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Presenter
Presentation Notes
In a colorless task, process identity is unimportant, in the sense that each process can take another’s input or output values. Here they swap values,
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Presenter
Presentation Notes
But it is OK for one thread to adapt another’s input or output value.



Colorless Tasks 
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The set of input values … 

determines the set of output values. 

Number and identities irrelevant… 

for both input and output values 
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32 32 

32 

32 7 

32 

Consensus 

k-set agreement 

Presenter
Presentation Notes
Consensus and set agreement are simple examples of colorless tasks where any process can take another’s input or output values.



Non-Examples 
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Weak Symmetry-Breaking 
When all participate … 

At least one on group 0, group 1 

Presenter
Presentation Notes
Not all interesting tasks are colorless. For example, in weak symmetry-breaking, it is not legal to replace one process's output with another's: if one process joins group 0, it is not legal for them all to join group zero.



Yes No 

No 

No! No! 

No! 
Majority 

Yes 

Presenter
Presentation Notes
But it is OK for one thread to adapt another’s input or output value.



Road Map 
Operational Model 

Combinatorial Model 

Main Theorem 
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Processes 

9 
Distributed Computing though 

Combinatorial Topology 

A process is a state 
machine 

Could be Turing 
machines or more 

powerful 

Presenter
Presentation Notes
 It is convenient to model a process as a sequential  automaton with a~possibly infinite set of states. Remarkably, the set of computable tasks in a given system does not change if the individual processes are modeled as Turing machines, or as even more powerful automata with infinite numbers of states, capable of solving ``undecidable'' problems that Turing machines cannot. The important questions of distributed computing are concerned with communication and dissemination of knowledge, and are largely independent of the computational power of individual processes.



Processes 

10 
Distributed Computing though 

Combinatorial Topology 

A process’s state is 
called its view 

Process names taken 
from a domain ¦ 

Each process has a 
unique name (color) 

Pi 2 ¦ 

Presenter
Presentation Notes
Each process has a unique \emph{name} taken from a universe of names $\Pi$. Each process state $q$ also includes a mutable \emph{view} component, denoted $\view(q)$, which typically changes from state to state over an execution.  This component represents what the process ``knows'' about the current computation, including any local variables the process may use. 



Processes 

11 
Distributed Computing though 

Combinatorial Topology 

Each process “knows” its 
own name 

But not the names of 
the other processes 

Presenter
Presentation Notes
Each process ``knows'' its name, but it does not know \emph{a priori} the names of the participating processes. Instead, each process includes its own name in each communication, so processes learn the names of other participating processes dynamically as the computation unfolds.



Processes 
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Distributed Computing though 

Combinatorial Topology 

Often, Pi  is just i 

Sometimes Pi  and i are 
distinct, and the process 

“knows” Pi but not i 

Presenter
Presentation Notes
 A distributed system is a set of communicating state machines called \emph{processes}. It is convenient to model a process as a sequential  automaton with a~possibly infinite set of states. Remarkably, the set of computable tasks in a given system does not change if the individual processes are modeled as Turing machines, or as even more powerful automata with infinite numbers of states, capable of solving ``undecidable'' problems that Turing machines cannot. The important questions of distributed computing are concerned with communication and dissemination of knowledge, and are largely independent of the computational power of individual processes.



Processes 
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Combinatorial Topology 

There are n+1 
processes 

Presenter
Presentation Notes
 A distributed system is a set of communicating state machines called \emph{processes}. It is convenient to model a process as a sequential  automaton with a~possibly infinite set of states. Remarkably, the set of computable tasks in a given system does not change if the individual processes are modeled as Turing machines, or as even more powerful automata with infinite numbers of states, capable of solving ``undecidable'' problems that Turing machines cannot. The important questions of distributed computing are concerned with communication and dissemination of knowledge, and are largely independent of the computational power of individual processes.



Shared Read-Write Memory 
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Distributed Computing though 

Combinatorial Topology 

For now, they 
communicate via 
reading & writing 
shared memory 

Presenter
Presentation Notes
For the time being, we will consider a model of computation in which processes communicate by reading and writing a shared memory. In modern shared-memory multiprocessors, often called \emph{multicores}, memory is a sequence of individually-addressable \emph{words}. Multicores provide instructions that read or write individual memory words
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Individual reads & writes are too low-level … 

A snapshot = atomic read of all memory 

We will use immediate snapshot … 

Presenter
Presentation Notes
For our purposes, we will use an idealized version of this model, recasting conventional read and write instructions into equivalent forms that have a cleaner combinatorial structure. Superficially, this idealized model may not look like your laptop, but in terms of task solvability, these models are equivalent: any algorithm in the idealized model can be translated to an an algorithm for the more realistic model, and vice-versa.
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write view to memory 

take snapshot adjacent steps! 

Presenter
Presentation Notes
We combine writes and snapshots as follows. An \emph{immediate snapshot} takes place in two contiguous steps. In the first step, a process writes its view to a word in memory, possibly concurrently with other processes. In the very next step, it takes a snapshot of some or all of the memory, possibly concurrently with other processes. It is important to understand that that in an immediate snapshot, the snapshot step takes place \emph{immediately after} the write step.



Immediate Snapshot 
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write view to memory 

take snapshot 

write view to memory 

take snapshot 

Presenter
Presentation Notes
Here the red and blue processes take steps at the same time.



Immediate Snapshot 
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immediate 
  mem[i] := view; 
  snap := snapshot(mem[*]) 

Presenter
Presentation Notes
In our pseudo-code examples, here is how we write immediate snapshots.



P Q R 
write 
snap 

write 
snap 

write 
snap 

{p} {p,q} {p,q,r} 

P Q R 
write 
snap 

write write 
snap snap 

{p} {p,q,r} {p,q,r} 

P Q R 
write write write 
snap snap snap 

{p,q,r} {p,q,r} {p,q,r} 

Presenter
Presentation Notes
Here are three examples of immediate snapshot executions. Notice that as we “perturb” each execution, only one process’s view chanes.



Realistic? 
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No! 
My laptop reads only a few 

contiguous memory words at a time 

Yes! 
Simpler lower bounds: if it’s 

impossible with IS, it’s 
impossible on your laptop. 

Can implement IS from read-write 

Presenter
Presentation Notes
Superficially, a model based on immediate snapshots may seem unrealistic. As noted, modern multicores do not provide snapshots directly. At best, they provide the ability to atomically read a small, constant number of contiguous memory words. Moreover, in modern multicores, concurrent read and write instructions are typically interleaved in an arbitrary order.Nevertheless, the idealized model includes immediate snapshots for two reasons. First, immediate snapshots simplify lower bounds. It is clear that any task that is impossible using immediate snapshots is also impossible using single-word reads and writes. Moreover, we will see that immediate snapshots yield simpler combinatorial structures than reading and writing individual words. Second, perhaps surprisingly, immediate snapshots do not affect task solvability. It is well-known (see the chapter notes) that one can construct a wait-free snapshot from single-word reads and writes, and we will see in Chapter~\ref{chapter:simcolor} how to construct a wait-free immediate snapshot from snapshots and single-word write instructions. It follows that any task that can be solved using immediate snapshots can be solved using single-word reads and writes, although a direct translation may be impractical.



Crashes 
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Processes may halt without warning 

as many as n out of n+1 

Presenter
Presentation Notes
Failures are halting failures: a process simply stops and takes no more steps. When designing a protocol, it is important to know what kinds of failures your protocol must tolerate.



Asynchronous 

Presenter
Presentation Notes
In asynchronous models, processes take steps at any rate.

Asynchronous comes from Greek: a (not) + synchronous (at the same time).





Synchronous comes from Greek: syn = together, chronos = time.




Asynchronous Failures 

?? 

detection impossible 

Presenter
Presentation Notes
The asynchronous model is difficult because it is impossible to tell whether another process has failed or is just slow.




Configurations 
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C = {s0, …, sn} 

set of simultaneous process states 

initial configurations 
final configurations 

Presenter
Presentation Notes
A \emph{configuration} $C$ is a set of process states corresponding to the state of the system at a moment in time. Each process appears at most once in a configuration: if $s_0,s_1$ are distinct states in $C_i$, then $\name(s_0)\neq\name(s_1)$. An \emph{initial configuration} $C_0$ is one where every process state is an initial state, and a a \emph{final configuration} is one where every process state is a final state. Name components are immutable: each process retains its name from one configuration to the next. We use $\names(C)$ for the set of names of processes whose states appear in $C$, and $\act(C)$ for the subset whose states are not final.



Executions 
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C0, S0, C1, S1, …,Sr, Cr+1 

final configuration 

processes that communicate 

next configuration 

initial configuration 

Presenter
Presentation Notes
An \emph{execution} defines the order in which processes communicate. Formally, an \emph{execution} is an alternating (usually, but not necessarily, finite) sequence of configurations and sets of process names:



Executions 
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C0, S0, C1, S1, …,Sr, Cr+1 

triple is a concurrent step 

Processes in S0 said to participate in step 
Only Pi 2 S0 can change between C0 and C1 

state change result of communication 

Presenter
Presentation Notes
The processes whose states appear in a step are said to \emph{participate} in that step, and similarly for executions. It is essential that only the processes that participate in a step change state. In this way, the model captures the restriction that processes change state only as a result of explicit communication occurring within the schedule.



Executions 
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finite 
C0, S0, C1, S1, …, Sr, Cr+1 

infinite 
C0, S0, C1, S1, …, 

partial 
C0, S0, C1, S1, …, Sr, Cr+1 

Presenter
Presentation Notes
Executions are usually (but not always) finite, and a partial execution is a prefix of a longer execution.



Crashes are Implicit 
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C0, S0, C1, S1, …, Sr, Cr+1 

If Pi‘s state not final in the final configuration 
then Pi has crashed. 

crash cannot be detected in finite time 

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it  is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems. 



Colorless Tasks 
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(I, O, ¢) 

carrier map 
¢: I ! 2O 

(colorless) output assignment 

(colorless) input assignment 

Presenter
Presentation Notes
A colorless task is given by a set of colorless input assignments $\cI$, a set of colorless output assignments $\cO$, and a relation $\Delta$ which specifies, for each input assignment, which output assignments can be chosen. Note that a colorless task specification is independent of the number of participating processes, or their names.



Input Assignments 
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{(Pj, vj), | Pj 2 ¦, vj 2 Vin} 

domain of input values 

domain of process names 

name, value pair 

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it  is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems. 



Colorless Input Assignments 
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{(Pj, vj), | Pj 2 ¦, vj 2 Vin} 

discard process names, keep values 

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it  is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems. 



(Colorless) 
Output Assignments 
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{(Pj, vj), | Pj 2 ¦, vj 2 Vout} 

{(Pj, vj), | Pj 2 ¦, vj 2 Vout} 

Presenter
Presentation Notes
Crashes are implicit. If an execution's last configuration is not final, because it includes processes whose states are not final, then those processes are considered to have crashed. This definition captures an essential property of asynchronous systems: it is ambiguous whether an active process has failed (and will never take a step), or whether it  is just slow (and will be scheduled in the execution's extension). As noted earlier, this ambiguity is a key aspect of asynchronous systems. 



Example: Binary Consensus 
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I = {{0}, {1}, {0,1}} 

All start with 0 

All start with 1 

start with both 



Example: Binary Consensus 
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I = {{0}, {1}, {0,1}} 

All decide 0 All decide 1 

O = {{0}, {1}} 



Example: Binary Consensus 
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¢({0}) = {{0}}  

All start with 0, 
all decide 0 



Example: Binary Consensus 
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¢({0}) = {{0}}  

All start with 1, 
all decide 1 

¢({1}) = {{1}}  



Example: Binary Consensus 
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with mixed inputs, 
all decide 0, 

or all decide 1 

¢({0}) = {{0}}  
¢({1}) = {{1}}  

¢({0,1}) = {{0},{1}}  



Colorless Layered Protocol 
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shared mem array 0..N-1,0..n of Value 
view := input 
for l := 0 to N-1 do 
  immediate 
    mem[l][i] := view; 
    snap := snapshot(mem[l][*]) 
  view := set of values in snap 
return δ(view) 



Colorless Layered Protocol 
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shared mem array 0..N-1,0..n of Value 
view := input 
for j := 0 to N-1 do 
  immediate 
    mem[j][i] := view; 
    snap := snapshot(mem[j][*]) 
  view := set of values in snap 
return δ(view) 

2-dimensional memory array 

row is clean per-layer memory 

column is per-process word 
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shared mem array 0..N-1,0..n of Value 
view := input 
for j := 0 to N-1 do 
  immediate 
    mem[j][i] := view; 
    snap := snapshot(mem[j][*]) 
  view := set of values in snap 
return δ(view) 

initial view is input value 



Colorless Layered Protocol 
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shared mem array 0..N-1,0..n of Value 
view := input 
for l := 0 to N-1 do 
  immediate 
    mem[j][i] := view; 
    snap := snapshot(mem[j][*]) 
  view := set of values in snap 
return δ(view) 

run for N layers 



Colorless Layered Protocol 
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shared mem array 0..N-1,0..n of Value 
view := input 
for j := 0 to N-1 do 
  immediate 
    mem[l][i] := view; 
    snap := snapshot(mem[l][*]) 
  view := set of values in snap 
return δ(view) 

layer l : immediate write & snapshot of row l 



Colorless Layered Protocol 

Distributed Computing through 
Combinatorial Topology 

43 

shared mem array 0..N-1,0..n of Value 
view := input 
for j := 0 to N-1 do 
  immediate 
    mem[j][i] := view; 
    snap := snapshot(mem[j][*]) 
  view := set of values in snap 
return δ(view) 

new view is set of values seen 



Colorless Layered Protocol 
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shared mem array 0..N-1,0..n of Value 
view := input 
for j := 0 to N-1 do 
  immediate 
    mem[j][i] := view; 
    snap := snapshot(mem[j][*]) 
  view := set of values in snap 
return δ(view) 

finally apply decision value to final view 
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Presenter
Presentation Notes
Fig4-2.pdf



{p},{p,q,r} 

Q 
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Colorless configurations for 

processes P,Q,R, inputs 
p,q,r, final configurations in black. 

Presenter
Presentation Notes
Fig4-2.pdf



Road Map 
Operational Model 

Combinatorial Model 

Main Theorem 
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Vertex = Process State 

7 

Process ID (color) 

Value (input or output) 
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Simplex = Global State 
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Complex = Global States 



Input Complex for Binary 
Consensus 
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0 

0 
0 1 

1 

Processes: red, green, blue 

Independently assigned 0 or 1 

All possible initial states 



Output Complex for Binary 
Consensus 
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0 0 
0 

1 1 

1 
Output values all 0 or all 1 

Two disconnected simplexes 

All possible final states 
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Carrier Map for Consensus 

All 0 inputs 

All 0 outputs 
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Carrier Map for Consensus 

All 1 inputs All 1 outputs 
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Carrier Map for Consensus 

Mixed 0-1 inputs 

All 0 outputs 

All 1 outputs 



Task Specification 
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(I, O, ¢) 

Input complex 

Output complex 

Carrier map 
¢: I ! 2O 



Colorless Tasks 
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(I, P, ¥) 

strict carrier map 
¥: I ! 2P 

(colorless) protocol complex 

(colorless) input complex 

Presenter
Presentation Notes
A colorless task is given by a set of colorless input assignments $\cI$, a set of colorless output assignments $\cO$, and a relation $\Delta$ which specifies, for each input assignment, which output assignments can be chosen. Note that a colorless task specification is independent of the number of participating processes, or their names.



Protocol Complex 

19-Apr-14 58 

Vertex: process name, view 
all values read and written 

Simplex: compatible set of views 
Each execution defines a simplex 

Distributed Computing through 
Combinatorial Topology 
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Example: Synchronous 
Message-Passing 

Round 0 Round 1 
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Failures: Fail-Stop 

Partial 
broadcast 

Distributed Computing through 
Combinatorial Topology 



Single Input: Round Zero 
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0 

0 0 

No messages sent 

View is input value 

Same as input simplex 

Distributed Computing through 
Combinatorial Topology 



Round Zero Protocol Complex 
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0 

0 
0 1 

1 

No messages sent 

View is input value 

Same as input complex 

Distributed Computing through 
Combinatorial Topology 
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Single Input: Round One 

0 0 0 

0 0 0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 

Distributed Computing through 
Combinatorial Topology 
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Single Input: Round One 

0 0 0 

0 0 0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 

no one fails 

Distributed Computing through 
Combinatorial Topology 
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Single Input: Round One 

0 0 0 

0 0 0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 

no one fails 

Distributed Computing through 
Combinatorial Topology 

blue fails 



19-Apr-14 66 

Single Input: Round One 

0 0 0 

0 0 0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

0 0 

no one fails 

green fails red fails 

blue fails 

Distributed Computing through 
Combinatorial Topology 
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Protocol Complex: Round One 

Distributed Computing through 
Combinatorial Topology 
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Protocol Complex: Round Two 

Distributed Computing through 
Combinatorial Topology 
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Protocol Complex Evolution 

zero 

two 

one 
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Summary 

input 
complex 

protocol 
complex 

Δ 

output 
complex 

δ Ξ 
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Decision Map 

Output complex 

Protocol complex 

δ Simplicial map, 
sending simplexes 

to simplexes 
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Lower Bound Strategy 

Output complex 

Protocol complex 

δ Find topological 
“obstruction” to 

this simplicial map 
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Consensus Example 

Output Protocol 

δ 

Subcomplex of 
all-0 inputs 

Must map 
here 

1 

0 
0 

1 

Distributed Computing through 
Combinatorial Topology 
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Consensus Example 

Output Protocol 

δ 

Subcomplex of 
all-1 inputs 

Must map 
here 

1 

0 
0 

1 

Distributed Computing through 
Combinatorial Topology 
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Consensus Example 

Output Protocol 

δ 

Path from 
“all-0” to “all-1” 

Image under δ must 
start here .. 

and end here 

1 

0 
0 

1 

Distributed Computing through 
Combinatorial Topology 
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Consensus Example 

Output 

path 

δ 1 

0 

0 

1 
? 

Distributed Computing through 
Combinatorial Topology 
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Consensus Example 

Output Protocol 

δ 

Path from 
“all-0” to “all-1” 

Image under δ must 
start here .. 

and end here 

But this “hole” is 
an obstruction 

Distributed Computing through 
Combinatorial Topology 



Conjecture 
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A protocol cannot 
solve consensus 
if its complex is 

path-connected 
Model-independent! 

Distributed Computing through 
Combinatorial Topology 



If Adversary keeps Protocol 
Complex path-connected … 
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Forever … 
Consensus is impossible 

For r rounds … 
A round-complexity lower bound 

For time  t … 
A time-complexity lower bound 

Distributed Computing through 
Combinatorial Topology 
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Barycentric Agreement 

Distributed Computing through 
Combinatorial Topology 

I Bary I 

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex $\sigma$ of $\cI$, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.
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Barycentric Agreement 

Distributed Computing through 
Combinatorial Topology 

(I, bary I, bary(¢)) 

subdivision as carrier map 

arbitrary input complex 

subdivided output complex 

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex $\sigma$ of $\cI$, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.
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If There are n Processes 

Distributed Computing through 
Combinatorial Topology 

(I, bary skeln I, bary°skeln) 

Inputs only from n-skeleton of input complex 

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex $\sigma$ of $\cI$, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.



Theorem 
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A one-layer immediate snapshot protocol solves 
the n-process barycentric agreement task 

(I, bary skeln I, bary°skeln) 

Proof 
All input simplices belong to skeln I 

Immediate snapshot results are ordered 



v0 v1 v2 

Barycentric Agreement 
Protocol 

Snapshots are ordered 

{v0, v2} {v0} {v0,v1,v2} 

Presenter
Presentation Notes
When process $P_i$ is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array.  (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)




Barycentric Agreement 
Protocol 

{v0, v2} {v0} 

{v0,v1,v2} 

Each view is a face of ¾ 

Presenter
Presentation Notes
When process $P_i$ is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array.  (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)




Barycentric Agreement 
Protocol 

{v0, v2} 

{v0} {v0,v1,v2} 

Each view is a face of ¾ 

Presenter
Presentation Notes
When process $P_i$ is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array.  (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)




Barycentric Agreement 
Protocol 

{v0, v2} 

{v0} {v0,v1,v2} 

Each face of ¾ is a vertex of Bary ¾  

Presenter
Presentation Notes
When process $P_i$ is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array.  (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)




Barycentric Agreement 
Protocol 

Ordered faces ) simplex of Bary ¾ 

Presenter
Presentation Notes
When process $P_i$ is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array.  (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)




Iterated Barycentric Agreement 

skeln I baryN skeln I 

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex $\sigma$ of $\cI$, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.



90 

Iterated Barycentric Agreement 

Distributed Computing through 
Combinatorial Topology 

(I, baryN skeln I, baryN°skeln) 

Presenter
Presentation Notes
Informally, the processes start out on vertexes of a single simplex $\sigma$ of $\cI$, and they eventually halt on vertexes of a single simplex of $\Delta(\sigma) \subseteq \cI$.



{pqr}{pqr}{pqr} 

{p}{pq}{pqr} 

{p}{pqr}{pqr} 

{pqr}{qr}{qr} 

One-Layer Immediate 
Snapshot Protocol Complex 

Distributed Computing through 
Combinatorial Topology 

Presenter
Presentation Notes
subdivision



{pqr}{pqr}{pqr} 

{p}{pq}{pqr} 

{p}{pqr}{pqr} 

{pqr}{qr}{qr} 

Compare Views 

Distributed Computing through 
Combinatorial Topology 

{p},{p,q,r} 
Q {p},q,{p,r} {p},{p,q,r},{p,r} 
R {p},{p,q},r {p},{p,q},{p,q,r} 

{p,q,r},{q} 
P p,{q},{q,r} {p,q,r},{q},{q,r} 

{p,q},{q},r R {p,q},{q},{p,q,r} 

{q,r},{p,q,r} 
{p,r},{p,q,r} 
{p,q},{p,q,r} 
{p,q,r},{r} 
p,{q,r},{r} P {p,q,r},{q,r},{r} 
{p,r},q,{r} Q {p,r},{p,q,r},{r} 

R 

{p,q,r} 
p,{q,r} 
{p,r},q 
{p,q},r 

R 
Q 

QR 

{p},q,r 

p,{q},r 

p,q,{r} 

R 
P 

PR 

Q P 

PQ 

Q 
P 

p,q,r 

PQR 

P 
Q 
R 

PQ 
P
R Q
R 

Operational view Combinatorial view 

Presenter
Presentation Notes
subdivision



where ¥’’ = ¥’°¥ and P’’ = ¥’’(I) 

Given protocols 

Compositions 

93 

(I,P,¥) (I’,P’,¥’) 

their composition is 

where P µ I’ 

(I,P’’,¥’’) 
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Theorem 

Fundamental Theorem 

19-Apr-14 

(I,O,¢) has a wait-free (n+1)-process 
layered protocol iff there is a continuous map 

f: |skeln I| → |O|... 
carried by ¢ 
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there is a WF layered protocol for 
(I,O,¢) … 

there is a continuous 
f: |skeln I| ! |O| carried by ¢. 

If … 
Lemma 

then … 
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Continuous 
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Apply Á 
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there is a WF-RW protocol for 
(I,O,¢) … 

if and only if … 
there is a continuous 

f: |skeln I| ! |O| carried by ¢. 

If … 
Lemma 

then … 
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Inductive construction 
gd: |skeld I| ! |¥(I)|. 

Base d = 0 
Define g0: |skel0 I| ! |¥(I)| … 

Let g0(v) be any vertex in ¥({v}) 
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Induction Hypothesis 
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gd-1: |skeld-1 I| ! |¥(I)| 

gd-1 sends |skeld-1 ¾|  |¥(¾)| 
But ¥(¾) is (d-1)-connected (earlier theorem) 

Can extend to gd: |¾|  |¥(¾)| 
Yielding gd: |skeld I| ! |¥(I)| 
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Constructed 

Protocol ) Map 
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g: |skeln I| → |¥(I)| 

δ: ¥(skeln I) → O 
|δ|: |¥(skeln I)| → |O| 

Composition f = | δ | ¢ g yields 
f: | skeln I| ! |O| carried by ¢. 

QED 
Distributed Computing through 
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