Solvability of Colorless Tasks in Different Models

Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Parameter *p*

Model characterized by parameter p, $0 \le p \le n$

 $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free protocol iff there is a continuous map f: $|\text{skel}^{p} \mathcal{I}| \rightarrow |\mathcal{O}|$ carried by Δ .

Dimension of Skeleton map vs Computational Power

Wait-Free Layered Immediate Snapshots

t-resilient Layered Immediate Snapshots

Wait-Free Layered Immediate Snapshot with *k*-set Agreement

shared black boxes that solve *k*-set agreement

Equivalent Models

have identical computational power!

Decidability

Is it *decidable* whether a task has a protocol in a model characterized by:

f:
$$|\text{skel}^p \mathcal{I}| \rightarrow |\mathcal{O}|$$
 ?

decidable if and only if $p \leq 1!$

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems


```
shared mem array 0...N-1,0...n of Value
view := input
for l = 0 to N-1 do
    do
      immediate
        mem[\ell][i] := view;
         snap := snapshot(mem[\ell][*])
      until names(snap) >= n+1-t
    view := values(snap)
return \delta(view)
```



```
view := input
snap: array of Value = Ø
do
  immediate
    mem[0][i] := view;
    snap := snapshot(mem[0][*])
    until |names(snap)| >= n+1-t
return min(values(view))
```


Combinatorial Topology

Informal Skeleton Lemma

We have a protocol for a task ...

Then WLOG, we can "pre-process" with *k*-set agreement.

Skeleton Lemma

protocol ($\mathcal{I}, \mathcal{P}, \Xi$) solves task ($\mathcal{I}, \mathcal{O}, \Delta$)

Informal Protocol Complex Lemma

WLOG

We can assume that any protocol complex is a barycentric subdivision of the input complex.

Informal Protocol Complex Lemma

WLOG

We can assume that any protocol complex is a barycentric subdivision of the input complex.

Protocol Complex Lemma

There is a *t*-resilient layered protocol for $(\mathcal{I}, \mathcal{O}, \Delta)$...

Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a *t*-resilient layered snapshot protocol ...

Protocol Implies Map

May assume protocol complex is $\mathcal{P} = \text{Bary}^{N}$ skel^t \mathcal{I} .

Simplicial Approximation Theorem

- Given a continuous map $f: |\mathcal{A}| \to |\mathcal{B}|$
- there is an N such that f has a simplicial approximation

$$\phi: \operatorname{Bary}^N \mathcal{A} \to \mathcal{B}$$

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Motivation

Here ...

we consider protocols constructed by *composing* layered snapshot protocols with *k*-set agreement protocols.

shared mem array 0...N-1,0...n of Value shared SA array 0...N-1 of SetAgree view := input for l = 0 to N-1 do view: View := $SA[\ell]$.decide(view) immediate $mem[\ell][i] := view;$ snap := snapshot(mem[ℓ][*]) view := values(snap) return $\delta(view)$

Combinatorial Topology

Protocol Complex Lemma

If $(\mathcal{I}, \mathcal{P}, \Xi)$ is a *k*-set layered snapshot protocol ...

then \mathcal{P} is equal to Bary^N skel^{k-1} \mathcal{I}, \ldots

for some $N \ge 0$.

Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free *k*-set layered snapshot protocol ...

Theorem

The colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free *k*-set layered snapshot protocol ...

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Wait-Free

t-resilient

Irregular Failures

Adversaries

Failure Complex

Vertex per process

Failure Complex

Irregular Failure Complex

Wait-Free Failure Complex

t-resilient Failure Complex

(t-1)-skeleton

Cores

Minimal set of processes that cannot all fail

Safe to wait for at least one member of a particular core to show up

Cores & Failure Complex

Irregular Failure Complex

Wait-Free Failure Complex

t-resilient Failure Complex

Cores

For many models,

minimum core size...

Completely determines adversary's power to solve *any* colorless task!

So adversaries with same min core size solve the same colorless tasks

Survivor Sets

Minimal set of processes that might all survive

Safe to wait for all members of some survivor set to show up

Dual to cores: each one determines the other

Survivor Sets in Failure Complex

Irregular Failure Complex

Wait-Free Failure Complex

t-resilient Failure Complex

A-Resilient Layered Immediate Snapshot Protocol

```
shared mem array 0...N-1,0...n of Value
view := input
for l := 0 to N-1 do
  do
    immediate
      mem[\ell][i] := view;
      snap := snapshot(mem[l][*])
    until names(snap) \subseteq survivor set
  view := values(snap)
return \delta(view)
```


A-Resilient Layered Immediate Snapshot Protocol

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Message Passing

There are *n*+1 asynchronous processes ...

that send and receive messages ...

via a fully-connected communication network.

Message delivery is reliable and FIFO

Message-Passing Protocols

forever!

decide after finite # steps

but protocol forwards messages ...

Communication Syntax

send(P,
$$V_0$$
, ..., V_ℓ) to Q

send(P, V_0 , ..., V_ℓ) to all

upon receive(P, V_0 , ..., V_ℓ) do ... // handle message

Forwarding

background // forward messages forever upon receive(P_j,v) do send(P_i,v) to all


```
getQuorum(): Set of Value
  V: Set of Value := \emptyset
  q: int := 0
  do
     upon receive(Q,v) do
       \mathbf{V} := \mathbf{V} \cup \{\mathbf{v}\}
        q := q + 1
  until q = n+1-t
  return V
```


return values when enough received

SetAgree(V_i): value
 send(P, V_i) to all
 V: Set of Value := getQuorum()
 return min(V)

possible to "miss" only *t* lesser values

Barycentric Agreement

BaryAgree(v_i: Vertex): set of Vertex V_i : set of Vertex := $\{v_i\}$ count: int := 0while count < n+1-t do $send(P_i, V_i)$ to all on receive(P_i , V_j) do if $V_i = V_i$ then count := count + 1 else if $V_i \setminus V_i \neq \emptyset$ then $V_i := V_i \cup V_i$ count := 0

return V_i

BaryAgree(v_i: Vertex): set of Vertex V_i: set of Vertex := {v_i}

count: int := 0

while count < n+1-t do

 $send(P_i, V_i)$ to all

keep track of confirmations received so far

else if $V_j \setminus V_i \neq \emptyset$ then $V_i := V_i \cup V_j$ count := 0

BaryAgree(v_i: Vertex): set of Vertex V_i: set of Vertex := {v_i}

while count < n+1-t do

get confirmation from each non-faulty process

else if $V_j \setminus V_i \neq \emptyset$ then $V_i := V_i \cup V_j$ count := 0

return V_i

BaryAgree(v_i: Vertex): set of Vertex
V_i: set of Vertex := {v_i}
count: int := 0

remember if message confirms my view

if $V_i = V_i$ then count := count + 1

 $V_i := V_i \cup V_i$

count := 0

BaryAgree(v_i: Vertex): set of Vertex
V_i: set of Vertex := {v_i}
count: int := 0

otherwise learned something new, start over

send(P_i, V_i) to all
on receive(P_j, V_j) dp
if V_i = V_j then count := count + 1
else if V_j \ V_i
$$\neq \emptyset$$
 then
V_i := V_i \cup V_j
count := 0

BaryAgree(v_i: Vertex): set of Vertex V_i : set of Vertex := { v_i } count: int := 0while count < n+1-t do $send(P_i, V_i)$ to all on receive(P_i , V_i) do if $V_i = V_i$ then count := count + 1 then return when enough agree count := 0return V_i Distributea Computing through Combinatorial Topology

Wait, There's More!

the operating system runs forever ...

Wait, There's More!

keep forwarding new values

background
upon receive(P_j, V_j) do
$$V_i := V_i \cup V_j$$

send(P_i, V_i) to all

Lemma: Protocol Terminates

Theorem

For 2t < n+1, colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a *t*-resilient message-passing protocol ...

Theorem

For 2t < n+1, colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a *t*-resilient message-passing protocol ...

Road Map

Overview of Models

t-resilient layered snapshot models

Layered Snapshots with k-set agreement

Adversaries

Message-Passing Systems

Automatic Proofs?

What if we could program a Turing machine to tell whether a task has a protocol?

In wait-free read-write memory?

Or other models?

We could ...

automatically generate conference papers

No need for grad students

Alas no

Whether a protocol exists for a task in ...

Read-write memory for 3+ processes ...

Read-write memory & k-set agreement ... for k > 2

Loop Agreement

One Rendez-Vous Point

Two Rendez-Vous Points

Three Rendez-Vous Points

Contractibility

Solvable Iff Loop Contractible

Undecidability

Undecidable whether a task has a protocol in wait-free read-write memory

Other Models

Wait-free read-write memory plus k-set agreement, for k > 2

Solvable iff f: skel^{k-1} $\mathcal{I}^* \to \mathcal{O}^*$ exists ...

Implies contractible, for k > 2

Undecidable whether a task has a protocol in wait-free read-write memory plus *k*-set agreement , for *k* > 2

This work is licensed under a <u>Creative Commons Attribution-</u> <u>ShareAlike 2.5 License</u>.

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

