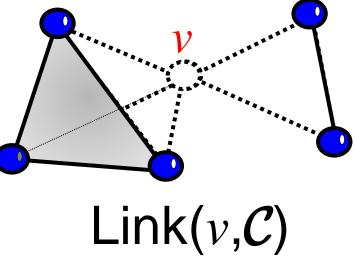
Star^o(σ , \mathcal{K}) union of interiors of simplexes containing σ

Distributed Computing through Combinatorial Topology **Point Set**

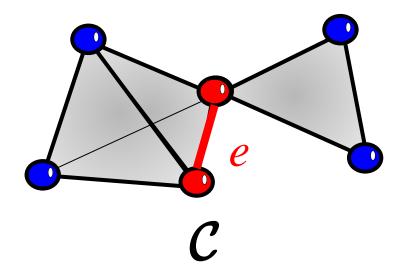


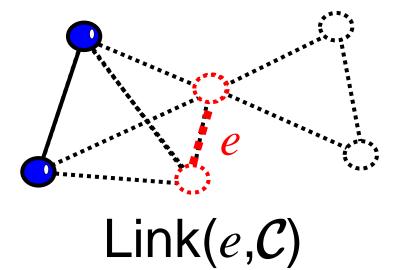
More Links





More Links





Join

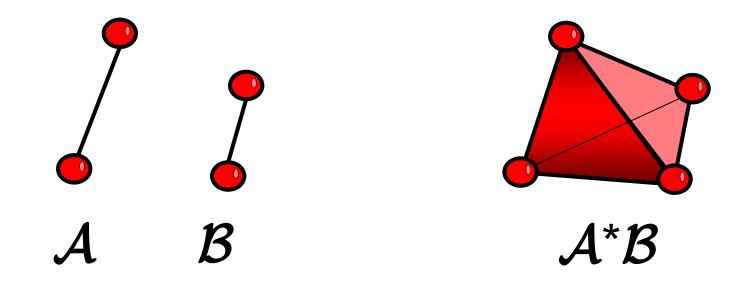
Let \mathcal{A} and \mathcal{B} be complexes with disjoint sets of vertices

their join $\mathcal{A}^*\mathcal{B}$ is the complex

with vertices $V(\mathcal{A}) \cup V(\mathcal{B})$

and simplices $\alpha \cup \beta$, where $\alpha \in \mathcal{A}$, and $\beta \in \mathcal{B}$.

Join



Road Map

Simplicial Complexes

Standard Constructions

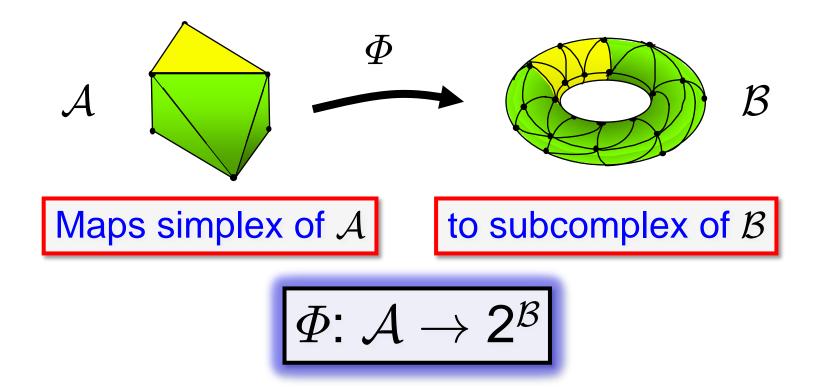
Carrier Maps

Connectivity

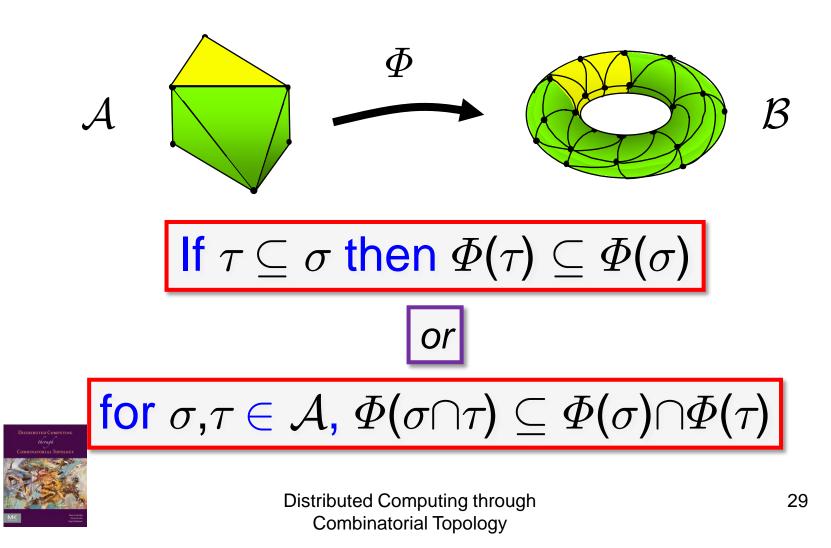
Subdivisions

Simplicial & Continuous Approximations

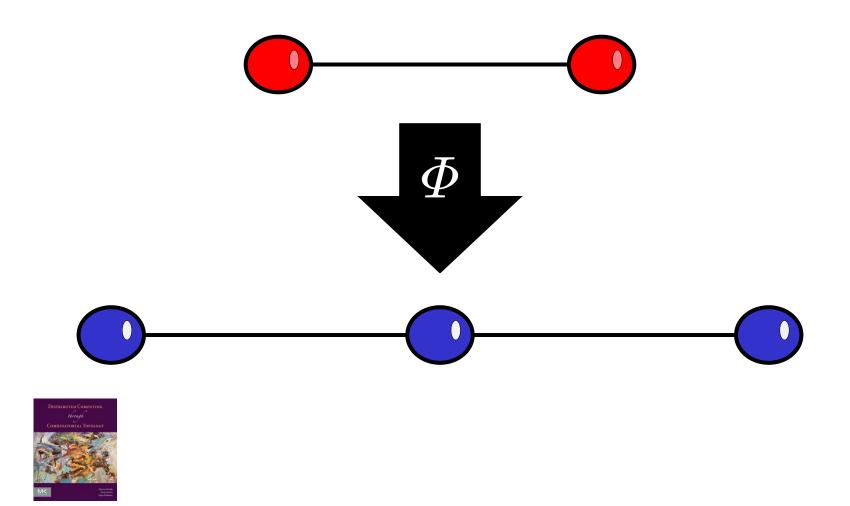
Carrier Map



Carrier Maps are Monotonic

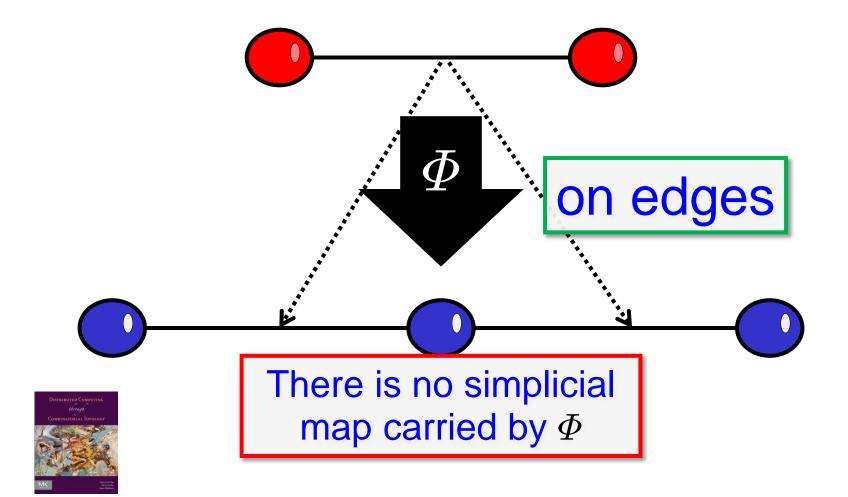


Example

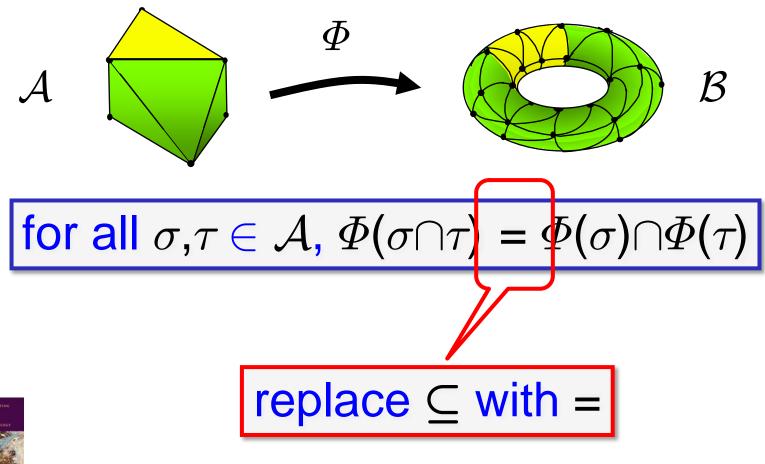


Example ${\varPhi}$ on vertices

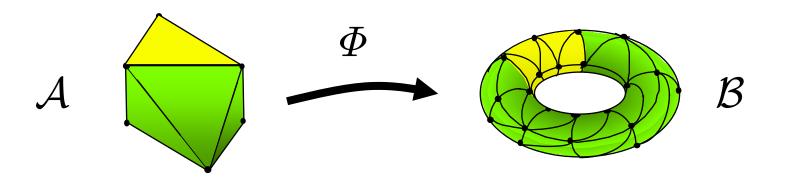
Example



Strict Carrier Maps

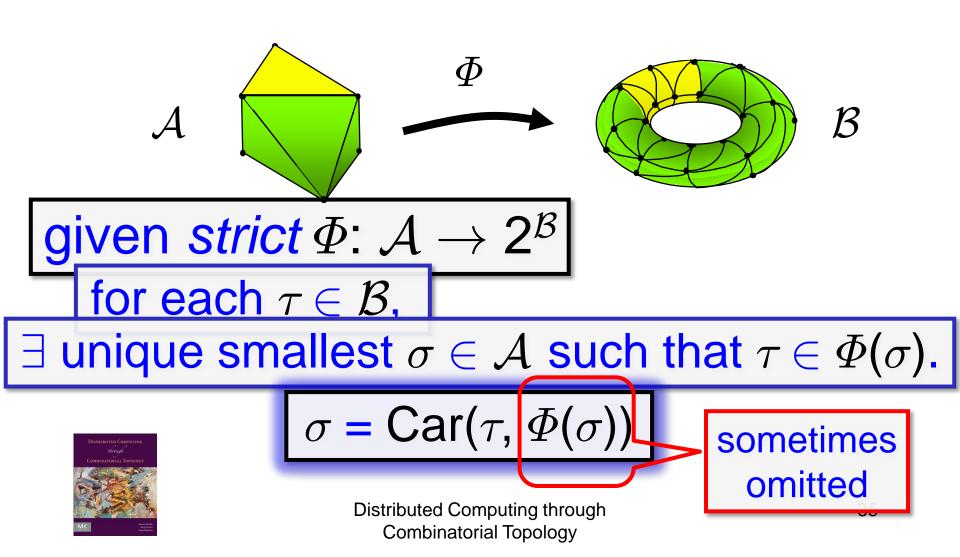


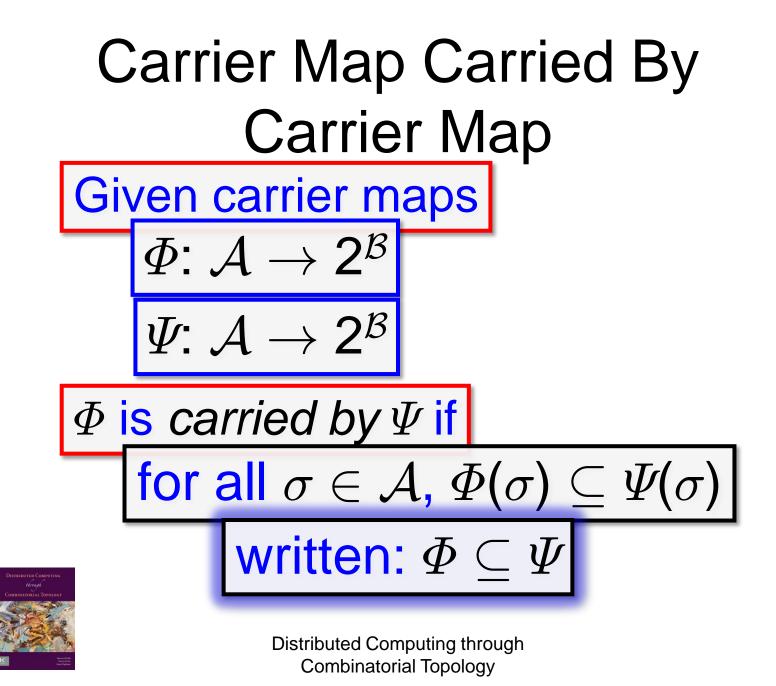
Rigid Carrier Maps

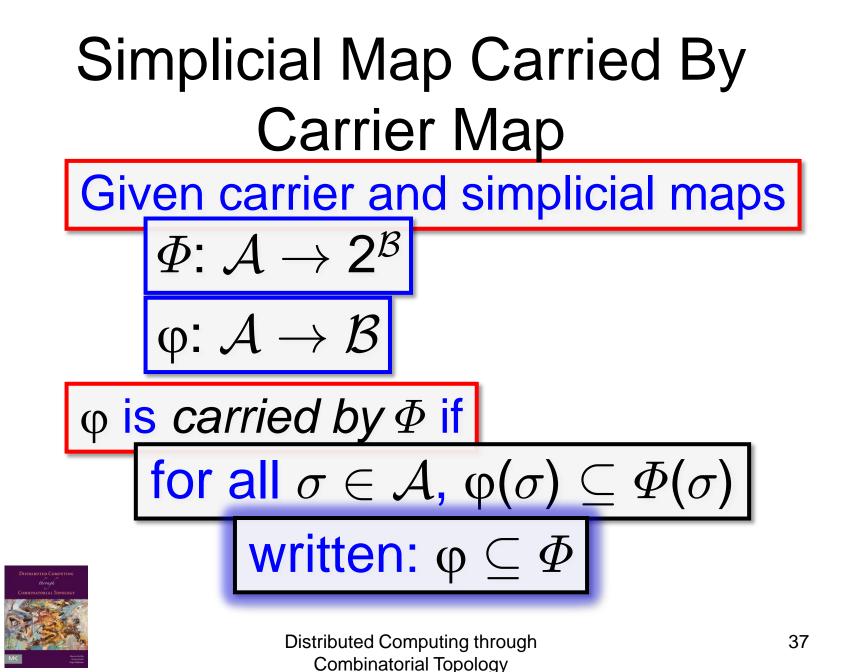


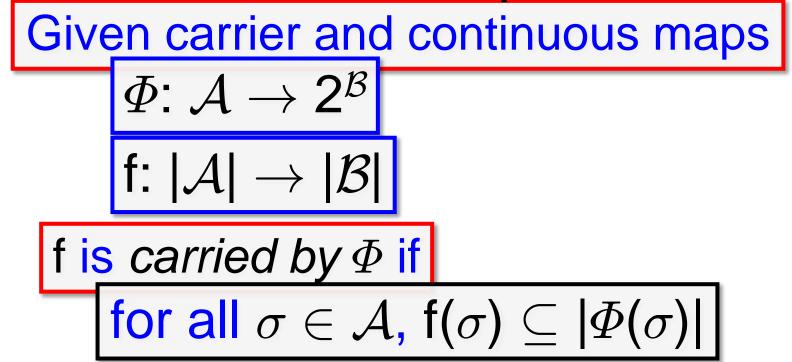
for $\sigma \in \mathcal{A}$, $\Phi(\sigma)$ is pure of dimension dim σ

Carrier of a Simplex

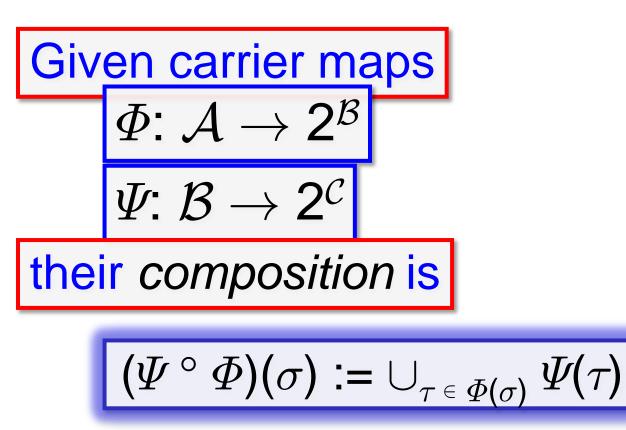




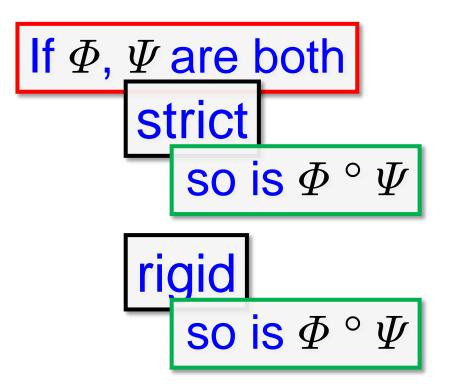




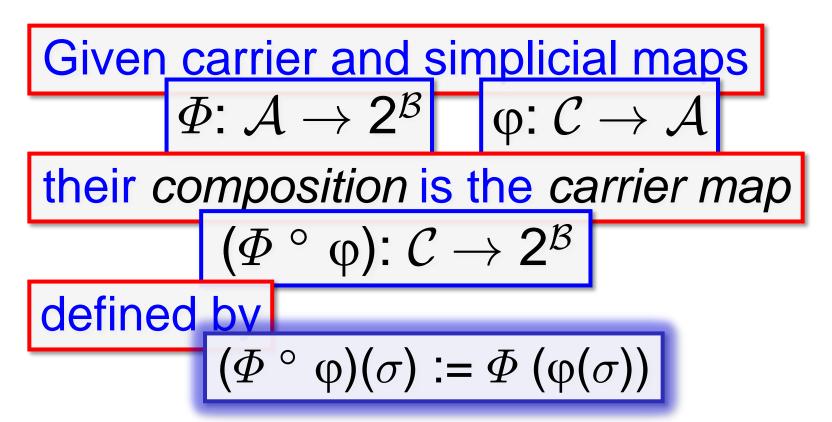
Compositions



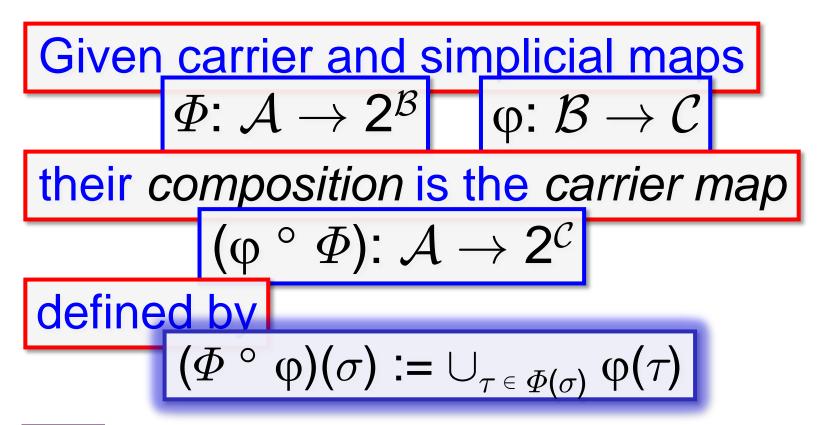
Theorem

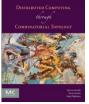


Compositions

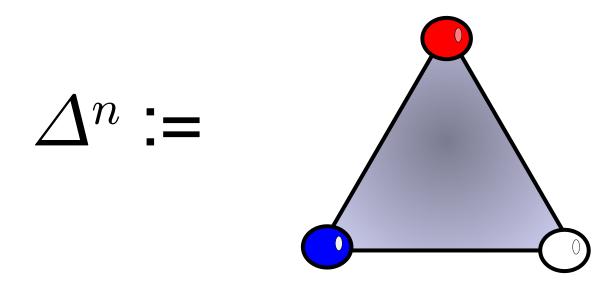


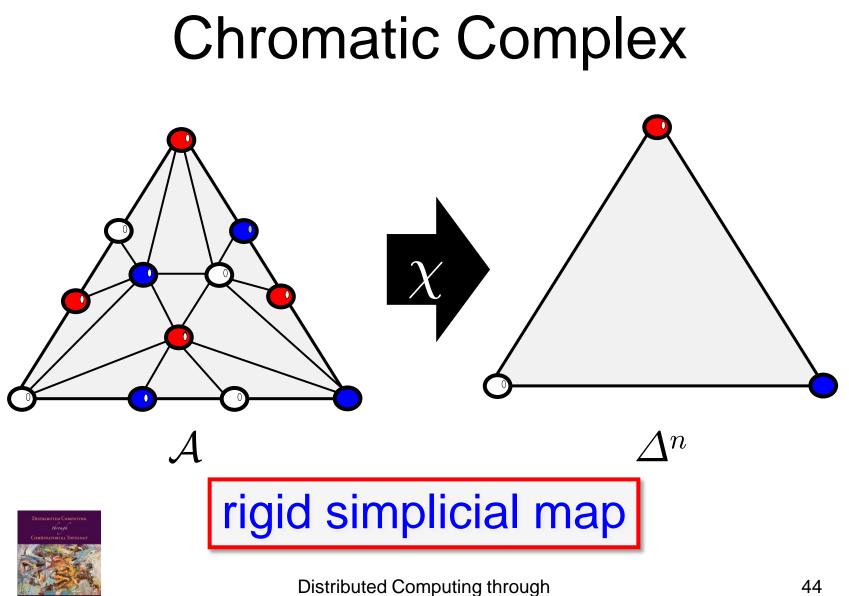
Compositions





Colorings





Combinatorial Topology



Road Map

Simplicial Complexes

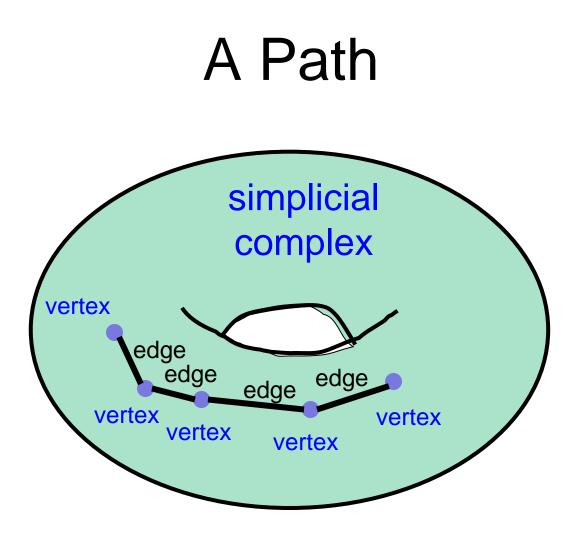
Standard Constructions

Carrier Maps

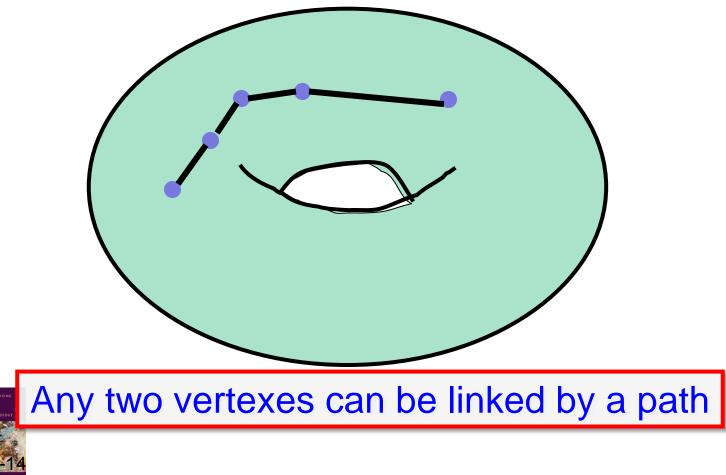
Connectivity

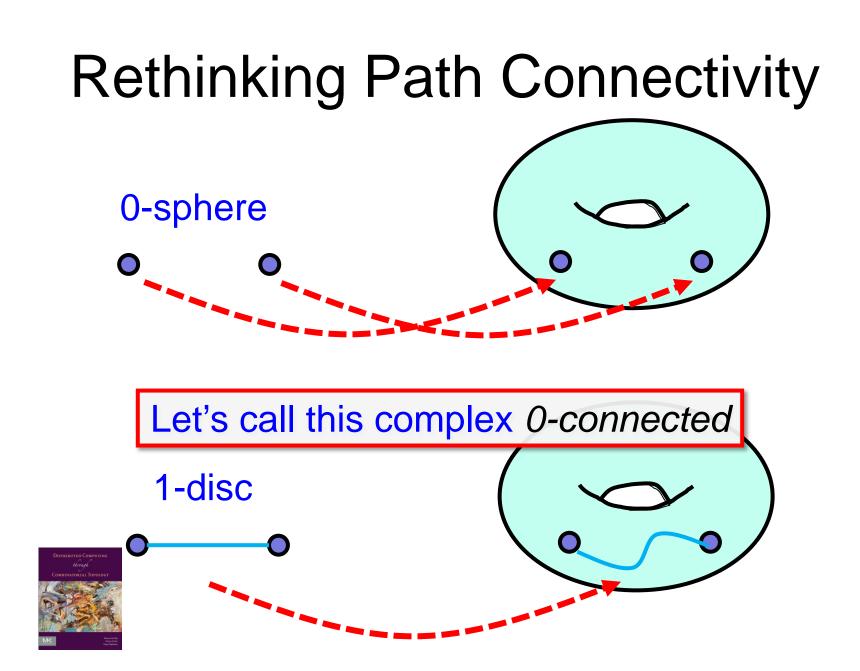
Subdivisions

Simplicial & Continuous Approximations

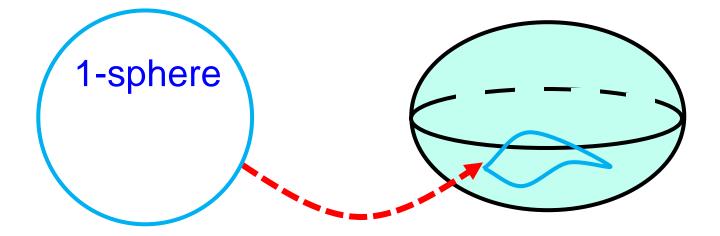


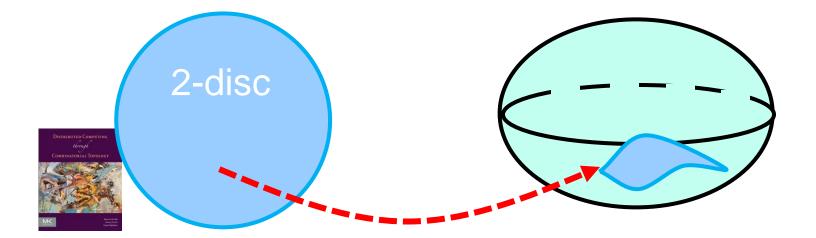
Path Connected



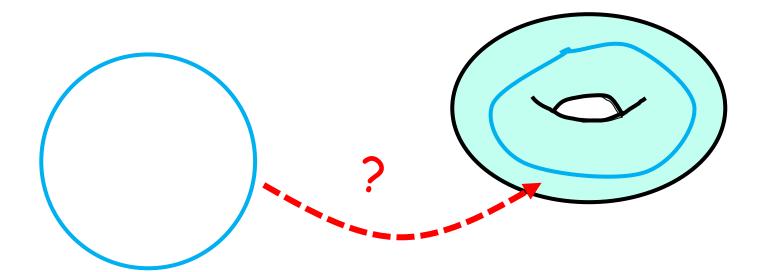


1-Connectivity



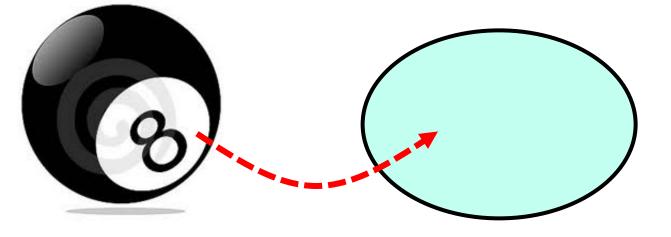


This Complex is not 1-Connected



2-Connectivity 2-sphere

3-disk



n-connectivity

C is *n*-connected, if, for $m \le n$, every continuous map of the *m*-sphere

$$f:S^m\to \mathcal{C}$$

can be extended to a continuous map of the (*m*+1)-disk

$$f: D^{m+1} \to \mathcal{C}$$

DISTRIBUTING COMPUTING LANGAS COMBINATORIAL TOPOLOGY

(-1)-connected is non-empty

Road Map

Simplicial Complexes

Standard Constructions

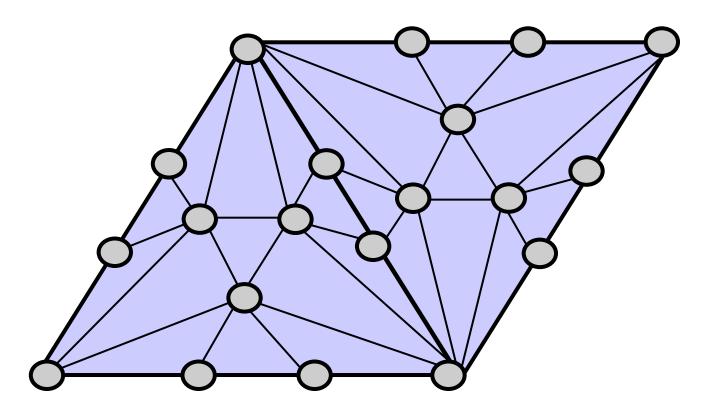
Carrier Maps

Connectivity

Subdivisions

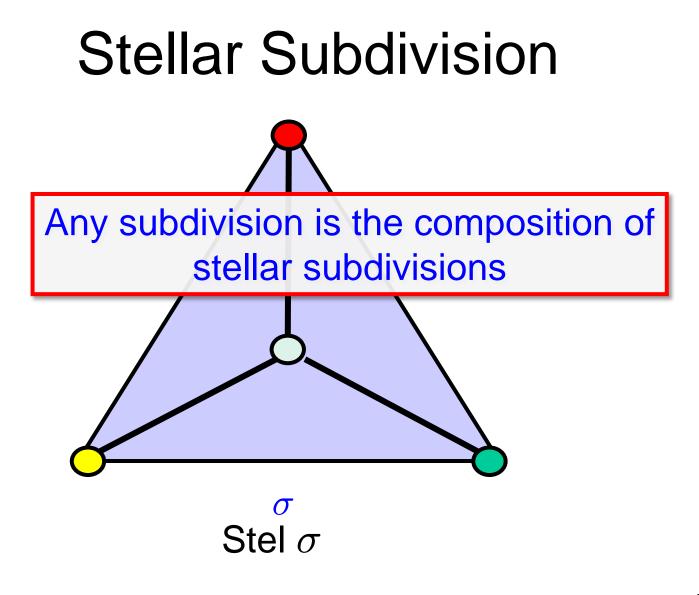
Simplicial & Continuous Approximations

Subdivisions

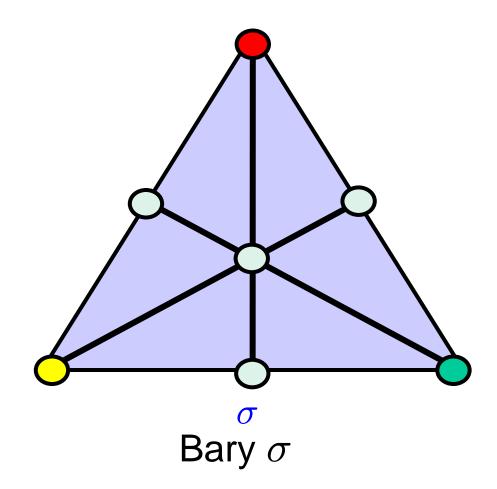


${\mathcal B} \text{ is a subdivision of } {\mathcal A} \text{ if } \dots$

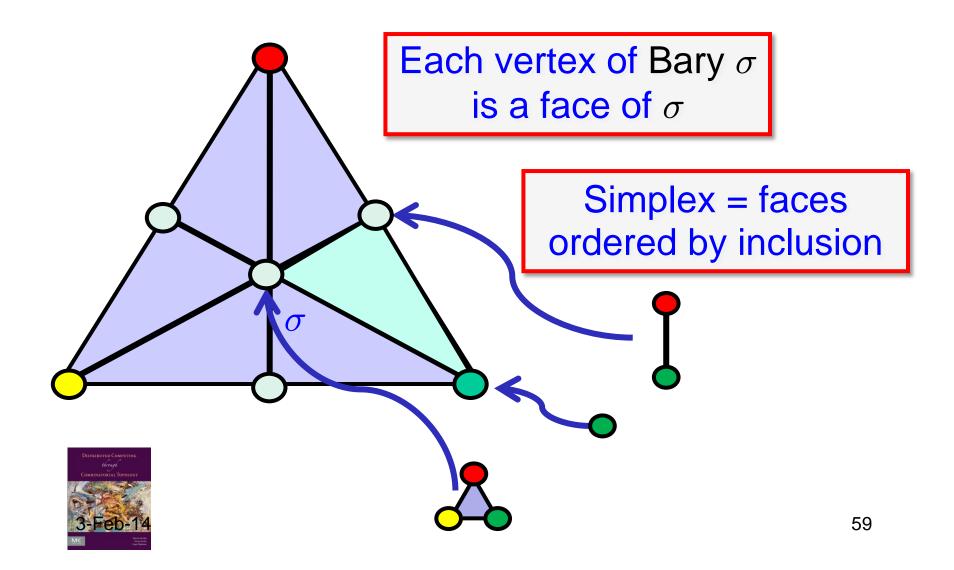
For each simplex β of \mathcal{B} N there is a simplex α of \mathcal{A} such that $|\beta| \subseteq |\alpha|$. For each simplex α of \mathcal{A} , $|\alpha|$ is the union of a finite set of geometric simplexes of \mathcal{B} . 56



Barycentric Subdivision

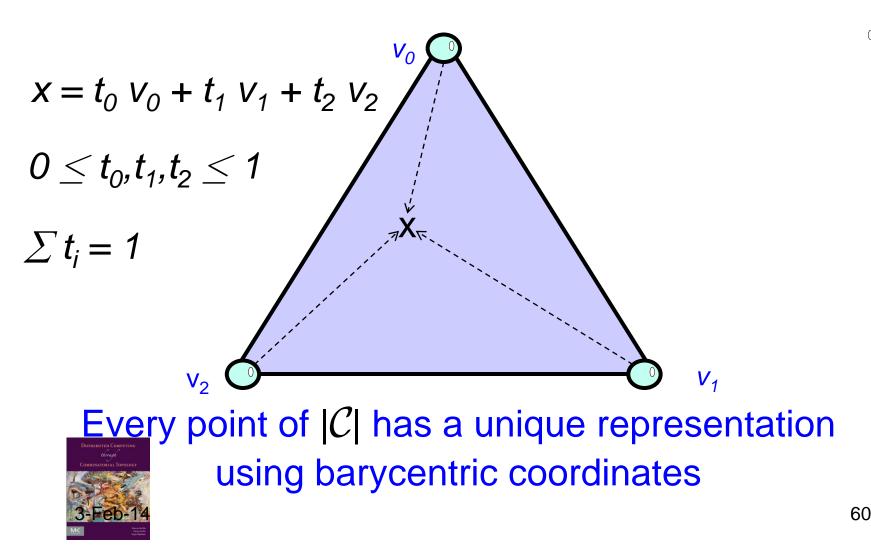


Barycentric Subdivision

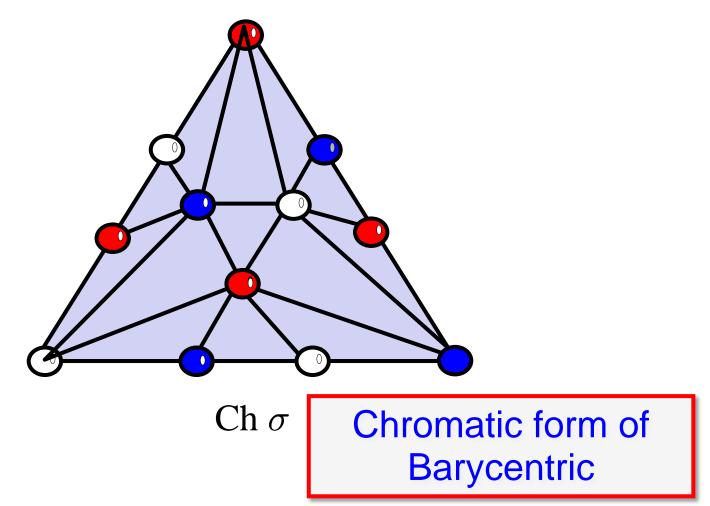


Barycentric Coordinates

0



Standard Chromatic Subdivision





Road Map

Simplicial Complexes

Standard Constructions

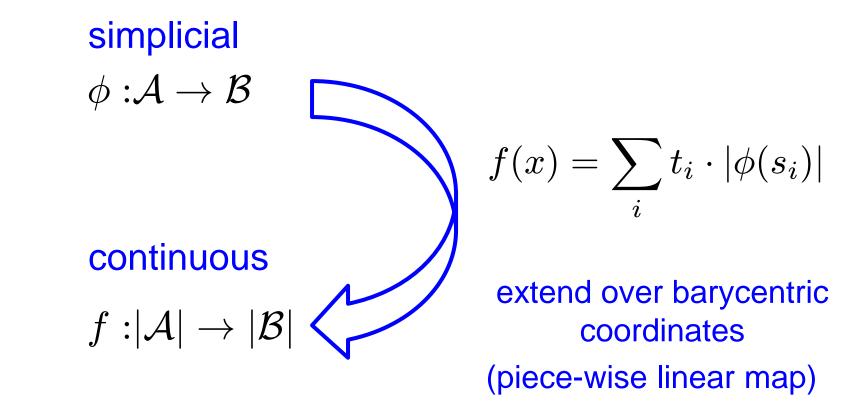
Carrier Maps

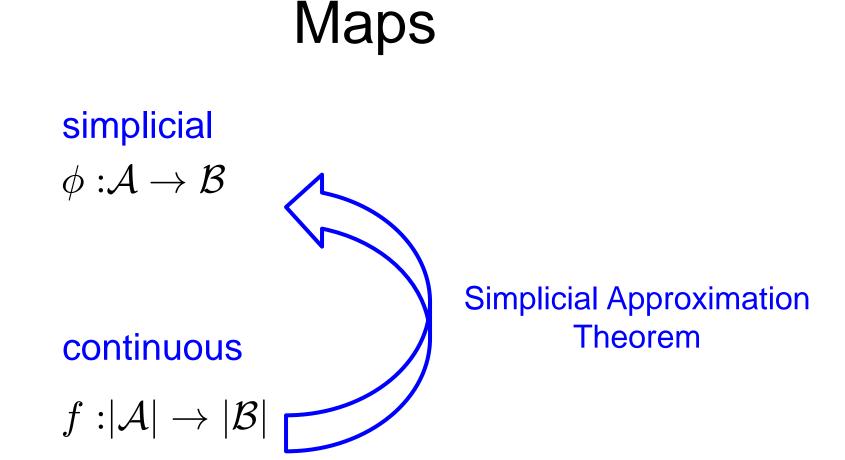
Connectivity

Subdivisions

Simplicial & Continuous Approximations

From Simplicial to Continuous

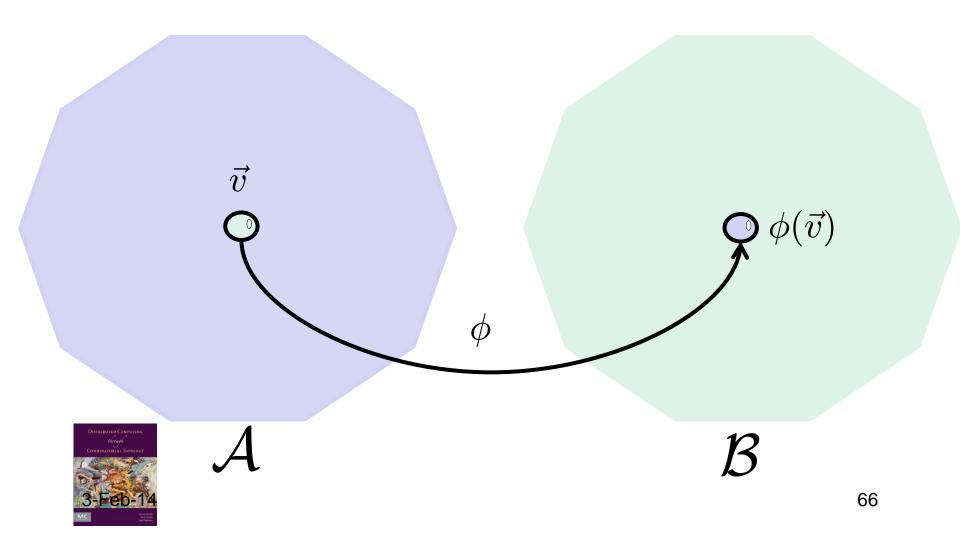


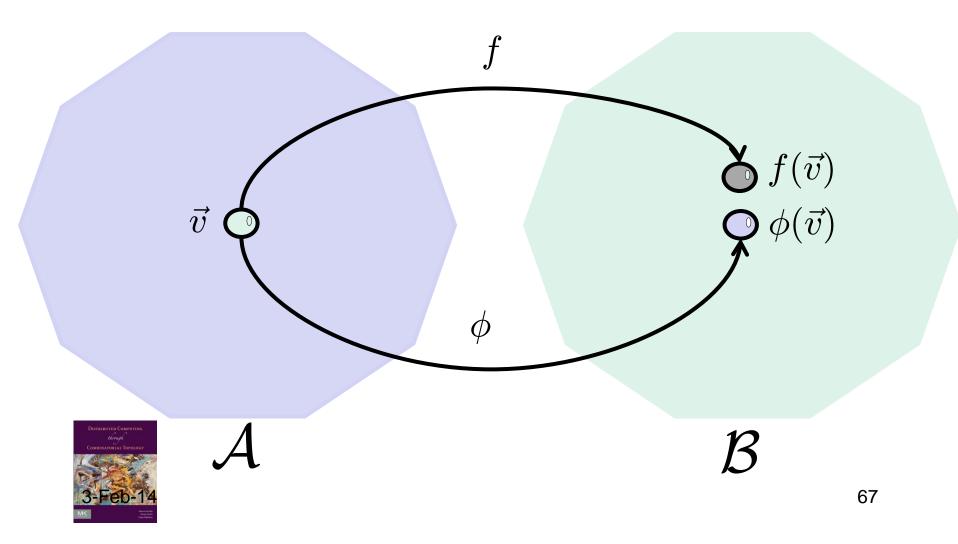


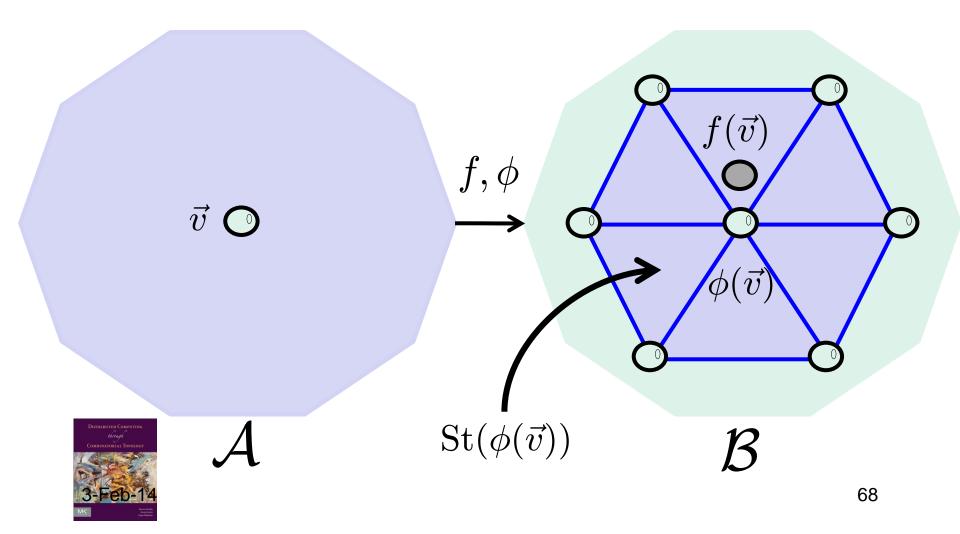
simplicial $\phi: \mathcal{A}
ightarrow \mathcal{B}$

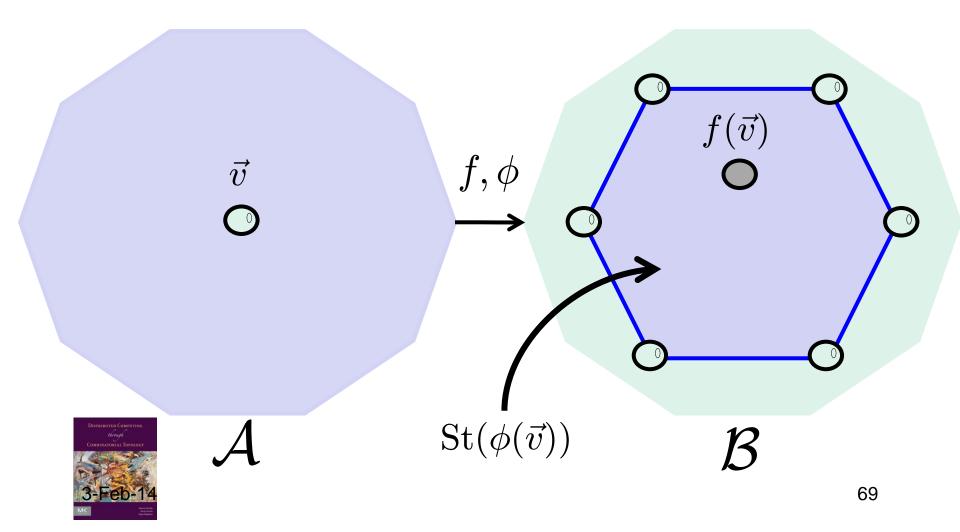
continuous

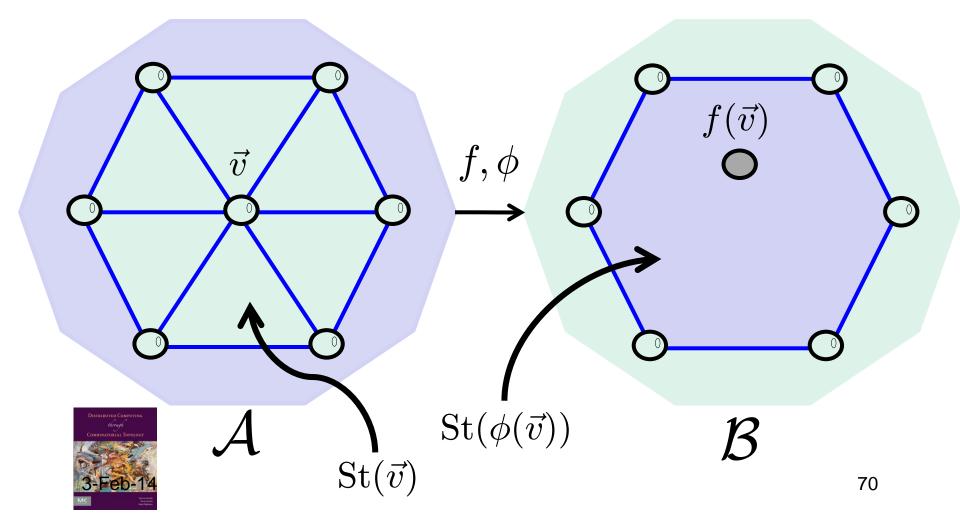
 $f: |\mathcal{A}| \to |\mathcal{B}|$

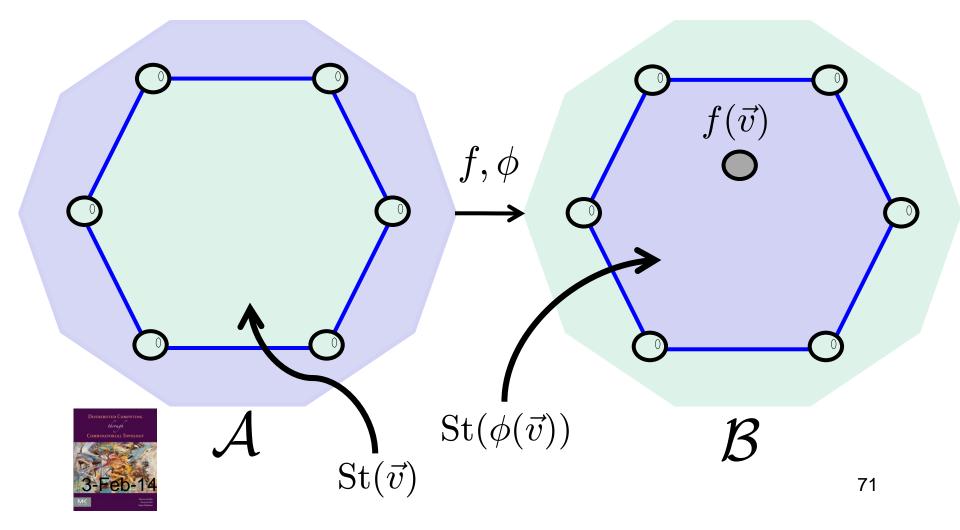


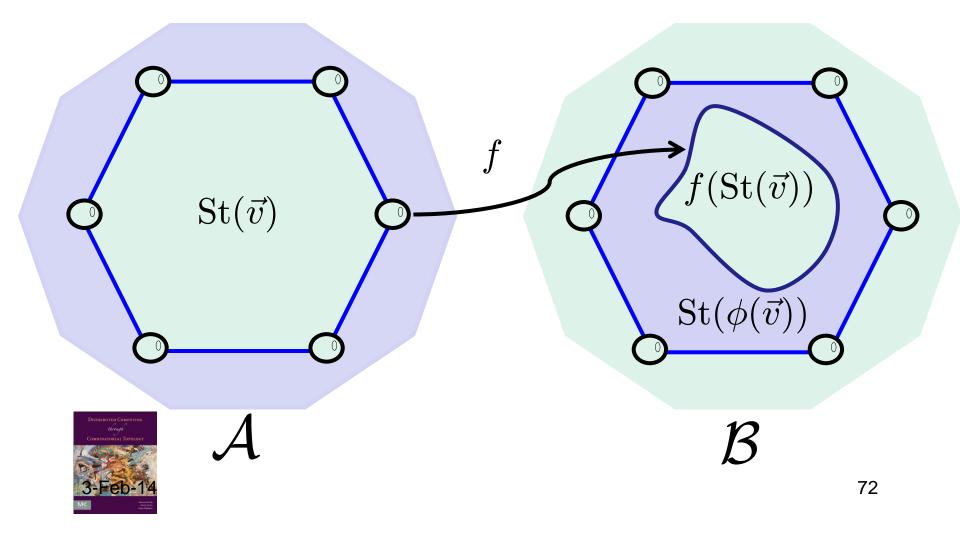


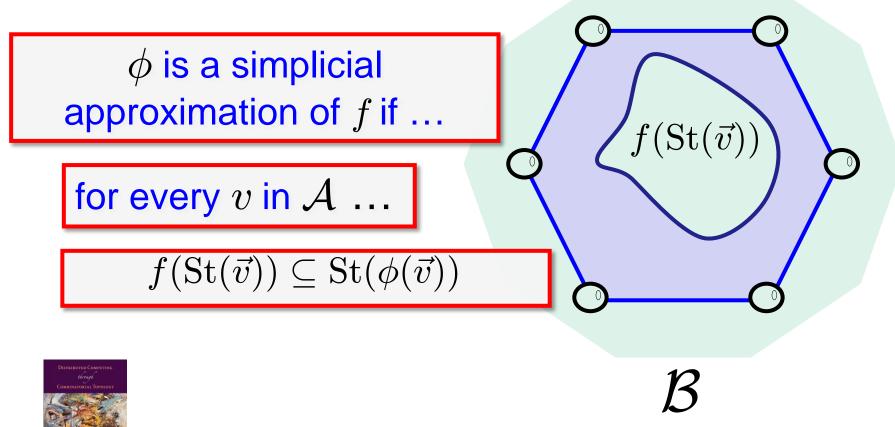












Simplicial Approximation Theorem

- Given a continuous map $f: |\mathcal{A}| \to |\mathcal{B}|$
- there is an N such that f has a simplicial approximation

$$\phi: \boxed{\operatorname{Bary}^N} \mathcal{A} \to \mathcal{B}$$

Actually Holds for most other subdivisions....

This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 Unported License.

