
Colorless Wait-Free
Computation

Companion slides for
Distributed Computing

Through Combinatorial Topology
Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Distributed Computing through
Combinatorial Topology

1

Colorless Tasks
32 19

21

19-Apr-14 2

Presenter
Presentation Notes
In a colorless task, process identity is unimportant, in the sense that each process can take another’s input or output values. Here they swap values,

Colorless Tasks
32 19

21

19-Apr-14 3

32

Presenter
Presentation Notes
But it is OK for one thread to adapt another’s input or output value.

Colorless Tasks

19-Apr-14 4

The set of input values …

determines the set of output values.

Number and identities irrelevant…

for both input and output values

Examples

19-Apr-14 5

32 32

32

32 7

32

Consensus

k-set agreement

Presenter
Presentation Notes
Consensus and set agreement are simple examples of colorless tasks where any process can take another’s input or output values.

Non-Examples

19-Apr-14 6

Weak Symmetry-Breaking
When all participate …

At least one on group 0, group 1

Presenter
Presentation Notes
Not all interesting tasks are colorless. For example, in weak symmetry-breaking, it is not legal to replace one process's output with another's: if one process joins group 0, it is not legal for them all to join group zero.

Yes No

No

No! No!

No!
Majority

Yes

Presenter
Presentation Notes
But it is OK for one thread to adapt another’s input or output value.

Road Map
Operational Model

Combinatorial Model

Main Theorem

Distributed Computing through
Combinatorial Topology

8

Processes

9
Distributed Computing though

Combinatorial Topology

A process is a state
machine

Could be Turing
machines or more

powerful

Presenter
Presentation Notes
 It is convenient to model a process as a sequential automaton with a~possibly infinite set of states. Remarkably, the set of computable tasks in a given system does not change if the individual processes are modeled as Turing machines, or as even more powerful automata with infinite numbers of states, capable of solving ``undecidable'' problems that Turing machines cannot. The important questions of distributed computing are concerned with communication and dissemination of knowledge, and are largely independent of the computational power of individual processes.

Processes

10
Distributed Computing though

Combinatorial Topology

A process’s state is
called its view

Process names taken
from a domain ¦

Each process has a
unique name (color)

Pi 2 ¦

Presenter
Presentation Notes
Each process has a unique \emph{name} taken from a universe of names Π. Each process state q also includes a mutable \emph{view} component, denoted $\view(q)$, which typically changes from state to state over an execution. This component represents what the process ``knows'' about the current computation, including any local variables the process may use.

Processes

11
Distributed Computing though

Combinatorial Topology

Each process “knows” its
own name

But not the names of
the other processes

Presenter
Presentation Notes
Each process ``knows'' its name, but it does not know \emph{a priori} the names of the participating processes. Instead, each process includes its own name in each communication, so processes learn the names of other participating processes dynamically as the computation unfolds.

Processes

12
Distributed Computing though

Combinatorial Topology

Often, Pi is just i

Sometimes Pi and i are
distinct, and the process

“knows” Pi but not i

Presenter
Presentation Notes
 A distributed system is a set of communicating state machines called \emph{processes}. It is convenient to model a process as a sequential automaton with a~possibly infinite set of states. Remarkably, the set of computable tasks in a given system does not change if the individual processes are modeled as Turing machines, or as even more powerful automata with infinite numbers of states, capable of solving ``undecidable'' problems that Turing machines cannot. The important questions of distributed computing are concerned with communication and dissemination of knowledge, and are largely independent of the computational power of individual processes.

Processes

13
Distributed Computing though

Combinatorial Topology

There are n+1
processes

Presenter
Presentation Notes
 A distributed system is a set of communicating state machines called \emph{processes}. It is convenient to model a process as a sequential automaton with a~possibly infinite set of states. Remarkably, the set of computable tasks in a given system does not change if the individual processes are modeled as Turing machines, or as even more powerful automata with infinite numbers of states, capable of solving ``undecidable'' problems that Turing machines cannot. The important questions of distributed computing are concerned with communication and dissemination of knowledge, and are largely independent of the computational power of individual processes.

Shared Read-Write Memory

14
Distributed Computing though

Combinatorial Topology

For now, they
communicate via
reading & writing
shared memory

Presenter
Presentation Notes
For the time being, we will consider a model of computation in which processes communicate by reading and writing a shared memory. In modern shared-memory multiprocessors, often called \emph{multicores}, memory is a sequence of individually-addressable \emph{words}. Multicores provide instructions that read or write individual memory words

Immediate Snapshot

Distributed Computing through
Combinatorial Topology

15

Individual reads & writes are too low-level …

A snapshot = atomic read of all memory

We will use immediate snapshot …

Presenter
Presentation Notes
For our purposes, we will use an idealized version of this model, recasting conventional read and write instructions into equivalent forms that have a cleaner combinatorial structure. Superficially, this idealized model may not look like your laptop, but in terms of task solvability, these models are equivalent: any algorithm in the idealized model can be translated to an an algorithm for the more realistic model, and vice-versa.

Immediate Snapshot

Distributed Computing through
Combinatorial Topology

16

write view to memory

take snapshot adjacent steps!

Presenter
Presentation Notes
We combine writes and snapshots as follows. An \emph{immediate snapshot} takes place in two contiguous steps. In the first step, a process writes its view to a word in memory, possibly concurrently with other processes. In the very next step, it takes a snapshot of some or all of the memory, possibly concurrently with other processes. It is important to understand that that in an immediate snapshot, the snapshot step takes place \emph{immediately after} the write step.

Immediate Snapshot

Distributed Computing through
Combinatorial Topology

17

write view to memory

take snapshot

write view to memory

take snapshot

Presenter
Presentation Notes
Here the red and blue processes take steps at the same time.

Immediate Snapshot

Distributed Computing through
Combinatorial Topology

18

immediate
 mem[i] := view;
 snap := snapshot(mem[*])

Presenter
Presentation Notes
In our pseudo-code examples, here is how we write immediate snapshots.

P Q R
write
snap

write
snap

write
snap

{p} {p,q} {p,q,r}

P Q R
write
snap

write write
snap snap

{p} {p,q,r} {p,q,r}

P Q R
write write write
snap snap snap

{p,q,r} {p,q,r} {p,q,r}

Presenter
Presentation Notes
Here are three examples of immediate snapshot executions. Notice that as we “perturb” each execution, only one process’s view chanes.

Realistic?

Distributed Computing through
Combinatorial Topology

20

No!
My laptop reads only a few

contiguous memory words at a time

Yes!
Simpler lower bounds: if it’s

impossible with IS, it’s
impossible on your laptop.

Can implement IS from read-write

Presenter
Presentation Notes
Superficially, a model based on immediate snapshots may seem unrealistic. As noted, modern multicores do not provide snapshots directly. At best, they provide the ability to atomically read a small, constant number of contiguous memory words. Moreover, in modern multicores, concurrent read and write instructions are typically interleaved in an arbitrary order.Nevertheless, the idealized model includes immediate snapshots for two reasons. First, immediate snapshots simplify lower bounds. It is clear that any task that is impossible using immediate snapshots is also impossible using single-word reads and writes. Moreover, we will see that immediate snapshots yield simpler combinatorial structures than reading and writing individual words. Second, perhaps surprisingly, immediate snapshots do not affect task solvability. It is well-known (see the chapter notes) that one can construct a wait-free snapshot from single-word reads and writes, and we will see in Chapter~\ref{chapter:simcolor} how to construct a wait-free immediate snapshot from snapshots and single-word write instructions. It follows that any task that can be solved using immediate snapshots can be solved using single-word reads and writes, although a direct translation may be impractical.

Crashes

19-Apr-14 21

Processes may halt without warning

as many as n out of n+1

Presenter
Presentation Notes
Failures are halting failures: a process simply stops and takes no more steps. When designing a protocol, it is important to know what kinds of failures your protocol must tolerate.

Asynchronous

Presenter
Presentation Notes
In asynchronous models, processes take steps at any rate.

Asynchronous comes from Greek: a (not) + synchronous (at the same time).

Synchronous comes from Greek: syn = together, chronos = time.

Asynchronous Failures

??

detection impossible

Presenter
Presentation Notes
The asynchronous model is difficult because it is impossible to tell whether another process has failed or is just slow.

Configurations

Distributed Computing through
Combinatorial Topology

24

C = {s0, …, sn}

set of simultaneous process states

initial configurations
final configurations

Presenter
Presentation Notes
A \emph{configuration} C is a set of process states corresponding to the state of the system at a moment in time. Each process appears at most once in a configuration: if s_0,s_1 are distinct states in C_i, then $\name(s_0)\neq\name(s_1)$. An \emph{initial configuration} C_0 is one where every process state is an initial state, and a a \emph{final configuration} is one where every process state is a final state. Name components are immutable: each process retains its name from one configuration to the next. We use $\names(C)$ for the set of names of processes whose states appear in C, and $\act(C)$ for the subset whose states are not final.

Executions

Distributed Computing through
Combinatorial Topology

25

C0, S0, C1, S1, …,Sr, Cr+1

final configuration

processes that communicate

next configuration

initial configuration

Presenter
Presentation Notes
An \emph{execution} defines the order in which processes communicate. Formally, an \emph{execution} is an alternating (usually, but not necessarily, finite) sequence of configurations and sets of process names:

Executions

Distributed Computing through
Combinatorial Topology

26

C0, S0, C1, S1, …,Sr, Cr+1

triple is a concurrent step

Processes in S0 said to participate in step
Only Pi 2 S0 can change between C0 and C1

state change result of communication

Presenter
Presentation Notes
The processes whose states appear in a step are said to \emph{participate} in that step, and similarly for executions. It is essential that only the processes that participate in a step change state. In this way, the model captures the restriction that processes change state only as a result of explicit communication occurring within the schedule.

Executions

Distributed Computing through
Combinatorial Topology

27

finite
C0, S0, C1, S1, …, Sr, Cr+1

infinite
C0, S0, C1, S1, …,

partial
C0, S0, C1, S1, …, Sr, Cr+1

Presenter
Presentation Notes
Executions are usually (but not always) finite, and a partial execution is a prefix of a longer execution.

Crashes are Implicit

Distributed Computing through
Combinatorial Topology

28

C0, S0, C1, S1, …, Sr, Cr+1

If Pi‘s state not final in the final configuration
then Pi has crashed.

crash cannot be detected in finite time

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems.

Colorless Tasks

Distributed Computing through
Combinatorial Topology

29

(I, O, ¢)

carrier map
¢: I ! 2O

(colorless) output assignment

(colorless) input assignment

Presenter
Presentation Notes
A colorless task is given by a set of colorless input assignments \cI, a set of colorless output assignments \cO, and a relation Δ which specifies, for each input assignment, which output assignments can be chosen. Note that a colorless task specification is independent of the number of participating processes, or their names.

Input Assignments

Distributed Computing through
Combinatorial Topology

30

{(Pj, vj), | Pj 2 ¦, vj 2 Vin}

domain of input values

domain of process names

name, value pair

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems.

Colorless Input Assignments

Distributed Computing through
Combinatorial Topology

31

{(Pj, vj), | Pj 2 ¦, vj 2 Vin}

discard process names, keep values

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems.

(Colorless)
Output Assignments

Distributed Computing through
Combinatorial Topology

32

{(Pj, vj), | Pj 2 ¦, vj 2 Vout}

{(Pj, vj), | Pj 2 ¦, vj 2 Vout}

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems.

Example: Binary Consensus

Distributed Computing through
Combinatorial Topology

33

I = {{0}, {1}, {0,1}}

All start with 0

All start with 1

start with both

Example: Binary Consensus

Distributed Computing through
Combinatorial Topology

34

I = {{0}, {1}, {0,1}}

All decide 0 All decide 1

O = {{0}, {1}}

Example: Binary Consensus

Distributed Computing through
Combinatorial Topology

35

¢({0}) = {{0}}

All start with 0,
all decide 0

Example: Binary Consensus

Distributed Computing through
Combinatorial Topology

36

¢({0}) = {{0}}

All start with 1,
all decide 1

¢({1}) = {{1}}

Example: Binary Consensus

Distributed Computing through
Combinatorial Topology

37

with mixed inputs,
all decide 0,

or all decide 1

¢({0}) = {{0}}
¢({1}) = {{1}}

¢({0,1}) = {{0},{1}}

Colorless Layered Protocol

Distributed Computing through
Combinatorial Topology

38

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
 immediate
 mem[l][i] := view;
 snap := snapshot(mem[l][*])
 view := set of values in snap
return δ(view)

Colorless Layered Protocol

Distributed Computing through
Combinatorial Topology

39

shared mem array 0..N-1,0..n of Value
view := input
for j := 0 to N-1 do
 immediate
 mem[j][i] := view;
 snap := snapshot(mem[j][*])
 view := set of values in snap
return δ(view)

2-dimensional memory array

row is clean per-layer memory

column is per-process word

Colorless Layered Protocol

Distributed Computing through
Combinatorial Topology

40

shared mem array 0..N-1,0..n of Value
view := input
for j := 0 to N-1 do
 immediate
 mem[j][i] := view;
 snap := snapshot(mem[j][*])
 view := set of values in snap
return δ(view)

initial view is input value

Colorless Layered Protocol

Distributed Computing through
Combinatorial Topology

41

shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
 immediate
 mem[j][i] := view;
 snap := snapshot(mem[j][*])
 view := set of values in snap
return δ(view)

run for N layers

Colorless Layered Protocol

Distributed Computing through
Combinatorial Topology

42

shared mem array 0..N-1,0..n of Value
view := input
for j := 0 to N-1 do
 immediate
 mem[l][i] := view;
 snap := snapshot(mem[l][*])
 view := set of values in snap
return δ(view)

layer l : immediate write & snapshot of row l

Colorless Layered Protocol

Distributed Computing through
Combinatorial Topology

43

shared mem array 0..N-1,0..n of Value
view := input
for j := 0 to N-1 do
 immediate
 mem[j][i] := view;
 snap := snapshot(mem[j][*])
 view := set of values in snap
return δ(view)

new view is set of values seen

Colorless Layered Protocol

Distributed Computing through
Combinatorial Topology

44

shared mem array 0..N-1,0..n of Value
view := input
for j := 0 to N-1 do
 immediate
 mem[j][i] := view;
 snap := snapshot(mem[j][*])
 view := set of values in snap
return δ(view)

finally apply decision value to final view

{p},{p,q,r}

Q
{p},q,{p,r} {p},{p,q,r},{p,r}

R {p},{p,q},r {p},{p,q},{p,q,r}

{p,q,r},{q}

P
p,{q},{q,r} {p,q,r},{q},{q,r}

{p,q},{q},r
R

{p,q},{q},{p,q,r}

{q,r},{p,q,r}

{p,r},{p,q,r}

{p,q},{p,q,r}

{p,q,r},{r}

p,{q,r},{r}
P

{p,q,r},{q,r},{r}

{p,r},q,{r}
Q

{p,r},{p,q,r},{r}

R

{p,q,r}

p,{q,r}

{p,r},q

{p,q},r

R
Q

QR

{p},q,r

p,{q},r

p,q,{r}

R
P

PR

Q
P

PQ

Q

P

p,q,r

PQR

P

Q

R

PQ

PR

QR

Presenter
Presentation Notes
Fig4-2.pdf

{p},{p,q,r}

Q
{p},q,{p,r} {p},{p,q,r},{p,r}

R {p},{p,q},r {p},{p,q},{p,q,r}

{p,q,r},{q}

P
p,{q},{q,r} {p,q,r},{q},{q,r}

{p,q},{q},r
R

{p,q},{q},{p,q,r}

{q,r},{p,q,r}

{p,r},{p,q,r}

{p,q},{p,q,r}

{p,q,r},{r}

p,{q,r},{r}
P

{p,q,r},{q,r},{r}

{p,r},q,{r}
Q

{p,r},{p,q,r},{r}

R

{p,q,r}

p,{q,r}

{p,r},q

{p,q},r

R
Q

QR

{p},q,r

p,{q},r

p,q,{r}

R
P

PR

Q
P

PQ

Q

P

p,q,r

PQR

P

Q

R

PQ

PR

QR
Colorless configurations for

processes P,Q,R, inputs
p,q,r, final configurations in black.

Presenter
Presentation Notes
Fig4-2.pdf

Road Map
Operational Model

Combinatorial Model

Main Theorem

Distributed Computing through
Combinatorial Topology

47

19-Apr-14 48

Vertex = Process State

7

Process ID (color)

Value (input or output)

19-Apr-14 49

Simplex = Global State

19-Apr-14 50

Complex = Global States

Input Complex for Binary
Consensus

19-Apr-14 51

0

0
0 1

1

Processes: red, green, blue

Independently assigned 0 or 1

All possible initial states

Output Complex for Binary
Consensus

19-Apr-14 52

0 0
0

1 1

1
Output values all 0 or all 1

Two disconnected simplexes

All possible final states

19-Apr-14 53

Carrier Map for Consensus

All 0 inputs

All 0 outputs

19-Apr-14 54

Carrier Map for Consensus

All 1 inputs All 1 outputs

19-Apr-14 55

Carrier Map for Consensus

Mixed 0-1 inputs

All 0 outputs

All 1 outputs

Task Specification

19-Apr-14 56

(I, O, ¢)

Input complex

Output complex

Carrier map
¢: I ! 2O

Colorless Tasks

Distributed Computing through
Combinatorial Topology

57

(I, P, ¥)

strict carrier map
¥: I ! 2P

(colorless) protocol complex

(colorless) input complex

Presenter
Presentation Notes
A colorless task is given by a set of colorless input assignments \cI, a set of colorless output assignments \cO, and a relation Δ which specifies, for each input assignment, which output assignments can be chosen. Note that a colorless task specification is independent of the number of participating processes, or their names.

Protocol Complex

19-Apr-14 58

Vertex: process name, view
all values read and written

Simplex: compatible set of views
Each execution defines a simplex

Distributed Computing through
Combinatorial Topology

19-Apr-14 59

Example: Synchronous
Message-Passing

Round 0 Round 1

19-Apr-14 60

Failures: Fail-Stop

Partial
broadcast

Distributed Computing through
Combinatorial Topology

Single Input: Round Zero

19-Apr-14 61

0

0 0

No messages sent

View is input value

Same as input simplex

Distributed Computing through
Combinatorial Topology

Round Zero Protocol Complex

19-Apr-14 62

0

0
0 1

1

No messages sent

View is input value

Same as input complex

Distributed Computing through
Combinatorial Topology

19-Apr-14 63

Single Input: Round One

0 0 0

0 0 0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

Distributed Computing through
Combinatorial Topology

19-Apr-14 64

Single Input: Round One

0 0 0

0 0 0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

no one fails

Distributed Computing through
Combinatorial Topology

19-Apr-14 65

Single Input: Round One

0 0 0

0 0 0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

no one fails

Distributed Computing through
Combinatorial Topology

blue fails

19-Apr-14 66

Single Input: Round One

0 0 0

0 0 0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

no one fails

green fails red fails

blue fails

Distributed Computing through
Combinatorial Topology

19-Apr-14 67

Protocol Complex: Round One

Distributed Computing through
Combinatorial Topology

19-Apr-14 68

Protocol Complex: Round Two

Distributed Computing through
Combinatorial Topology

19-Apr-14 69

Protocol Complex Evolution

zero

two

one

19-Apr-14 70

Summary

input
complex

protocol
complex

Δ

output
complex

δ Ξ

19-Apr-14 71

Decision Map

Output complex

Protocol complex

δ Simplicial map,
sending simplexes

to simplexes

19-Apr-14 72

Lower Bound Strategy

Output complex

Protocol complex

δ Find topological
“obstruction” to

this simplicial map

19-Apr-14 73

Consensus Example

Output Protocol

δ

Subcomplex of
all-0 inputs

Must map
here

1

0
0

1

Distributed Computing through
Combinatorial Topology

19-Apr-14 74

Consensus Example

Output Protocol

δ

Subcomplex of
all-1 inputs

Must map
here

1

0
0

1

Distributed Computing through
Combinatorial Topology

19-Apr-14 75

Consensus Example

Output Protocol

δ

Path from
“all-0” to “all-1”

Image under δ must
start here ..

and end here

1

0
0

1

Distributed Computing through
Combinatorial Topology

19-Apr-14 76

Consensus Example

Output

path

δ 1

0

0

1
?

Distributed Computing through
Combinatorial Topology

19-Apr-14 77

Consensus Example

Output Protocol

δ

Path from
“all-0” to “all-1”

Image under δ must
start here ..

and end here

But this “hole” is
an obstruction

Distributed Computing through
Combinatorial Topology

Conjecture

19-Apr-14 78

A protocol cannot
solve consensus
if its complex is

path-connected
Model-independent!

Distributed Computing through
Combinatorial Topology

If Adversary keeps Protocol
Complex path-connected …

19-Apr-14 79

Forever …
Consensus is impossible

For r rounds …
A round-complexity lower bound

For time t …
A time-complexity lower bound

Distributed Computing through
Combinatorial Topology

80

Barycentric Agreement

Distributed Computing through
Combinatorial Topology

I Bary I

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex σ of \cI, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.

81

Barycentric Agreement

Distributed Computing through
Combinatorial Topology

(I, bary I, bary(¢))

subdivision as carrier map

arbitrary input complex

subdivided output complex

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex σ of \cI, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.

82

If There are n Processes

Distributed Computing through
Combinatorial Topology

(I, bary skeln I, bary°skeln)

Inputs only from n-skeleton of input complex

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex σ of \cI, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.

Theorem

Distributed Computing through
Combinatorial Topology

83

A one-layer immediate snapshot protocol solves
the n-process barycentric agreement task

(I, bary skeln I, bary°skeln)

Proof
All input simplices belong to skeln I

Immediate snapshot results are ordered

v0 v1 v2

Barycentric Agreement
Protocol

Snapshots are ordered

{v0, v2} {v0} {v0,v1,v2}

Presenter
Presentation Notes
When process P_i is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array. (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)

Barycentric Agreement
Protocol

{v0, v2} {v0}

{v0,v1,v2}

Each view is a face of ¾

Presenter
Presentation Notes
When process P_i is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array. (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)

Barycentric Agreement
Protocol

{v0, v2}

{v0} {v0,v1,v2}

Each view is a face of ¾

Presenter
Presentation Notes
When process P_i is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array. (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)

Barycentric Agreement
Protocol

{v0, v2}

{v0} {v0,v1,v2}

Each face of ¾ is a vertex of Bary ¾

Presenter
Presentation Notes
When process P_i is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array. (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)

Barycentric Agreement
Protocol

Ordered faces) simplex of Bary ¾

Presenter
Presentation Notes
When process P_i is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array. (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)

Iterated Barycentric Agreement

skeln I baryN skeln I

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex σ of \cI, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.

90

Iterated Barycentric Agreement

Distributed Computing through
Combinatorial Topology

(I, baryN skeln I, baryN°skeln)

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex σ of \cI, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.

{pqr}{pqr}{pqr}

{p}{pq}{pqr}

{p}{pqr}{pqr}

{pqr}{qr}{qr}

One-Layer Immediate
Snapshot Protocol Complex

Distributed Computing through
Combinatorial Topology

Presenter
Presentation Notes
subdivision

{pqr}{pqr}{pqr}

{p}{pq}{pqr}

{p}{pqr}{pqr}

{pqr}{qr}{qr}

Compare Views

Distributed Computing through
Combinatorial Topology

{p},{p,q,r}
Q {p},q,{p,r} {p},{p,q,r},{p,r}
R {p},{p,q},r {p},{p,q},{p,q,r}

{p,q,r},{q}
P p,{q},{q,r} {p,q,r},{q},{q,r}

{p,q},{q},r R {p,q},{q},{p,q,r}

{q,r},{p,q,r}
{p,r},{p,q,r}
{p,q},{p,q,r}
{p,q,r},{r}
p,{q,r},{r} P {p,q,r},{q,r},{r}
{p,r},q,{r} Q {p,r},{p,q,r},{r}

R

{p,q,r}
p,{q,r}
{p,r},q
{p,q},r

R
Q

QR

{p},q,r

p,{q},r

p,q,{r}

R
P

PR

Q P

PQ

Q
P

p,q,r

PQR

P
Q
R

PQ
P
R Q
R

Operational view Combinatorial view

Presenter
Presentation Notes
subdivision

where ¥’’ = ¥’°¥ and P’’ = ¥’’(I)

Given protocols

Compositions

93

(I,P,¥) (I’,P’,¥’)

their composition is

where P µ I’

(I,P’’,¥’’)

Distributed Computing through
Combinatorial Topology

Road Map
Operational Model

Combinatorial Model

Main Theorem

Distributed Computing through
Combinatorial Topology

94

Theorem

Fundamental Theorem

19-Apr-14

(I,O,¢) has a wait-free (n+1)-process
layered protocol iff there is a continuous map

f: |skeln I| → |O|...
carried by ¢

Distributed Computing through
Combinatorial Topology

Presenter
Presentation Notes

We will prove a simple theorem that completely characterizes when it is possible to solve a colorless task in wait-free read-write memory.
The theorem states that a colorless task (\cI^*,\cO^*,Δ^*) has a wait-free read-write protocol if and only if there is a continuous map between their polyhedrons,

Proof Outline

19-Apr-14 96

there is a WF layered protocol for
(I,O,¢) …

there is a continuous
f: |skeln I| ! |O| carried by ¢.

If …
Lemma

then …

Distributed Computing through
Combinatorial Topology

Map) Protocol

97

Continuous

f

Hypothesis

O Baryn I
Distributed Computing through

Combinatorial Topology

f

Map) Protocol

19-Apr-14 98

Á

Simplicial
approximation

Baryn I O
Distributed Computing through

Combinatorial Topology

Baryn I O

Map) Protocol

19-Apr-14 99

Á

Apply Á

QED

Run barycentric
Agreement

Distributed Computing through
Combinatorial Topology

Theorem

Protocol) Map

19-Apr-14 100

there is a WF-RW protocol for
(I,O,¢) …

if and only if …
there is a continuous

f: |skeln I| ! |O| carried by ¢.

If …
Lemma

then …

Distributed Computing through
Combinatorial Topology

Proof strategy

Protocol) Map

19-Apr-14 101

Inductive construction
gd: |skeld I| ! |¥(I)|.

Base d = 0
Define g0: |skel0 I| ! |¥(I)| …

Let g0(v) be any vertex in ¥({v})

Distributed Computing through
Combinatorial Topology

For all ¾ in skeld-1 I

Induction Hypothesis

Protocol) Map

19-Apr-14 102

gd-1: |skeld-1 I| ! |¥(I)|

gd-1 sends |skeld-1 ¾|  |¥(¾)|
But ¥(¾) is (d-1)-connected (earlier theorem)

Can extend to gd: |¾|  |¥(¾)|
Yielding gd: |skeld I| ! |¥(I)|

Distributed Computing through
Combinatorial Topology

Simplicial decision map

Constructed

Protocol) Map

19-Apr-14 103

g: |skeln I| → |¥(I)|

δ: ¥(skeln I) → O
|δ|: |¥(skeln I)| → |O|

Composition f = | δ | ¢ g yields
f: | skeln I| ! |O| carried by ¢.

QED
Distributed Computing through

Combinatorial Topology

104

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “Distributed Computing through

Combinatorial Topology” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Distributed Computing through
Combinatorial Topology

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

	Colorless Wait-Free Computation
	Colorless Tasks
	Colorless Tasks
	Colorless Tasks
	Examples
	Non-Examples
	Slide Number 7
	Road Map
	Processes
	Processes
	Processes
	Processes
	Processes
	Shared Read-Write Memory
	Immediate Snapshot
	Immediate Snapshot
	Immediate Snapshot
	Immediate Snapshot
	Slide Number 19
	Realistic?
	Crashes
	Asynchronous
	Asynchronous Failures
	Configurations
	Executions
	Executions
	Executions
	Crashes are Implicit
	Colorless Tasks
	Input Assignments
	Colorless Input Assignments
	(Colorless)�Output Assignments
	Example: Binary Consensus
	Example: Binary Consensus
	Example: Binary Consensus
	Example: Binary Consensus
	Example: Binary Consensus
	Colorless Layered Protocol
	Colorless Layered Protocol
	Colorless Layered Protocol
	Colorless Layered Protocol
	Colorless Layered Protocol
	Colorless Layered Protocol
	Colorless Layered Protocol
	Slide Number 45
	Slide Number 46
	Road Map
	Vertex = Process State
	Simplex = Global State
	Complex = Global States
	Input Complex for Binary Consensus
	Output Complex for Binary Consensus
	Carrier Map for Consensus
	Carrier Map for Consensus
	Carrier Map for Consensus
	Task Specification
	Colorless Tasks
	Protocol Complex
	Example: Synchronous Message-Passing
	Failures: Fail-Stop
	Single Input: Round Zero
	Round Zero Protocol Complex
	Single Input: Round One
	Single Input: Round One
	Single Input: Round One
	Single Input: Round One
	Protocol Complex: Round One
	Protocol Complex: Round Two
	Protocol Complex Evolution
	Summary
	Decision Map
	Lower Bound Strategy
	Consensus Example
	Consensus Example
	Consensus Example
	Consensus Example
	Consensus Example
	Conjecture
	If Adversary keeps Protocol Complex path-connected …
	Barycentric Agreement
	Barycentric Agreement
	If There are n Processes
	Theorem
	Barycentric Agreement Protocol
	Barycentric Agreement Protocol
	Barycentric Agreement Protocol
	Barycentric Agreement Protocol
	Barycentric Agreement Protocol
	Iterated Barycentric Agreement
	Iterated Barycentric Agreement
	One-Layer Immediate Snapshot Protocol Complex
	Compare Views
	Compositions
	Road Map
	Fundamental Theorem
	Proof Outline
	Map) Protocol
	Map) Protocol
	Map) Protocol
	Protocol) Map
	Protocol) Map
	Protocol) Map
	Protocol) Map
	Slide Number 104

