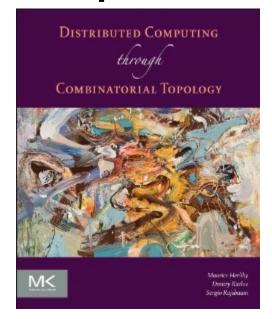
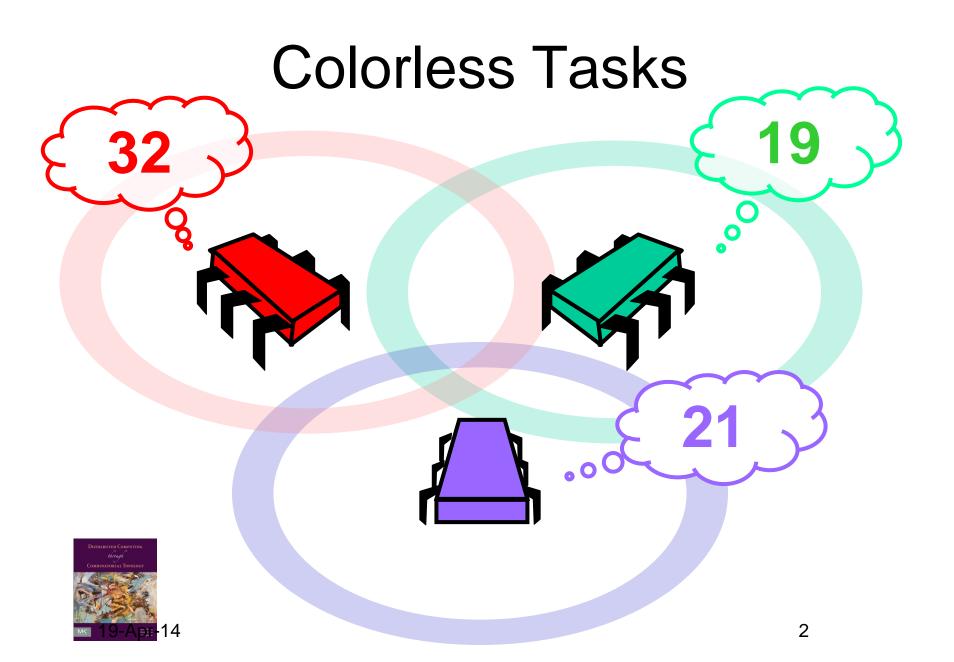
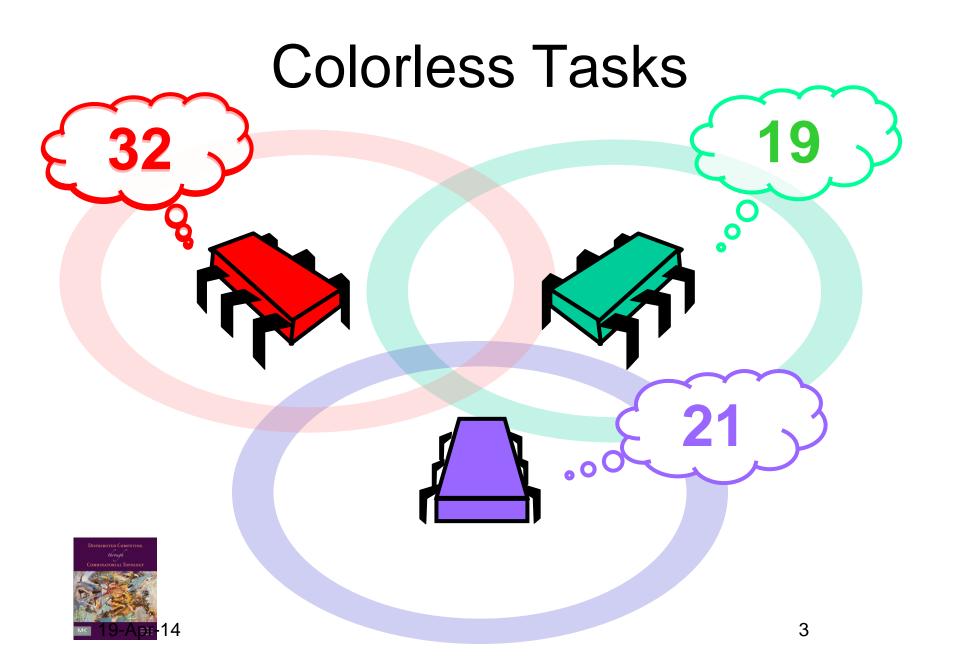
Colorless Wait-Free Computation



Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum Distributed Computing through Combinatorial Topology

1





Colorless Tasks

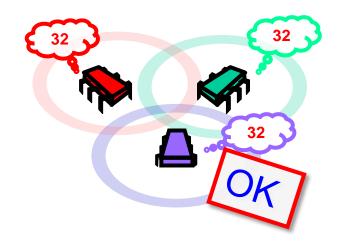
The set of input values ...

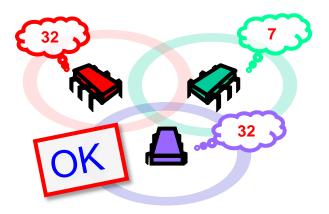
determines the set of output values.

Number and identities irrelevant...

for both input and output values

Examples

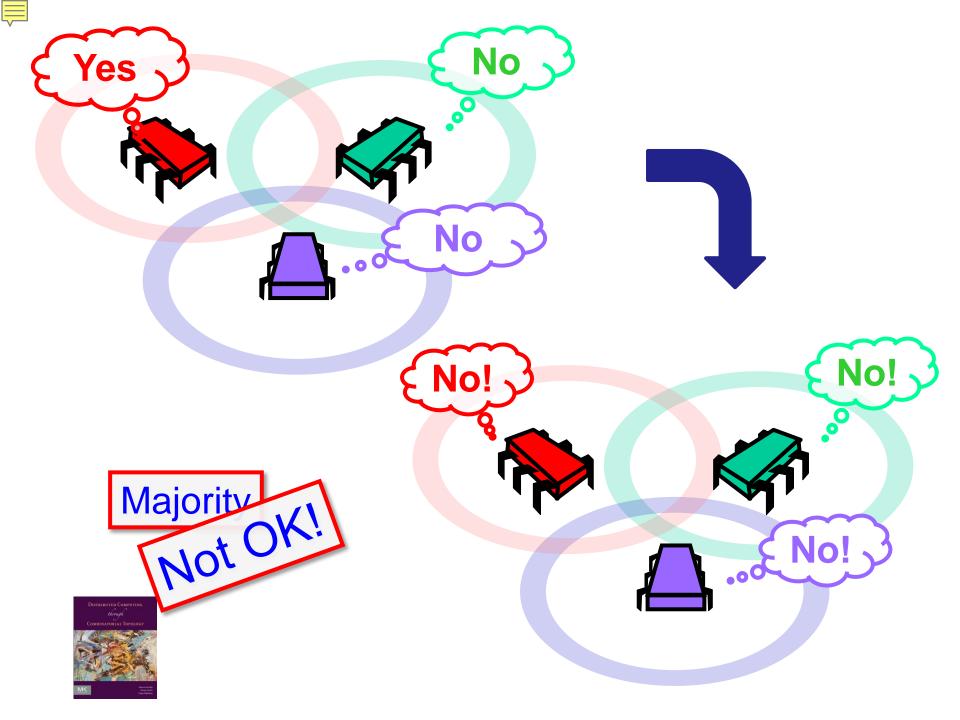




Non-Examples

Weak Symmetry-Breaking When all participate ...

At least one on group 0, group 1



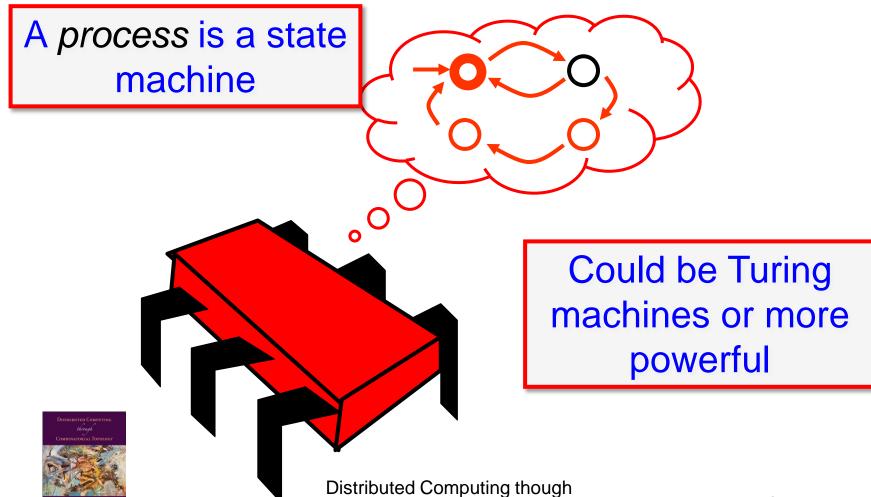
Road Map

Operational Model

Combinatorial Model

Main Theorem

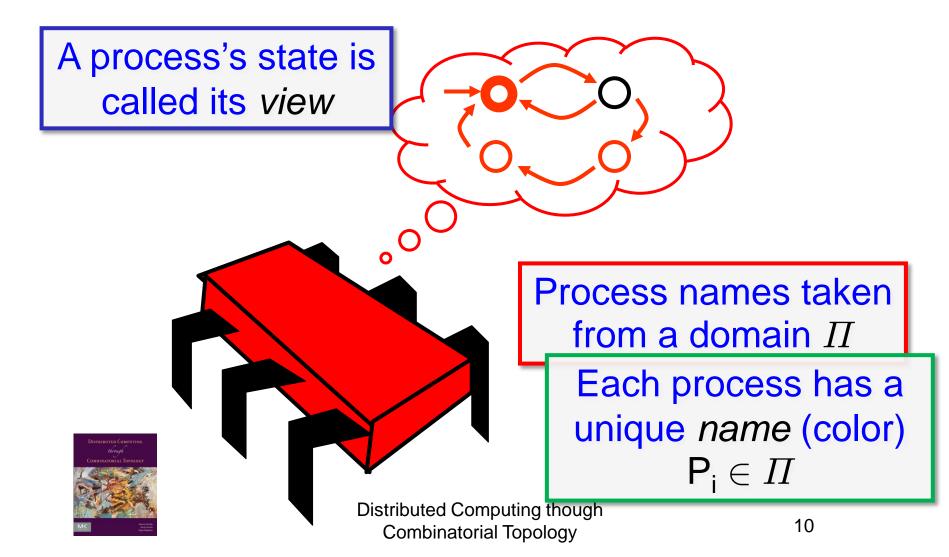
Processes



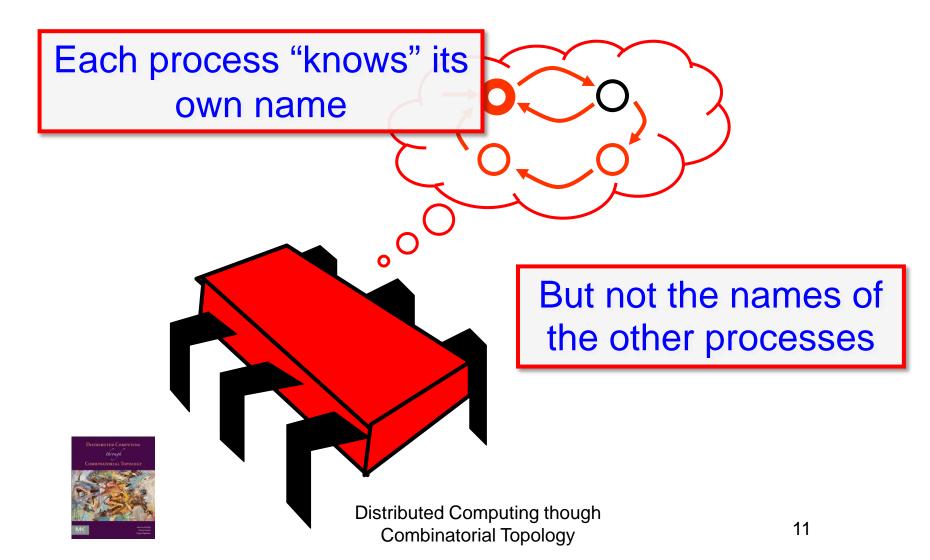
Combinatorial Topology

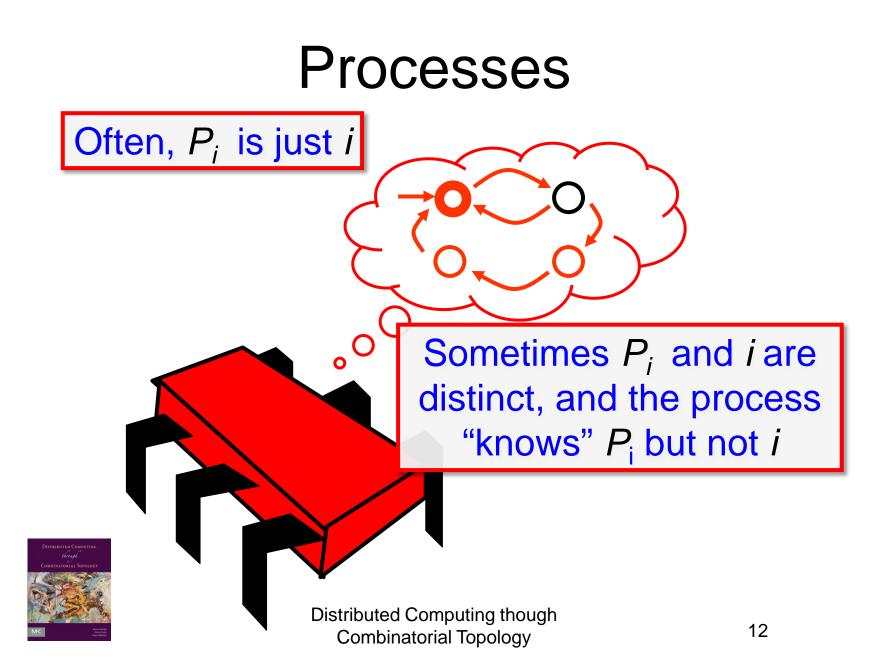
9

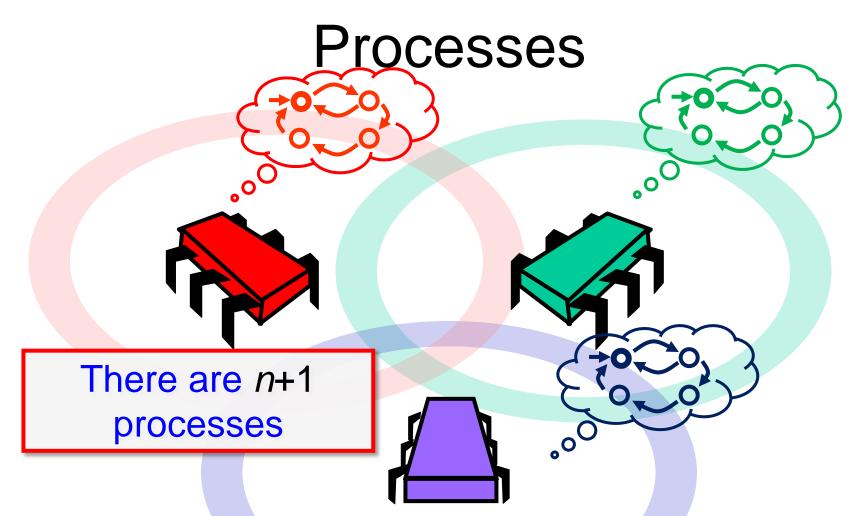
Processes

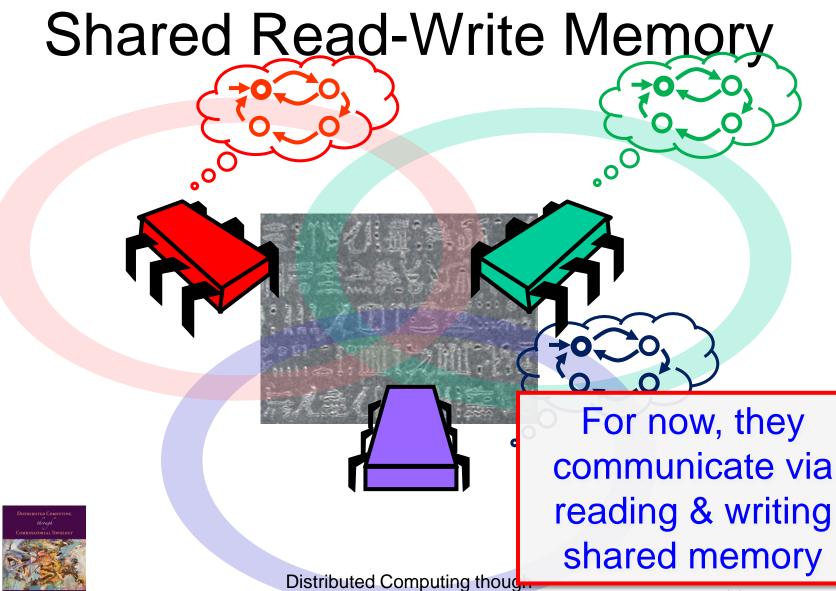


Processes









Combinatorial Topology

14

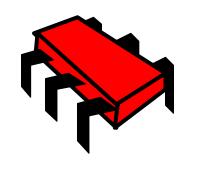
Immediate Snapshot

Individual reads & writes are too low-level ...

A snapshot = atomic read of all memory

We will use immediate snapshot ...

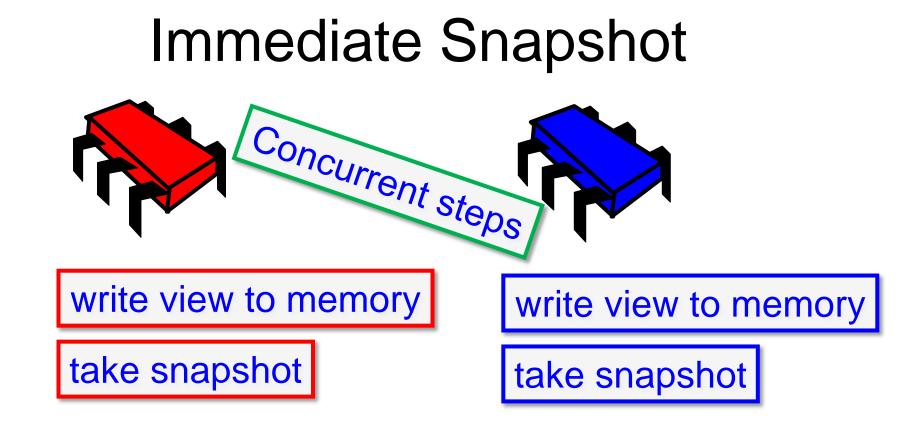
Immediate Snapshot



write view to memory

take snapshot

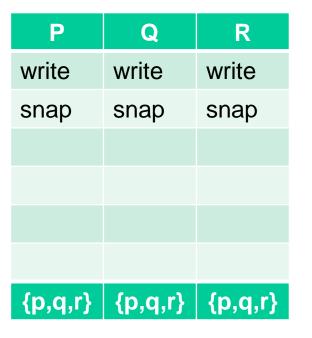
adjacent steps!



Immediate Snapshot

```
immediate
  mem[i] := view;
  snap := snapshot(mem[*])
```


Р	Q	R
write		
snap		
	write	
	snap	
		write
		snap
{p}	{p,q}	{p,q,r}



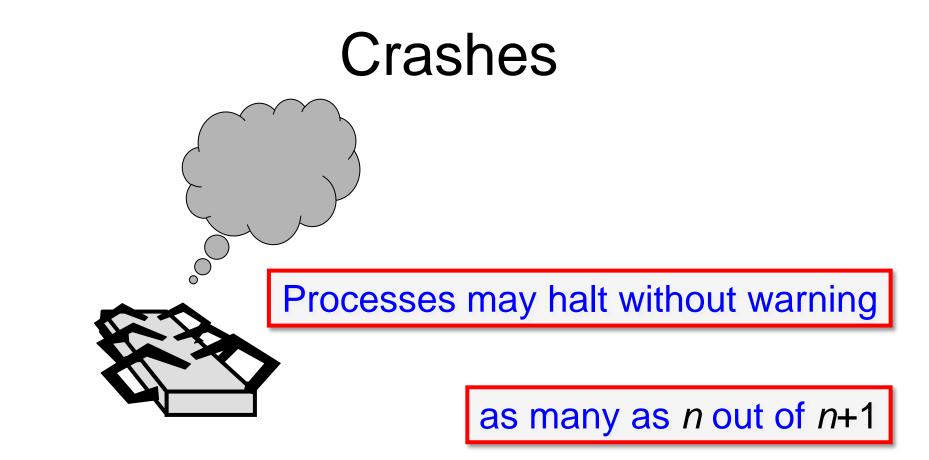
Realistic?

My laptop reads only a few contiguous memory words at a time

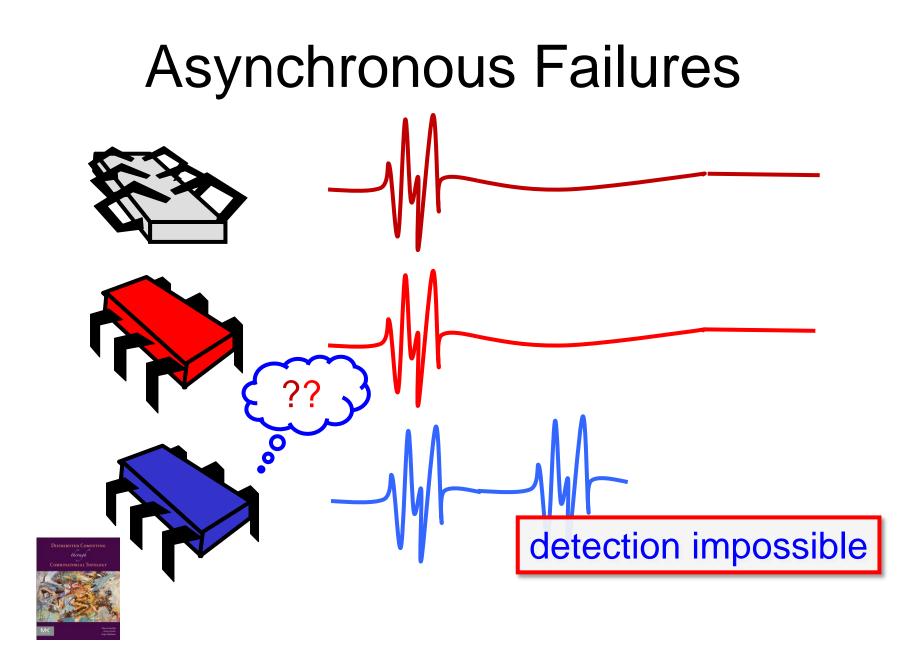
No!

Simpler lower bounds: if it's impossible with IS, it's impossible on your laptop.

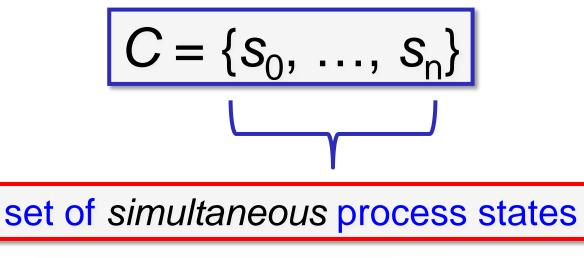
Can implement IS from read-write



Asynchronous

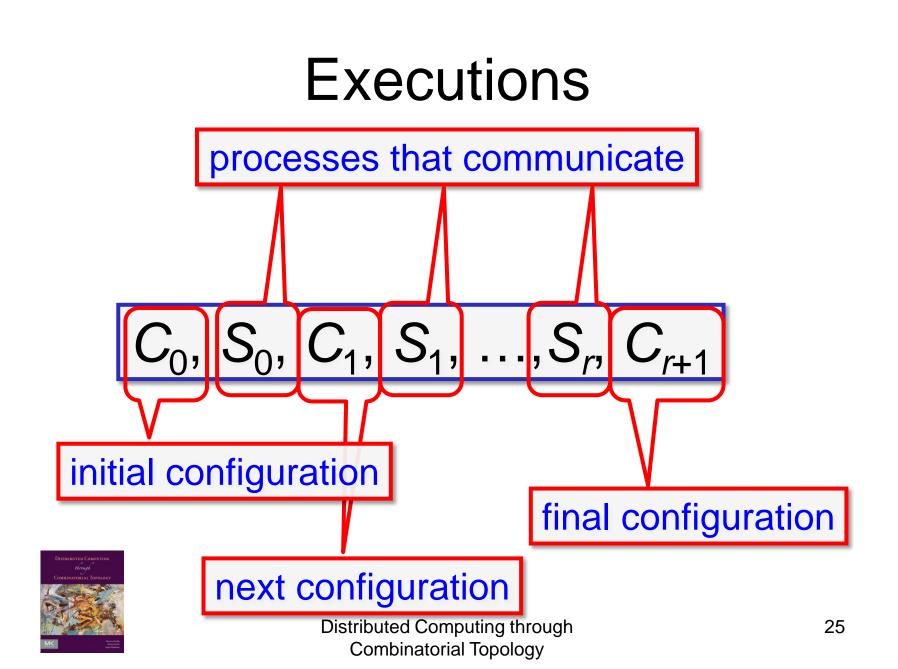


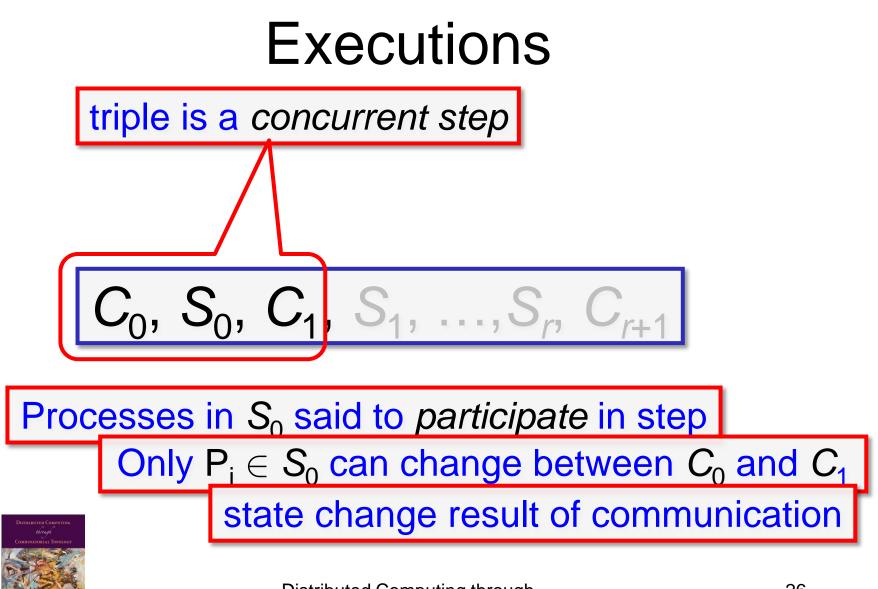
Configurations

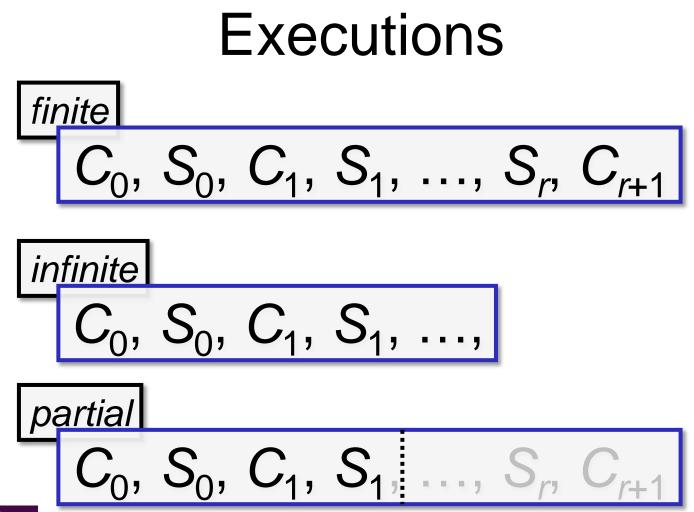


initial configurations

final configurations

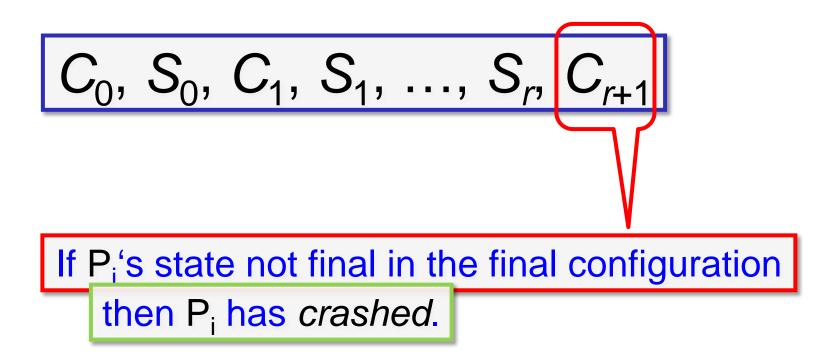


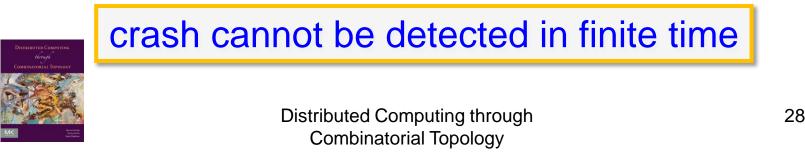


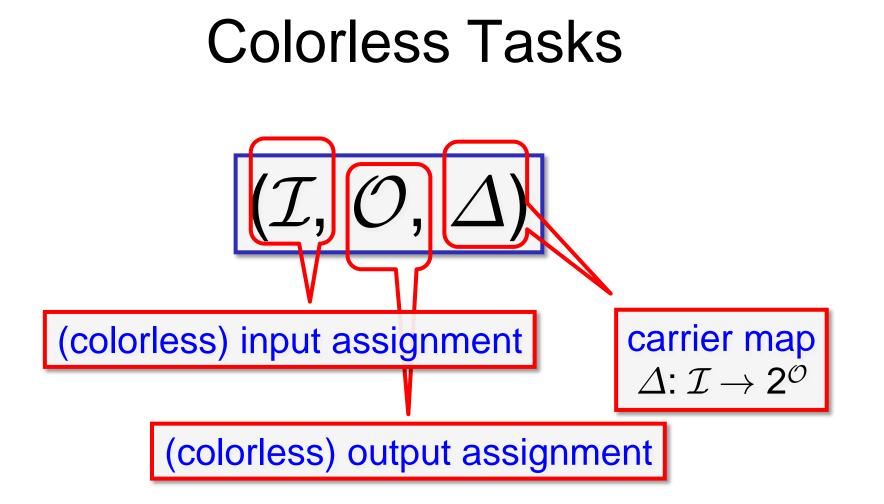




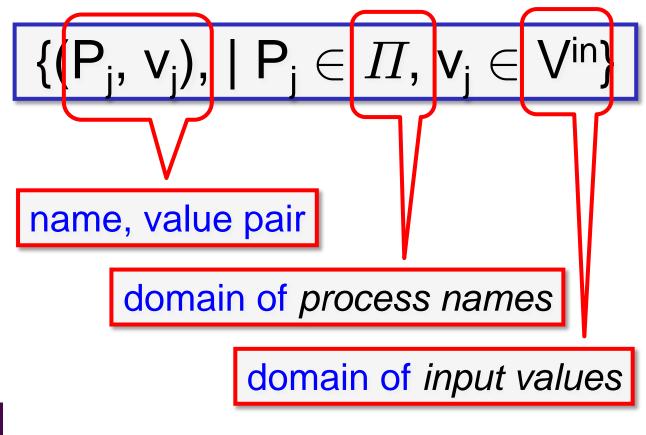
Crashes are Implicit

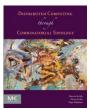






Input Assignments





Colorless Input Assignments

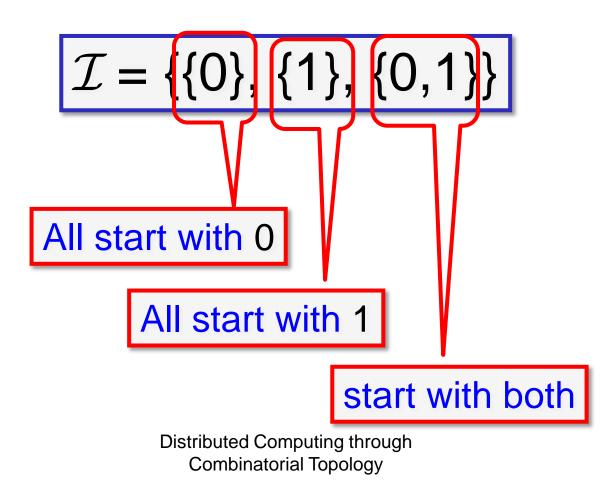
$$\{(\mathsf{P}_{\mathsf{j}},\,\mathsf{v}_{\mathsf{j}}),\,|\;\mathsf{P}_{\mathsf{j}}\in\varPi,\,\mathsf{v}_{\mathsf{j}}\in\mathsf{V}^{\mathsf{in}}\}$$

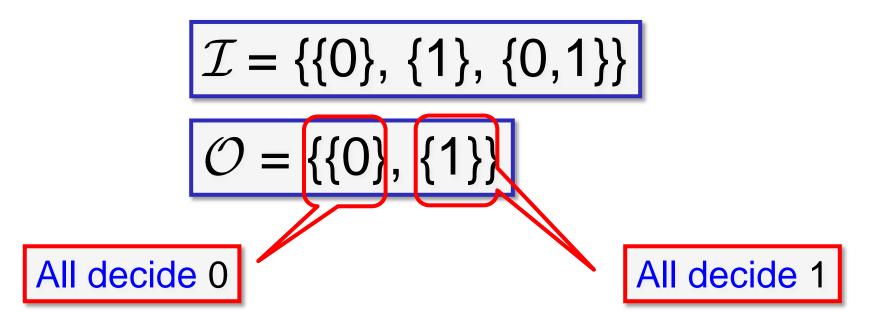
discard process names, keep values

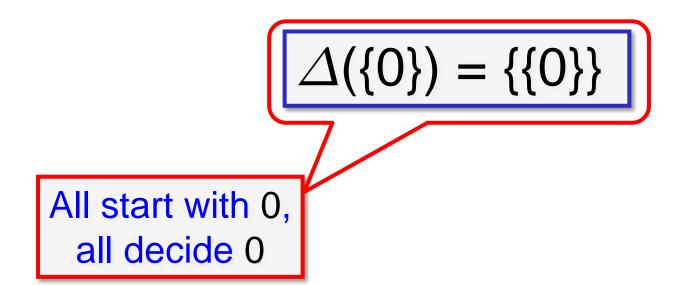
(Colorless) Output Assignments

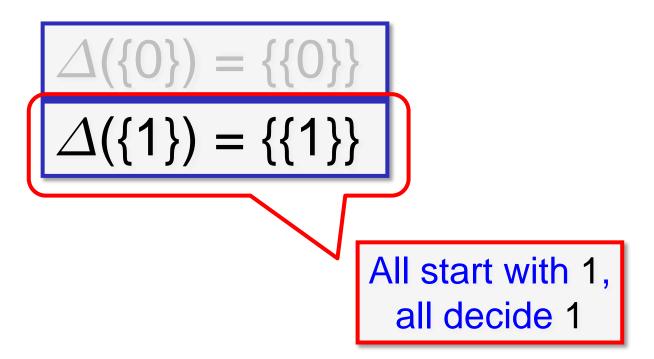
$$\{(\mathsf{P}_{\mathsf{j}},\,\mathsf{v}_{\mathsf{j}}),\,|\;\mathsf{P}_{\mathsf{j}}\in\varPi,\,\mathsf{v}_{\mathsf{j}}\in\mathsf{V^{out}}\}$$

$$\{(\mathsf{P}_{\mathsf{j}},\,\mathsf{v}_{\mathsf{j}}),\,|\;\mathsf{P}_{\mathsf{j}}\in\varPi,\,\mathsf{v}_{\mathsf{j}}\in\mathsf{V}^{\mathsf{out}}\}$$

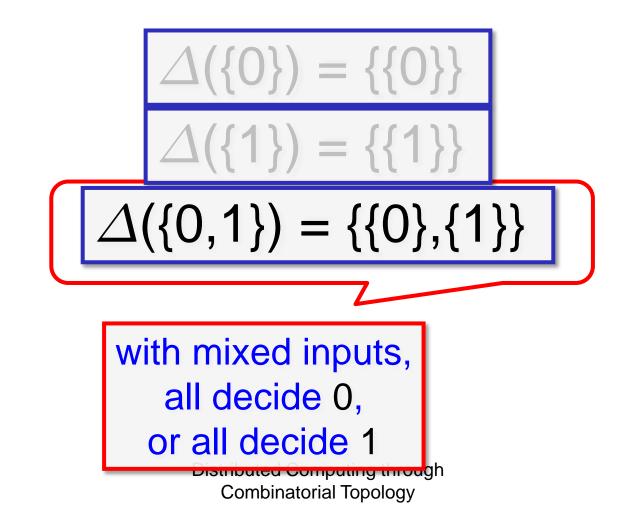




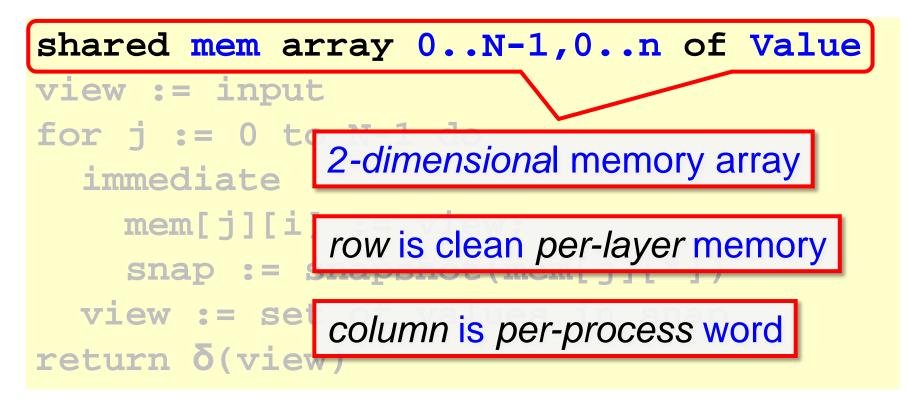


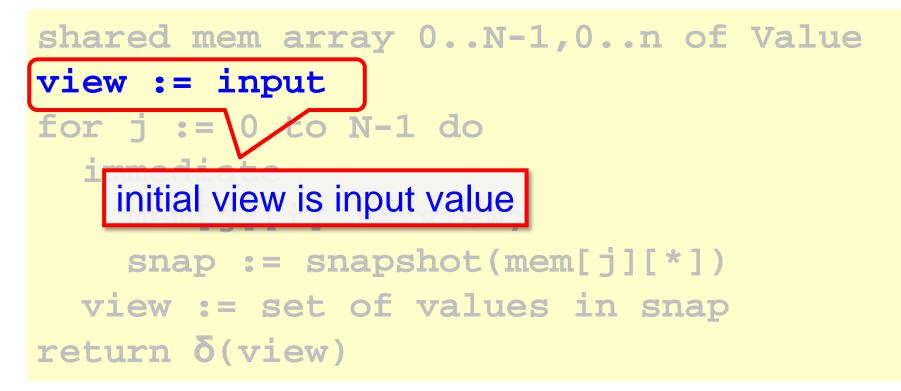


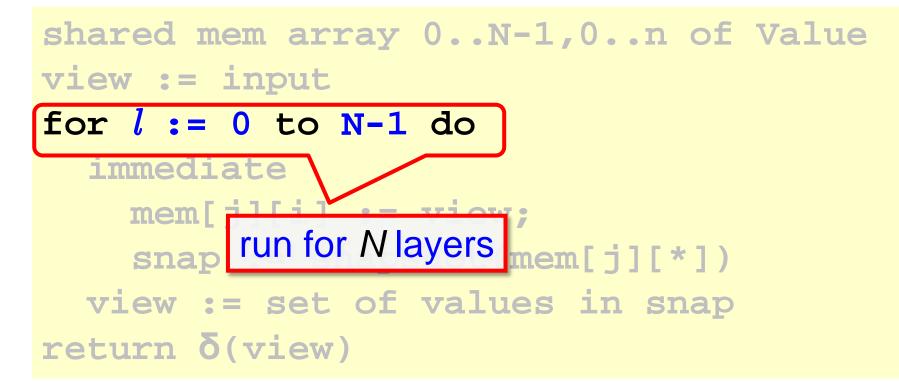
Example: Binary Consensus

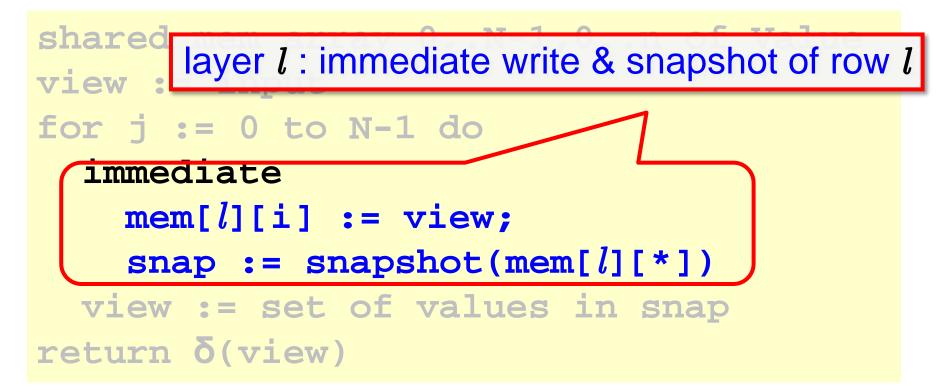



```
shared mem array 0..N-1,0..n of Value
view := input
for l := 0 to N-1 do
  immediate
    mem[l][i] := view;
    snap := snapshot(mem[l][*])
    view := set of values in snap
return δ(view)
```

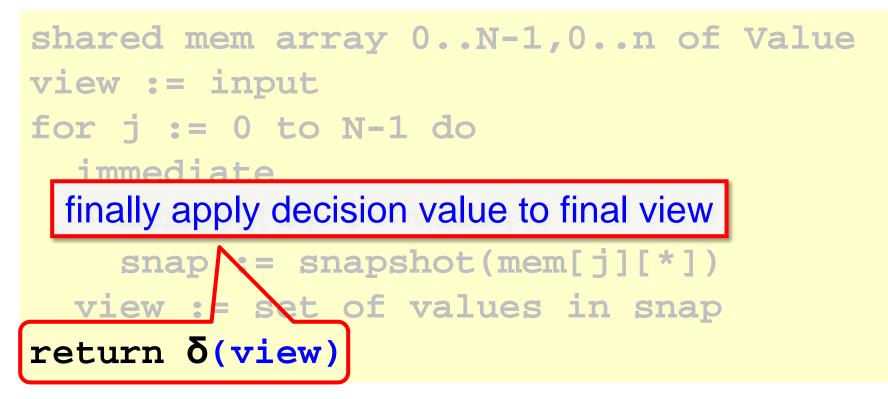



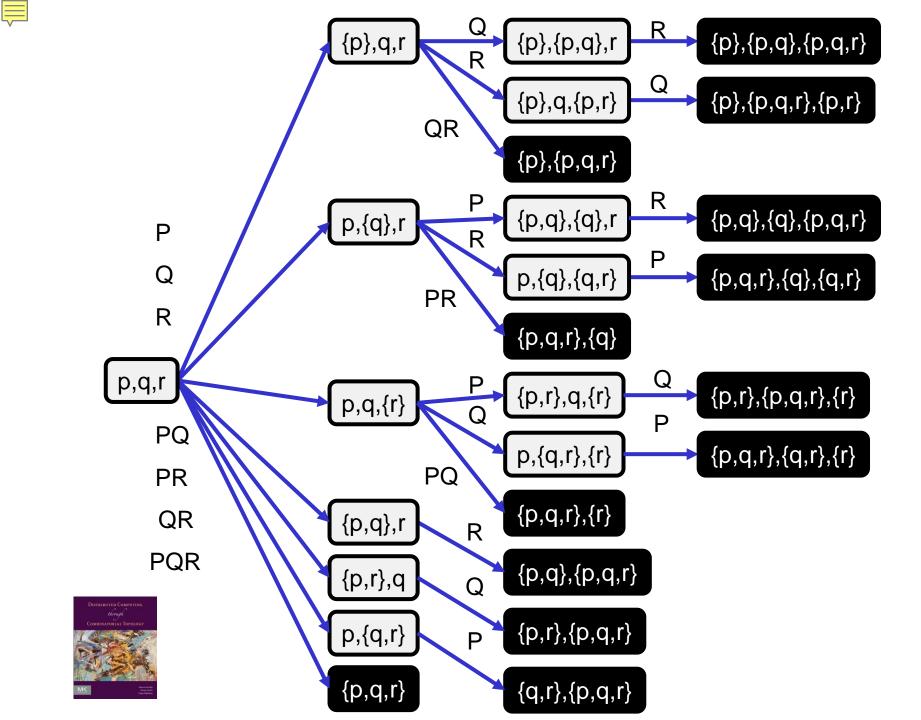


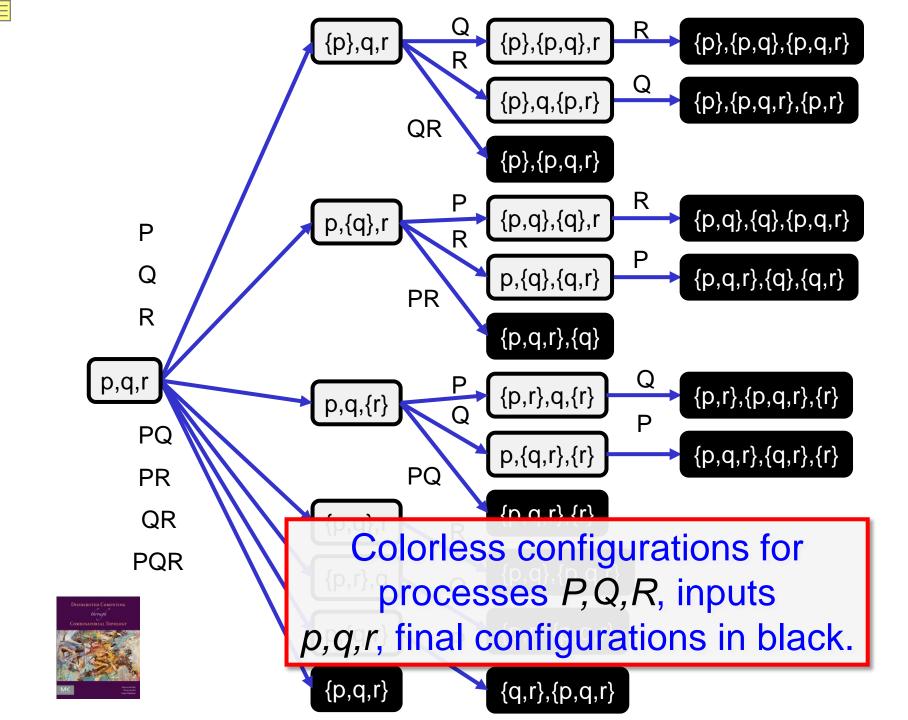










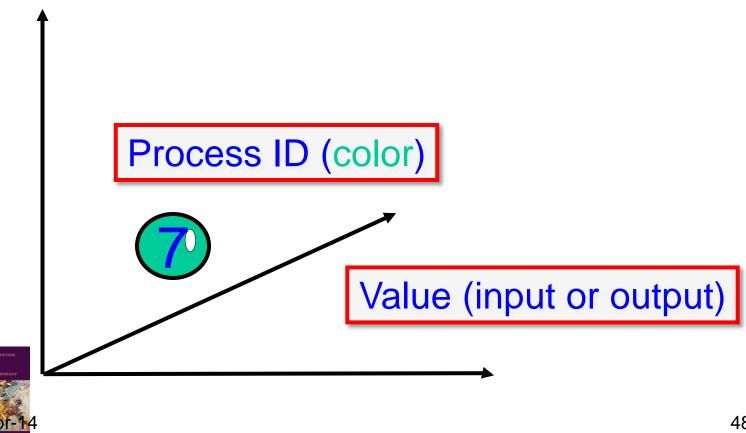


Road Map

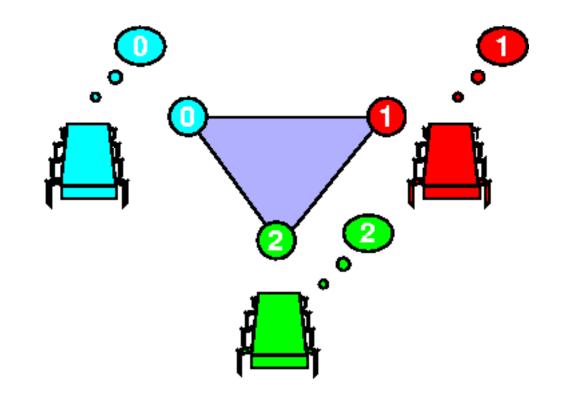
Operational Model

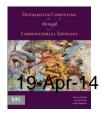
Main Theorem

Vertex = Process State

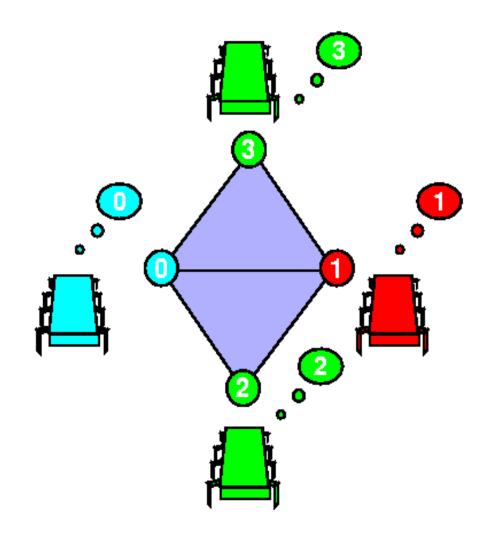


Simplex = Global State

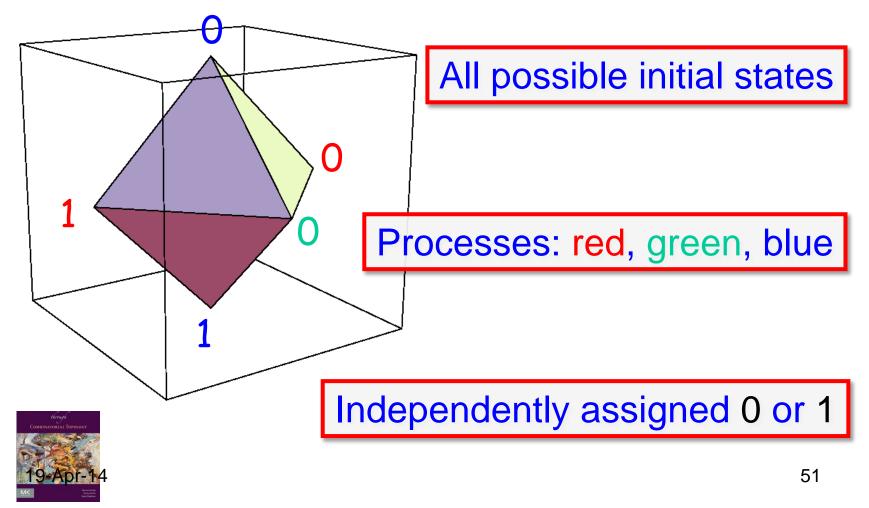




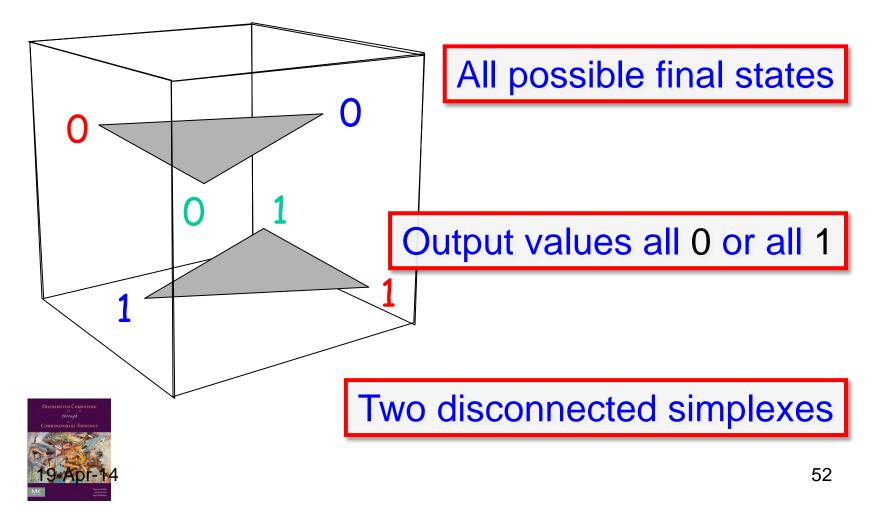
Complex = Global States



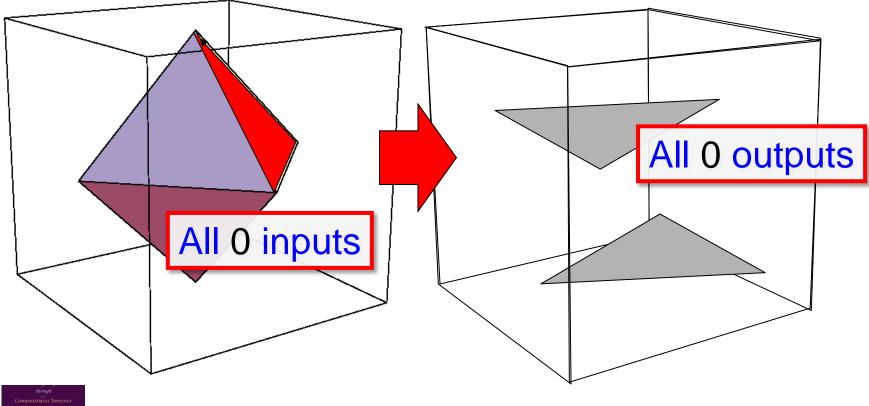
Input Complex for Binary Consensus



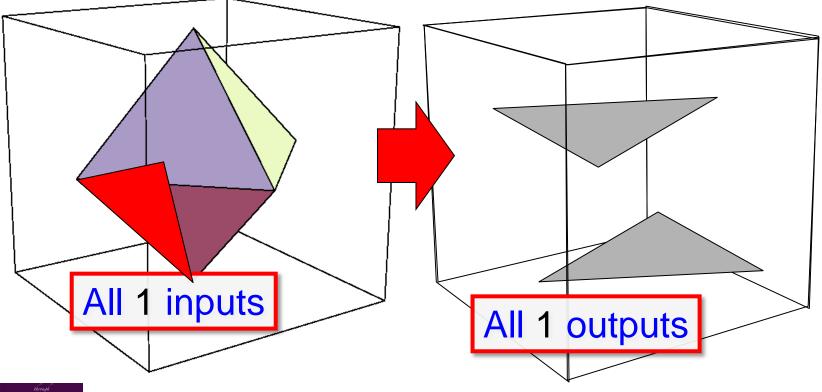
Output Complex for Binary Consensus



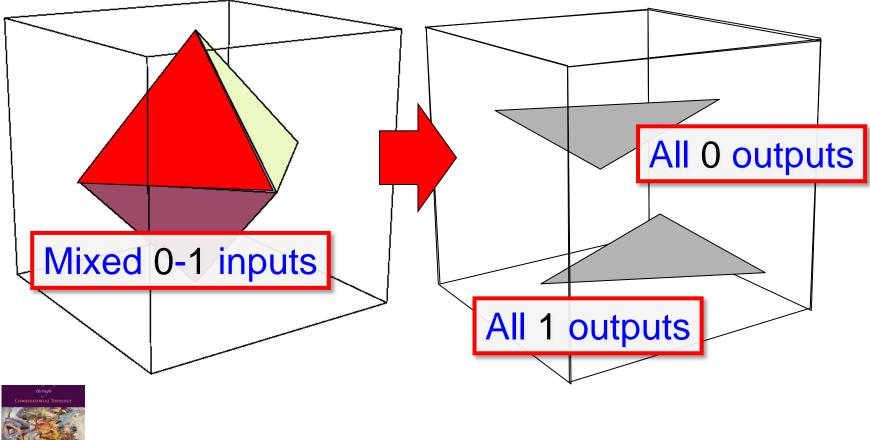
Carrier Map for Consensus



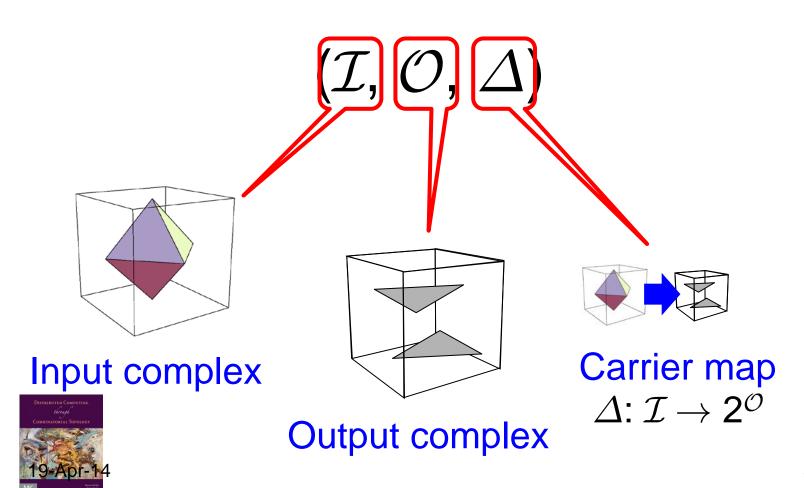
Carrier Map for Consensus

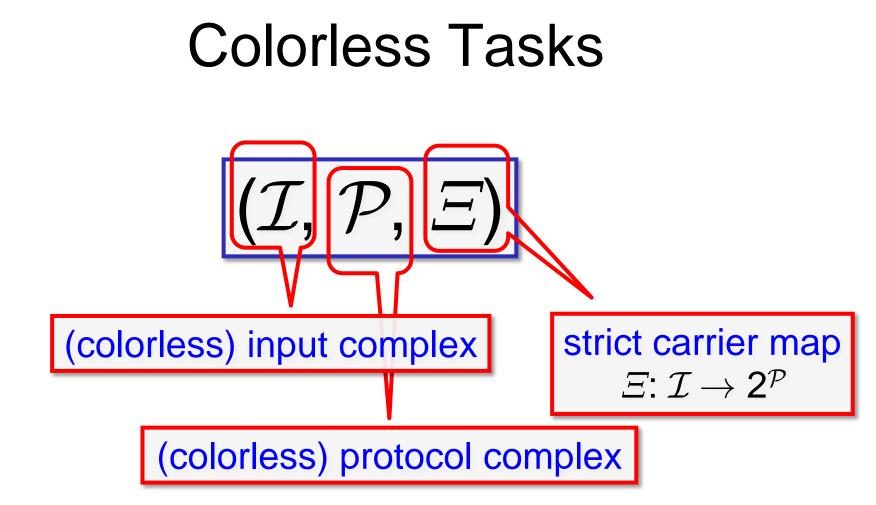


Carrier Map for Consensus



Task Specification





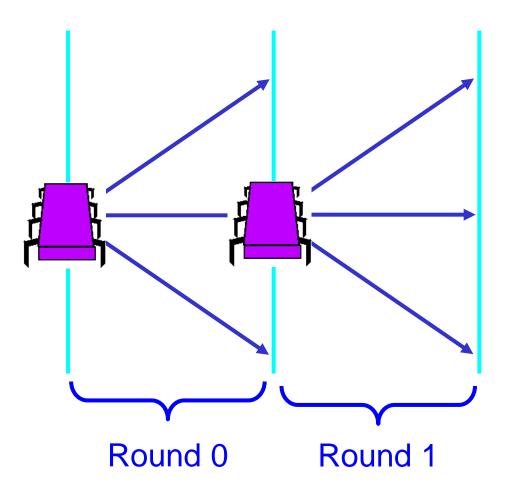
Protocol Complex

Vertex: process name, view all values read and written

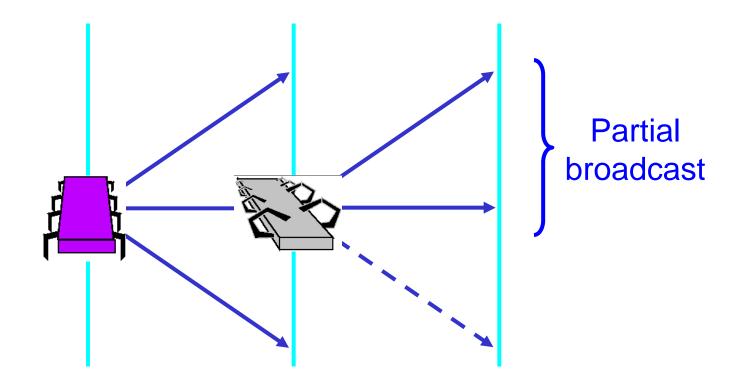
Simplex: compatible set of views

Each execution defines a simplex

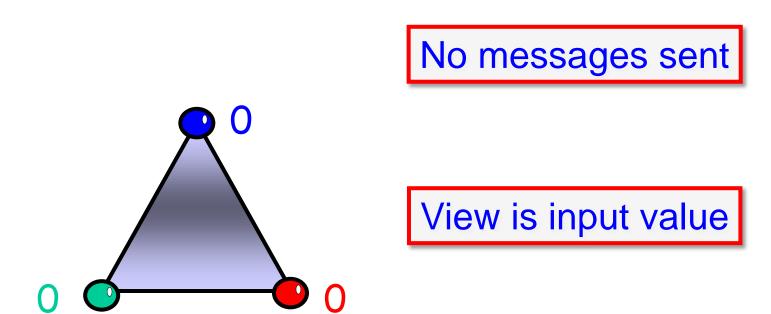
Example: Synchronous Message-Passing



Failures: Fail-Stop

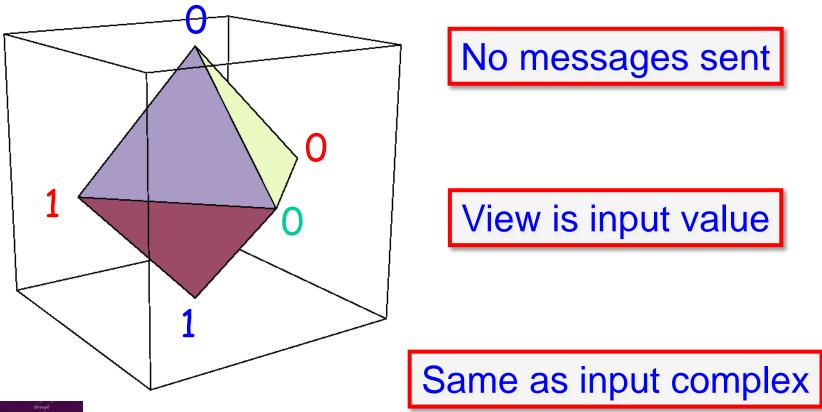


Single Input: Round Zero

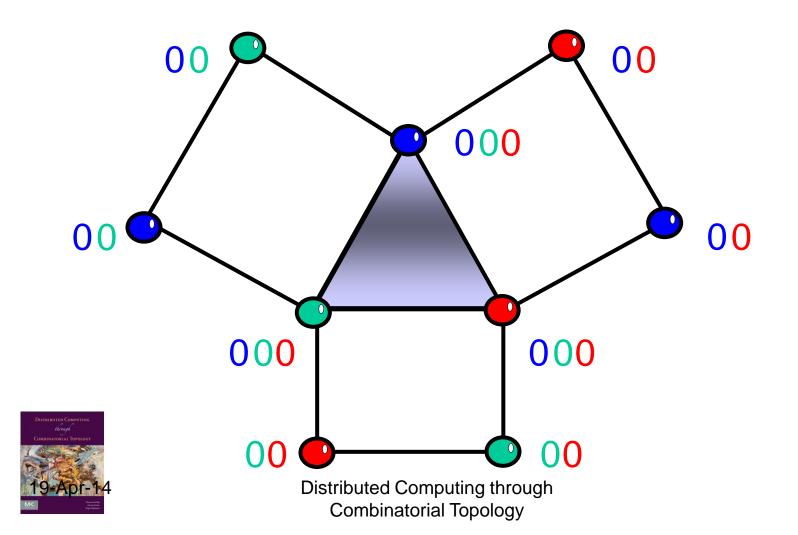


Same as input simplex

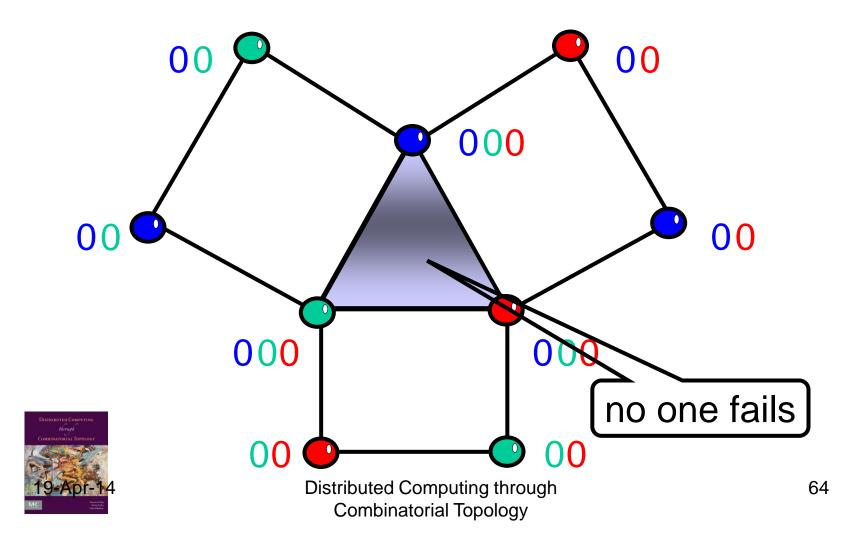
Round Zero Protocol Complex



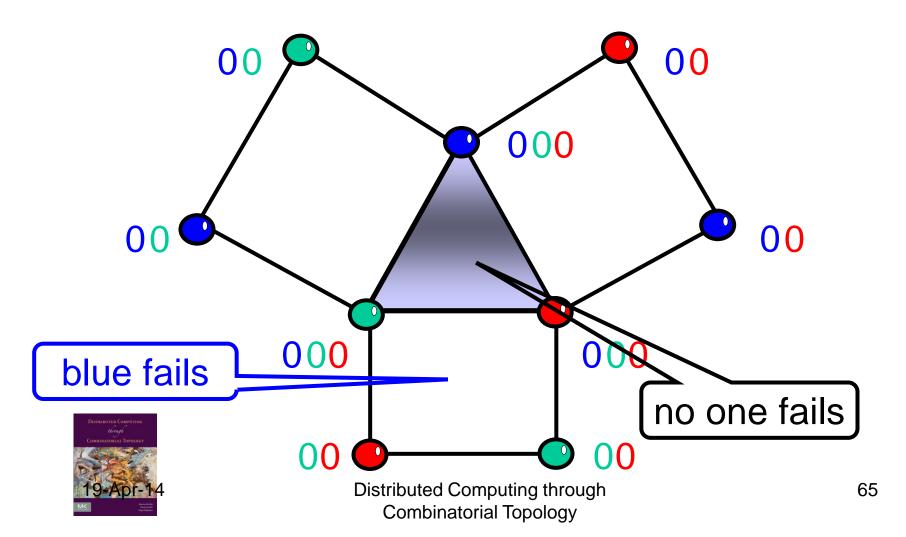
Single Input: Round One

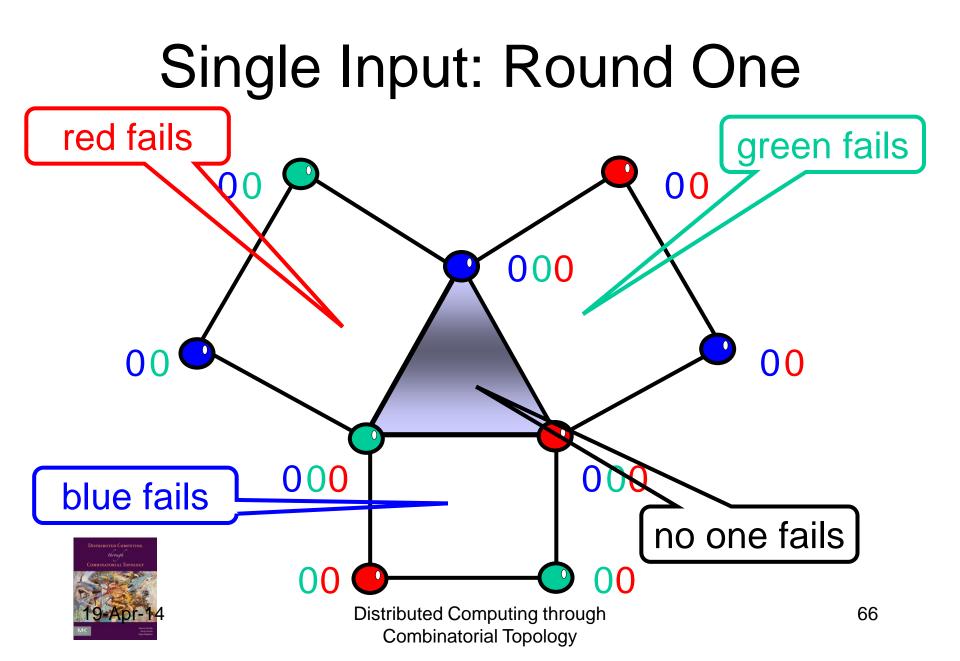


Single Input: Round One

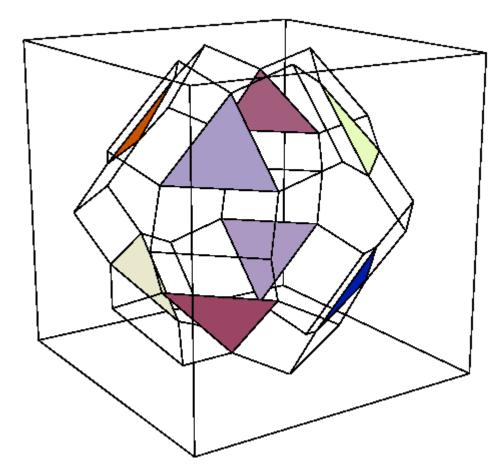


Single Input: Round One

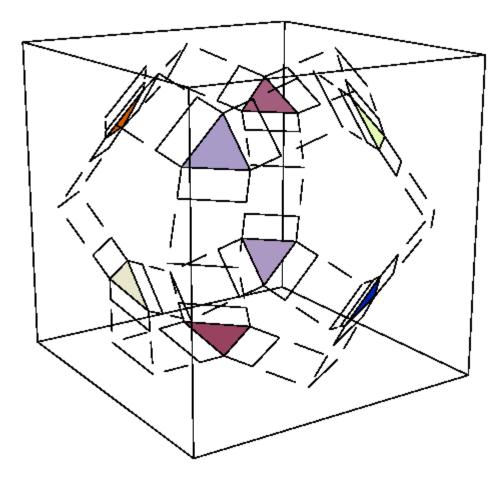




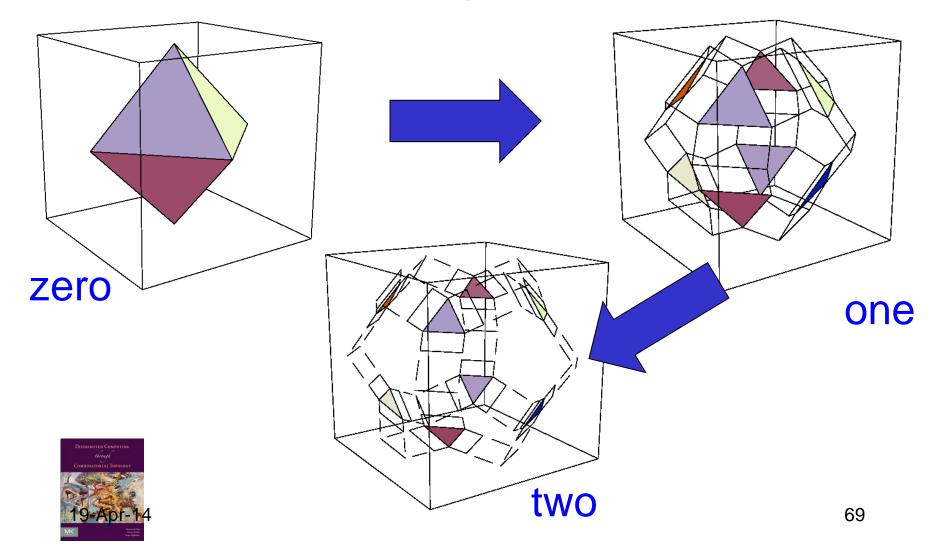
Protocol Complex: Round One

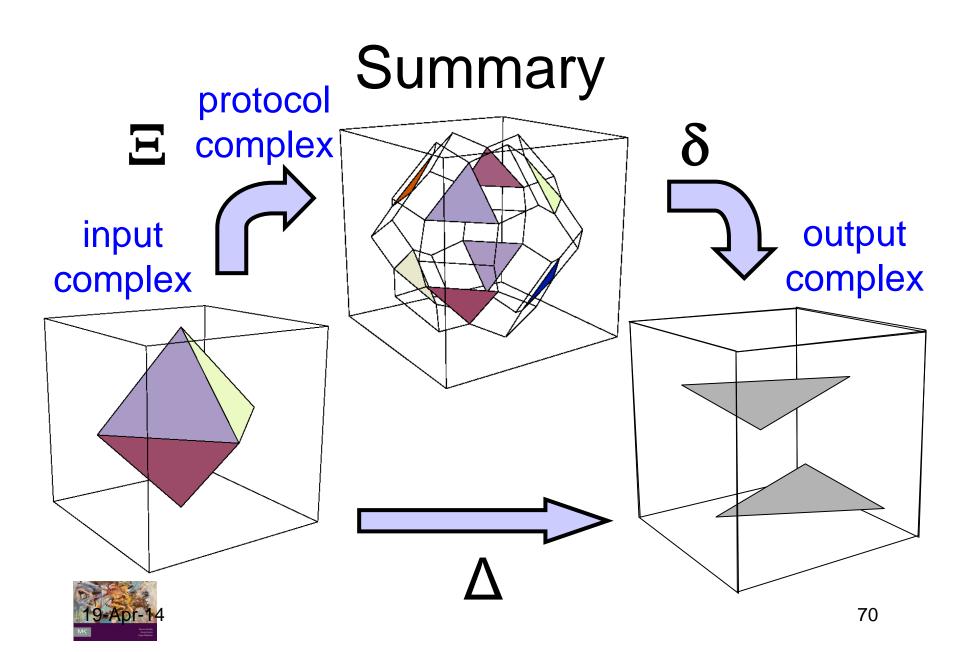


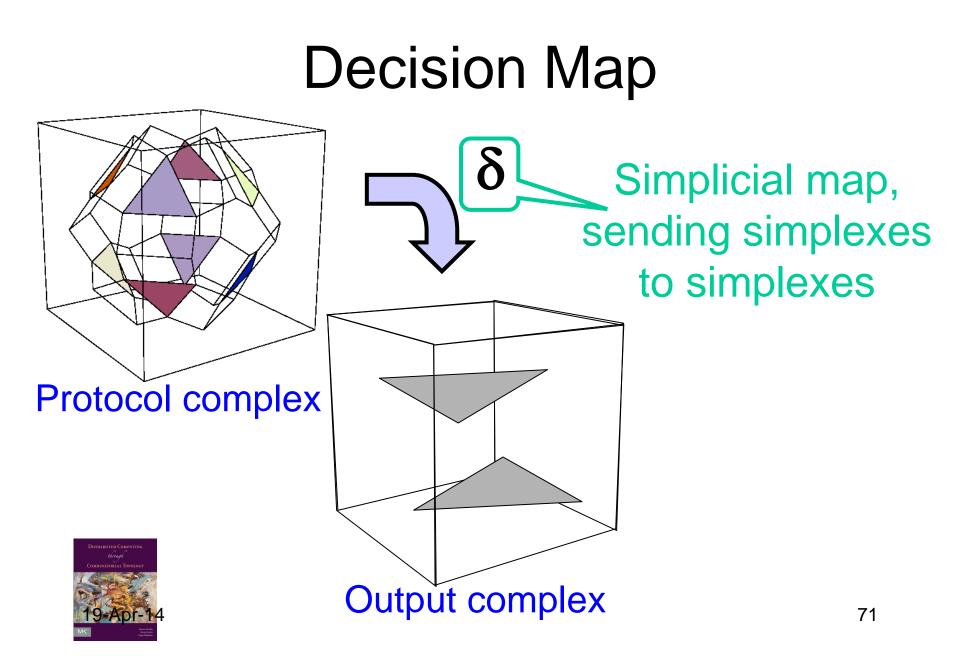
Protocol Complex: Round Two

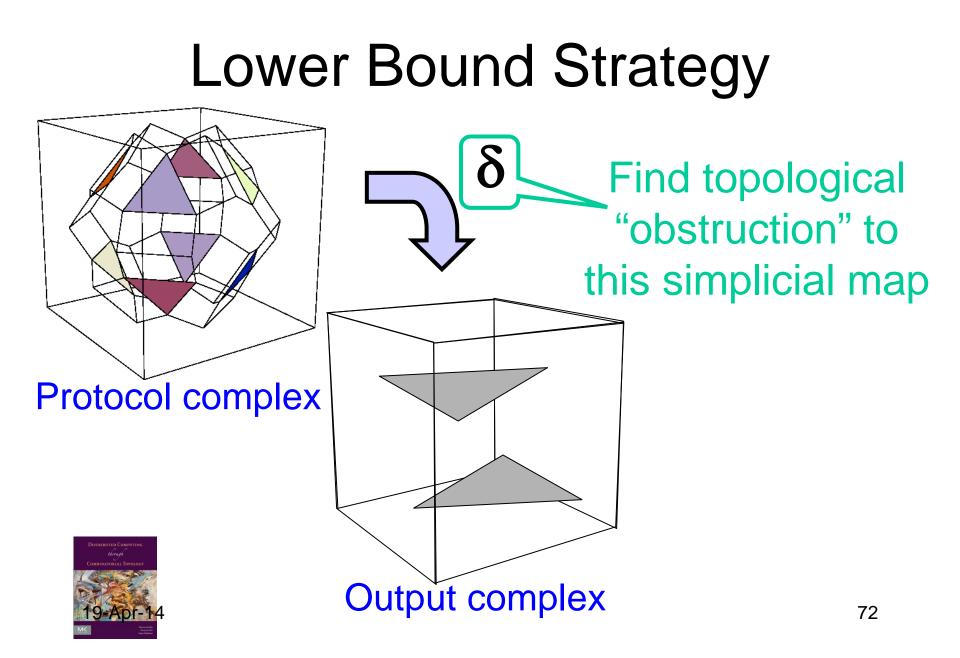


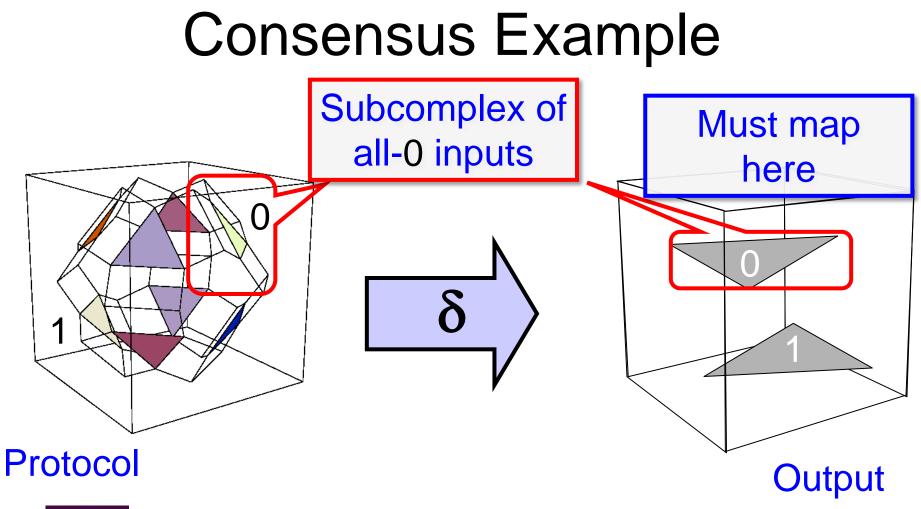
Protocol Complex Evolution



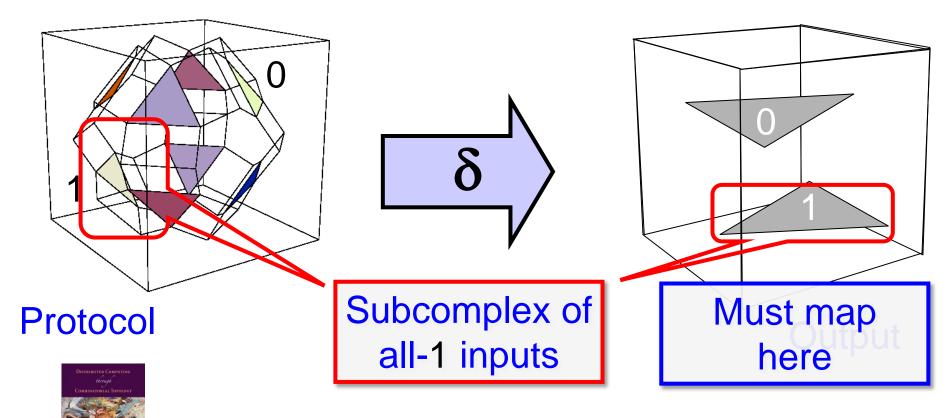


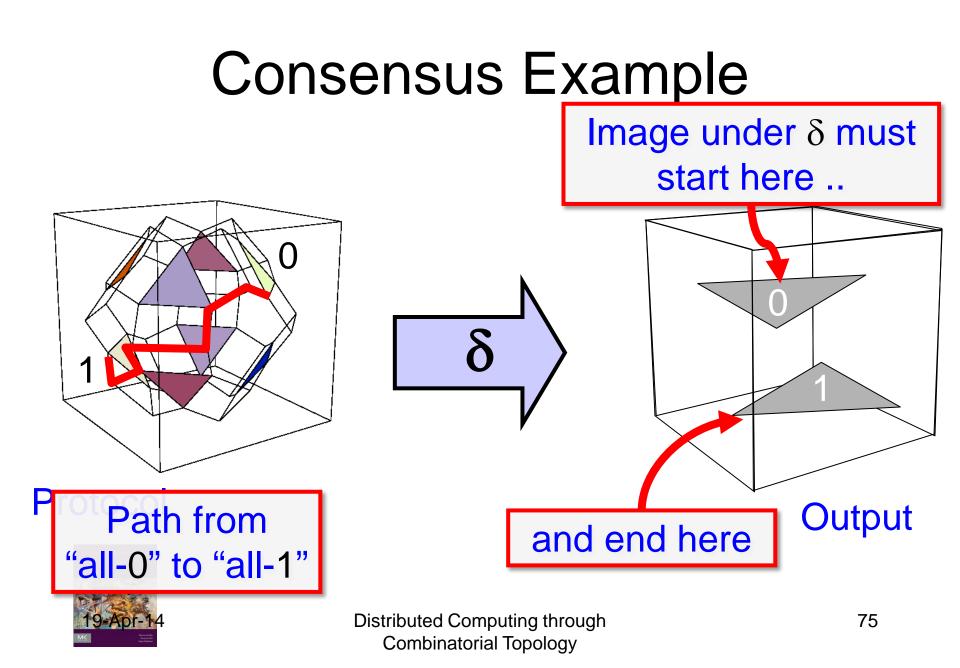




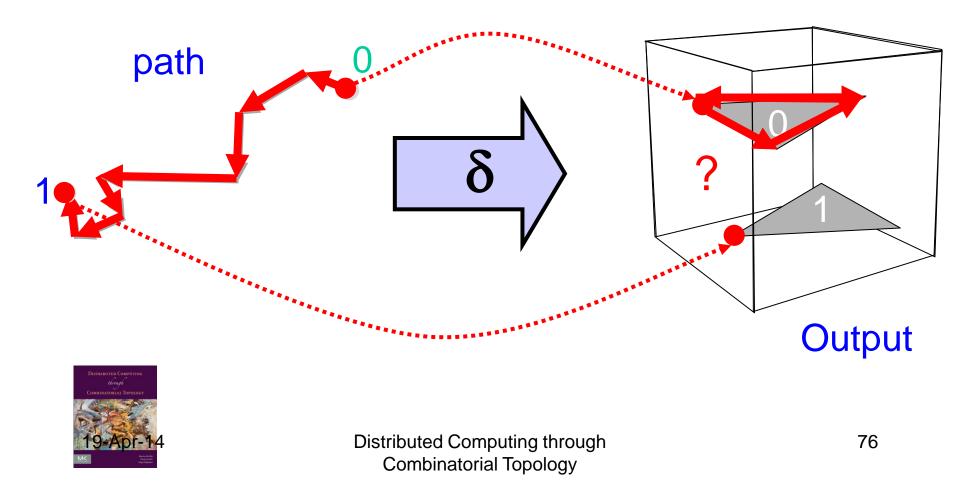


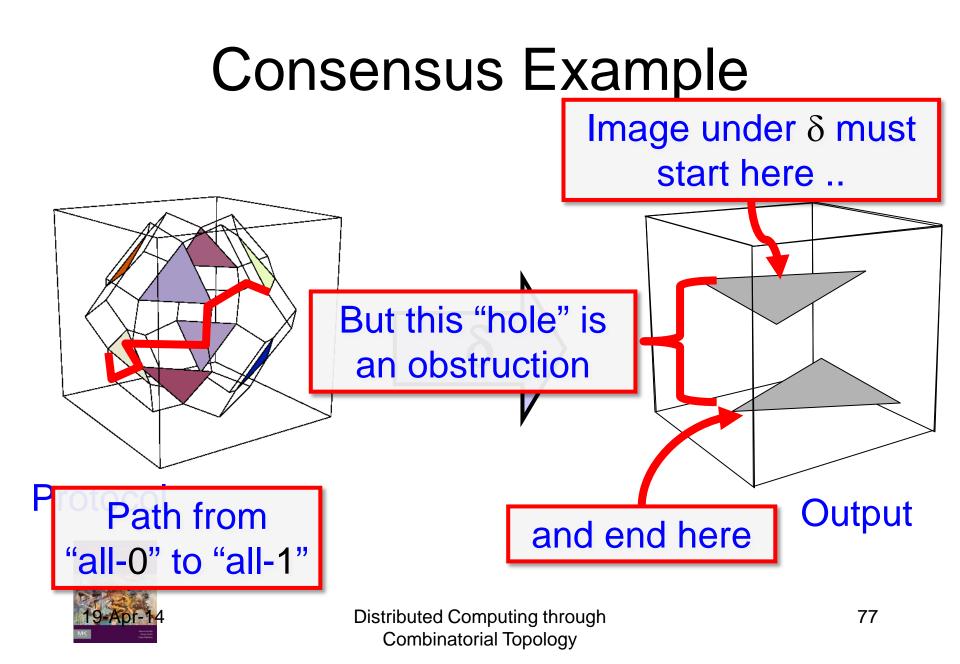
Consensus Example



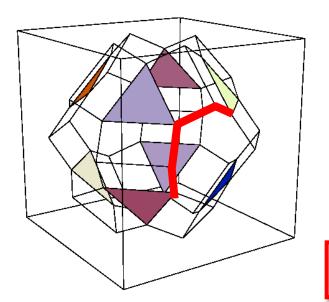


Consensus Example





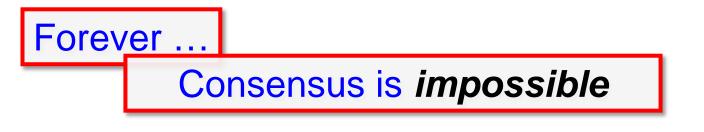
Conjecture



A protocol cannot solve consensus if its complex is *path-connected*

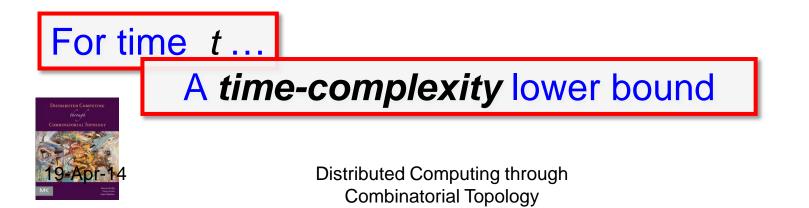
Model-independent!

If Adversary keeps Protocol Complex path-connected ...

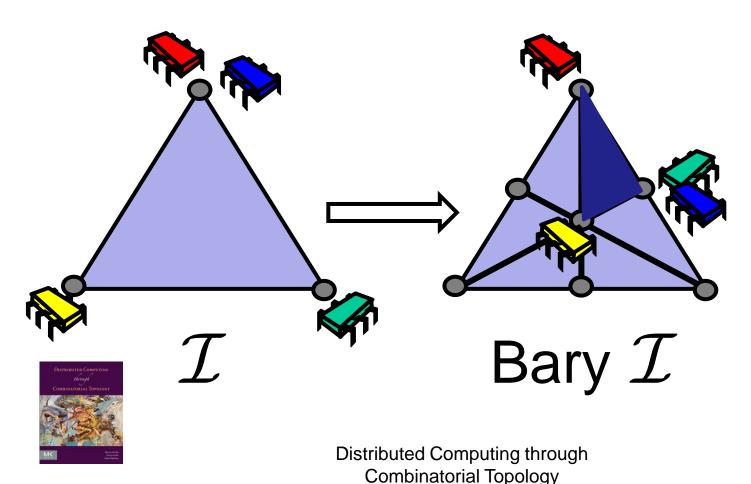


For *r* rounds ...

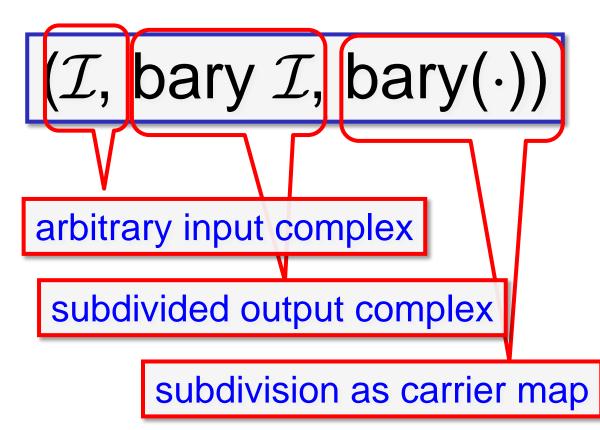
A round-complexity lower bound



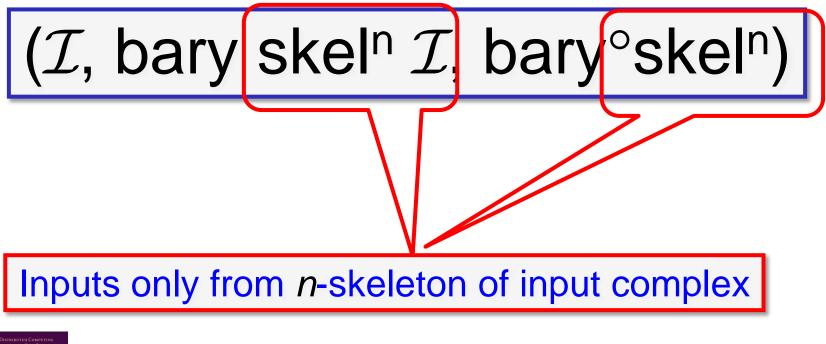
Barycentric Agreement



Barycentric Agreement



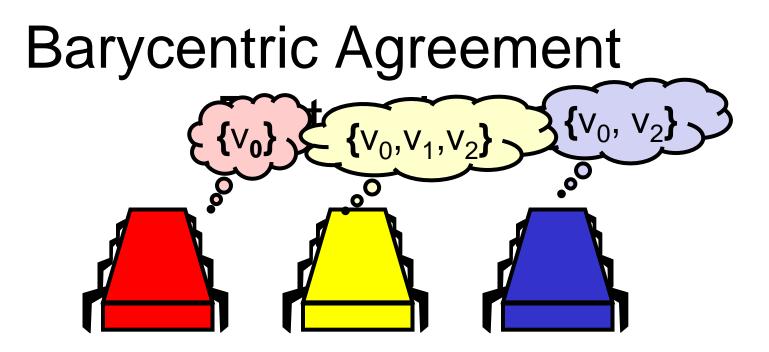
If There are *n* Processes

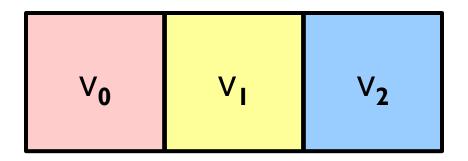


Theorem

A one-layer immediate snapshot protocol solves the *n*-process barycentric agreement task $(\mathcal{I}, bary skel^n \mathcal{I}, bary^\circ skel^n)$

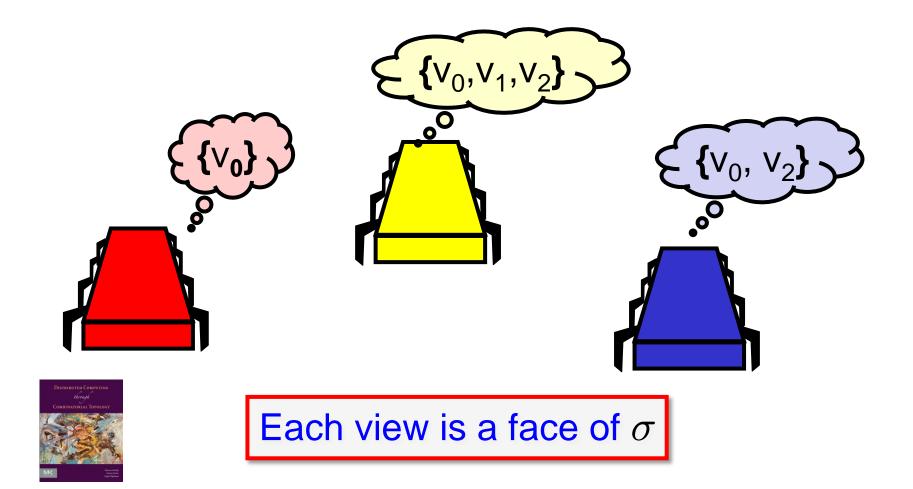
 $\begin{array}{l} \mbox{Proof} \\ \mbox{All input simplices belong to skel}^n \ensuremath{\mathcal{I}} \\ \mbox{Immediate snapshot results are ordered} \end{array}$

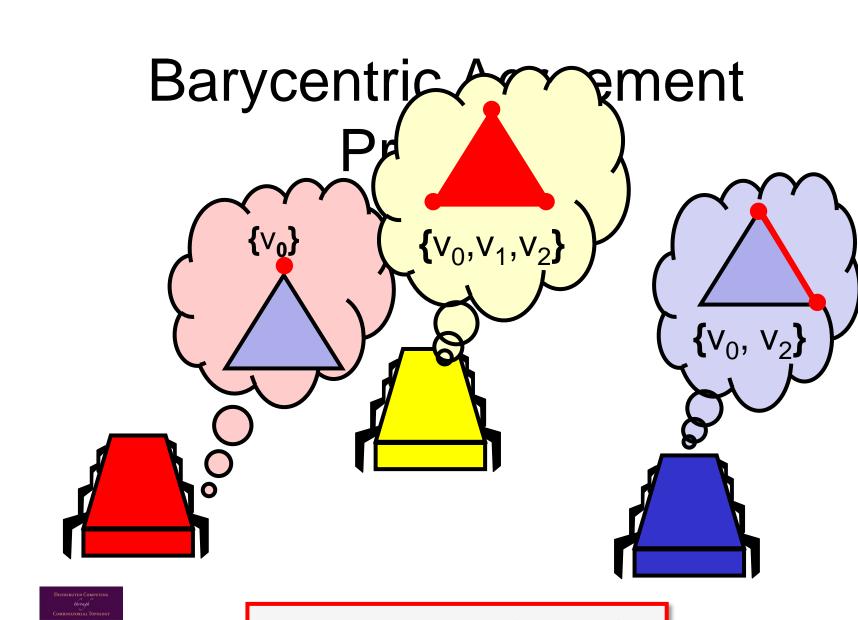




Snapshots are ordered

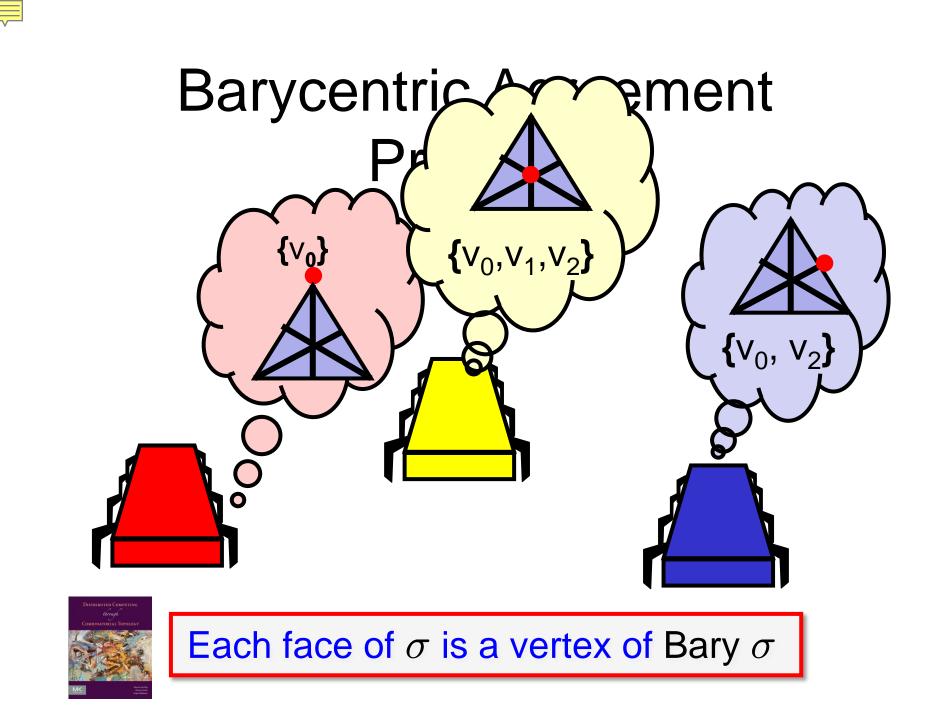
Barycentric Agreement Protocol

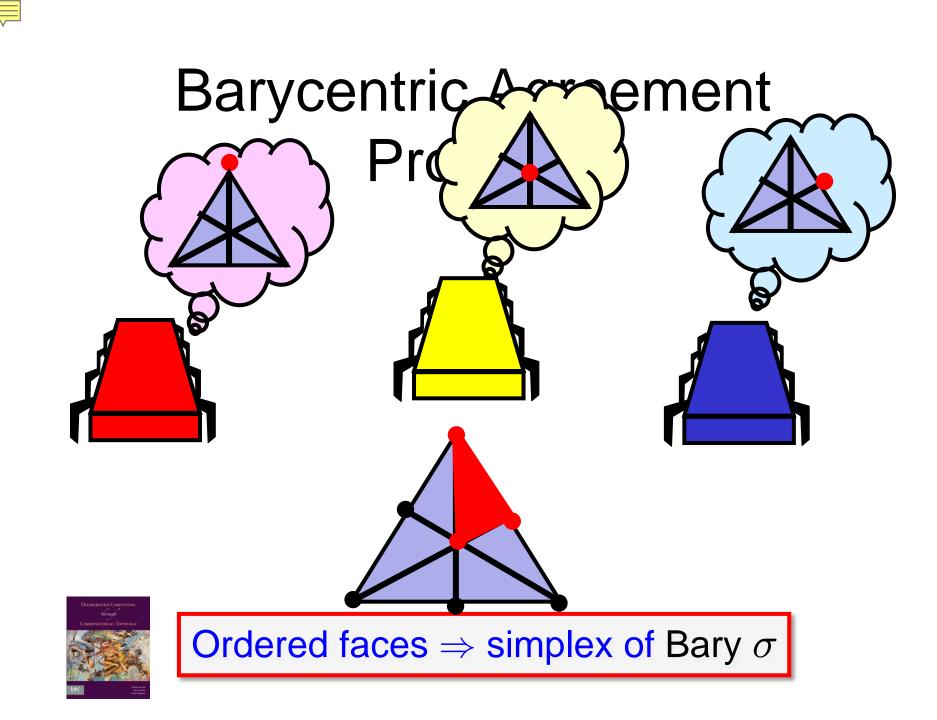




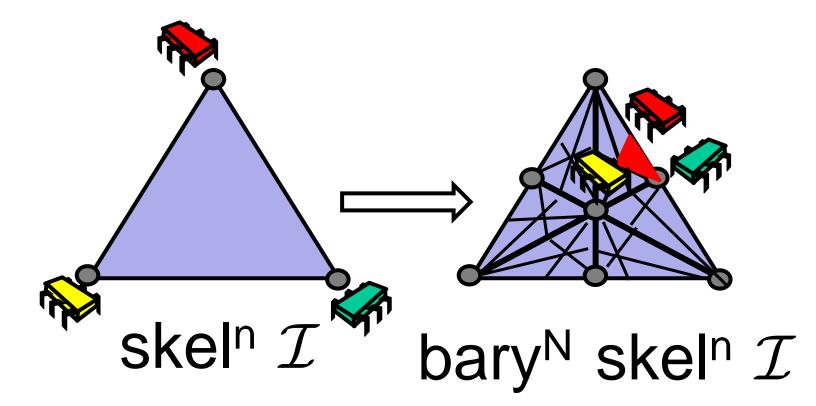
Ę

Each view is a face of σ





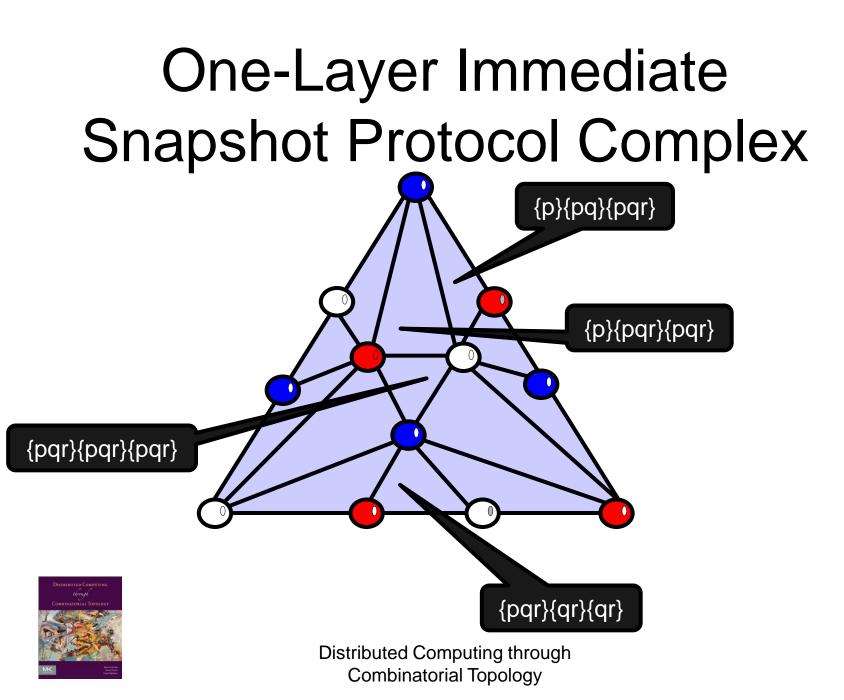
Iterated Barycentric Agreement



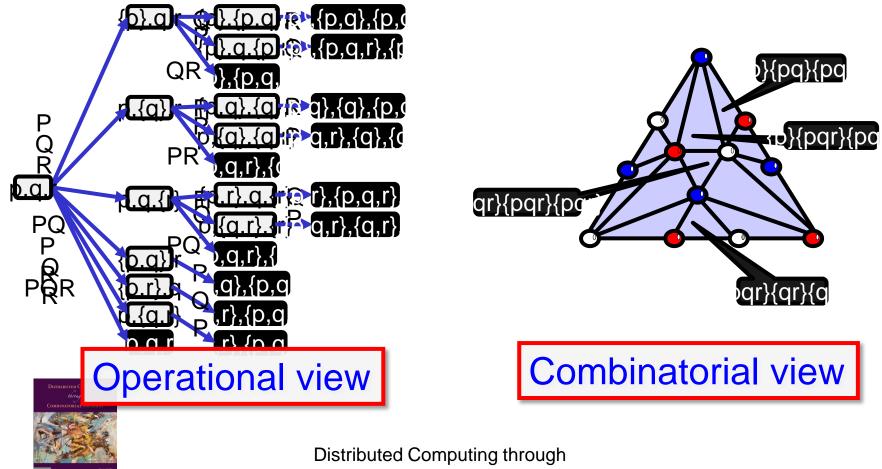
Iterated Barycentric Agreement

(\mathcal{I} , bary^N skelⁿ \mathcal{I} , bary^N°skelⁿ)

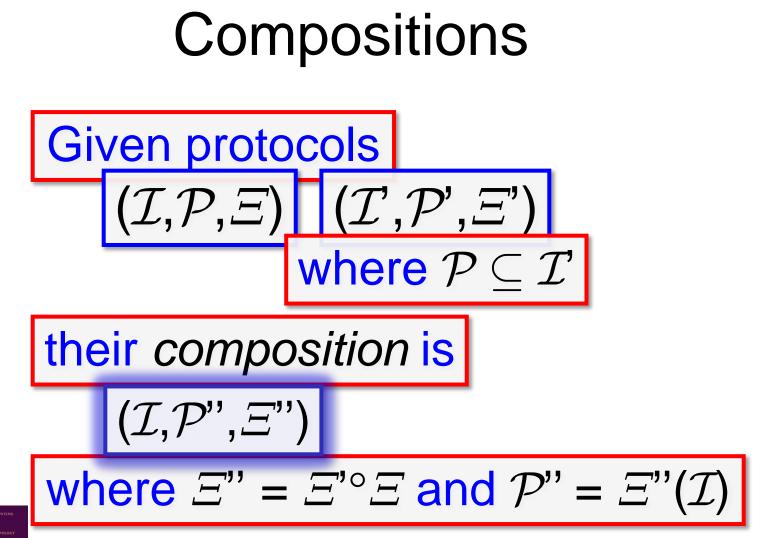
Distributed Computing through Combinatorial Topology 90



Compare Views



Combinatorial Topology



Road Map

Operational Model

Combinatorial Model

Main Theorem

Fundamental Theorem

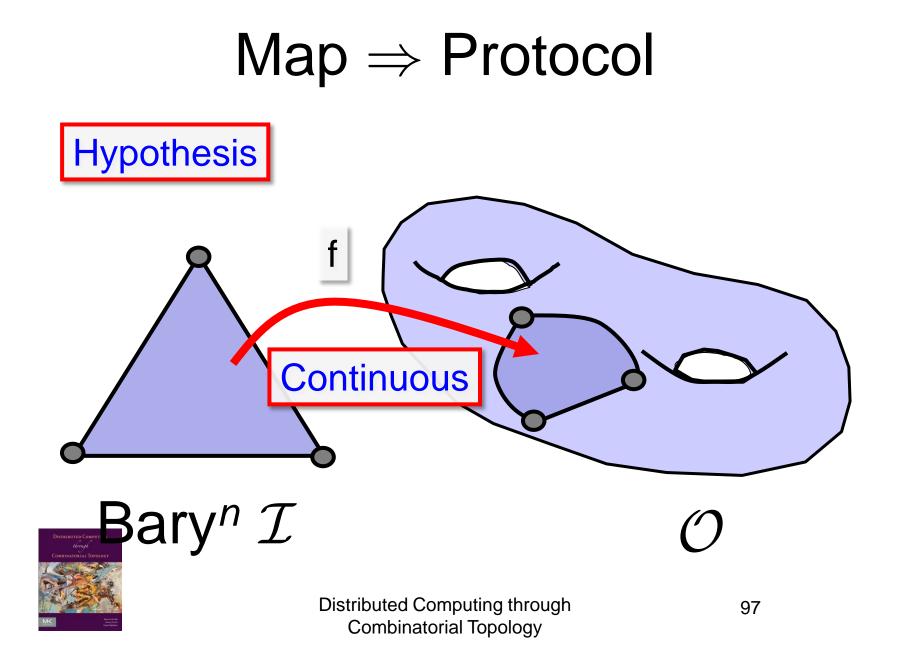
Theorem

 $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free (n+1)-process layered protocol iff there is a continuous map

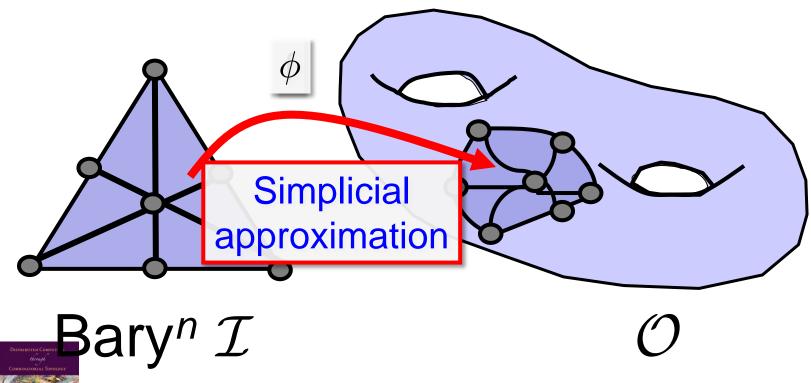
f:
$$|skel^n \mathcal{I}| \rightarrow |\mathcal{O}|...$$

carried by Δ

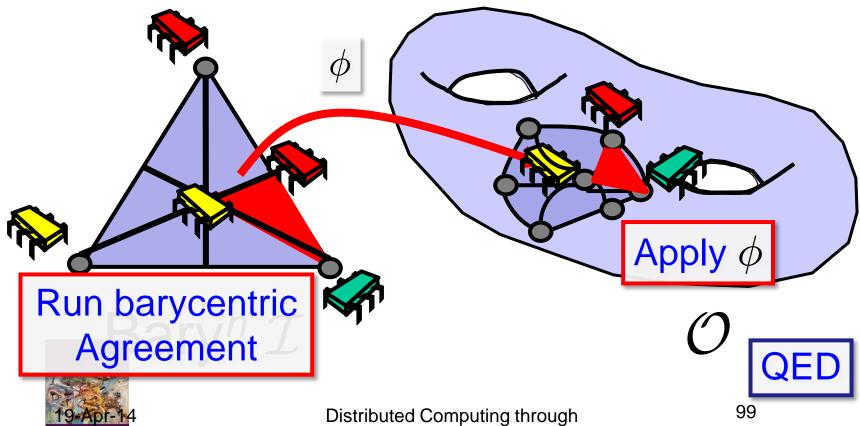
Proof Outline _emma there is a WF layered protocol for $(\mathcal{I}, \mathcal{O}, \Delta) \dots$ then there is a continuous f: $|\text{skel}^n \mathcal{I}| \to |\mathcal{O}| \text{ carried by } \Delta$.



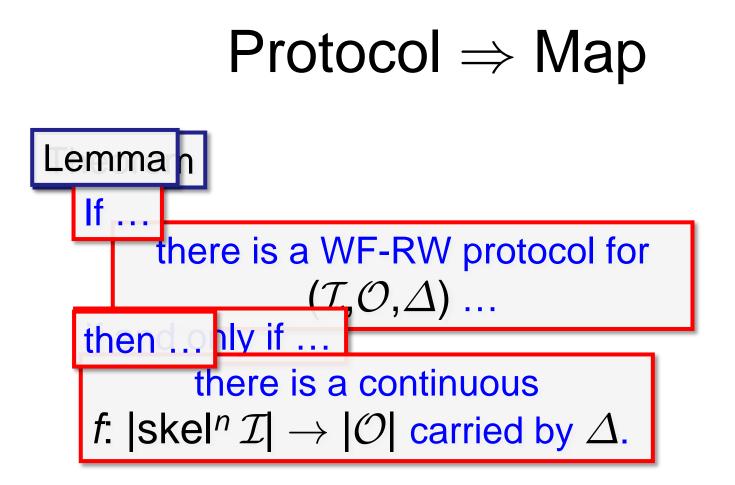
$Map \Rightarrow Protocol$



$Map \Rightarrow Protocol$



Combinatorial Topology



$Protocol \Rightarrow Map$

Proof strategy

Inductive construction g_d : $|\text{skel}^d \mathcal{I}| \rightarrow |\Xi(\mathcal{I})|$.

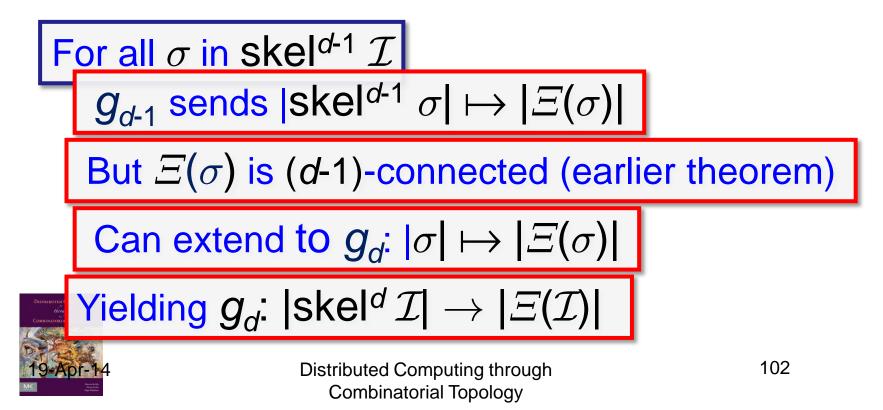
Base
$$d = 0$$

Define g_0 : $|skel^0 \mathcal{I}| \rightarrow |\Xi(\mathcal{I})| \dots$
Let $g_0(v)$ be any vertex in $\Xi(\{v\})$

$Protocol \Rightarrow Map$

Induction Hypothesis

$$g_{d\text{-}1}$$
: $| ext{skel}^{d ext{-}1} \mathcal{I}| o |\Xi(\mathcal{I})|$



Protocol
$$\Rightarrow$$
 Map
Constructed
 $g: |skel^n \mathcal{I}| \rightarrow |\mathcal{I}(\mathcal{I})|$
Simplicial decision map
 $\delta: \mathcal{I}(skel^n \mathcal{I}) \rightarrow \mathcal{O}$
 $|\delta|: |\mathcal{I}(skel^n \mathcal{I})| \rightarrow |\mathcal{O}|$
Composition $f = |\delta| \cdot g$ yields
 $f: |skel^n \mathcal{I}| \rightarrow |\mathcal{O}|$ carried by Δ .
QED
Mathematical decision map

This work is licensed under a <u>Creative Commons Attribution-</u> <u>ShareAlike 2.5 License</u>.

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

