Byzantine-Resilient Colorless Computaton

Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Message-Passing

Combinatorial Topology

Crash Failures

Byzantine Failures

Combinatorial Topology

He said, She said ...

He said, She said ...

Requirement

dim $\mathcal I$ irrelevant for crash failures

Strict Tasks

Main Result

Communication

asynchronous layers

Messages

Reliable Broadcast

RBSend(P, tag, v)

RBReceive(P, tag, v)

Non-Faulty Integrity

Non-faulty Q never receives (P,tag,v) via RBReceive(P, tag, v)

Non-Faulty Liveness

Every non-faulty Q receives (*P,tag,v*) via RBReceive(*P, tag, v*)

Global Uniqueness

If non-faulty Q,R reliably receive... (P,tag,v), (P,tag',v') respectively ...

then
$$tag = tag'$$
 and $v = v'$
even if *P* is faulty

Global Liveness

then R reliably receives (*P,tag,v*)... even if *P* is faulty

Summary

The only way

a Byzantine process can misbehave

is by sending the *same* fake value to everyone

Lemma: Non-Faulty Integrity

Lemma: Non-Faulty Liveness

Non-faulty *P* broadcasts (*P*,SEND,*v*)

eventually received by n+1-t non-faulty processes

each sends (*,ECHO,P,v)

eventually receives n+1-t (*, ECHO, P, v)

each sends (*,READY,P,v)

eventually receives *n*+1-*t* (*,*READY*,*P*,*v*)

Lemma: Global Uniqueness

The uniqueness tests ensure that any process that broadcasts (*, ECHO, P, v) or (*, READY, P, v) will not broadcast (*, ECHO, P, v') or (*, READY, P, v) where $v \neq v'$.

Lemma: Global Liveness

getQuorum(Tag: tag): Set of Message $M := \emptyset$ while |M| < n+1-t or trusted(M) = \emptyset do
 upon RBReceive(Q,tag,v) do
 $M := M \cup \{(Q,tag,v)\}$ return M

returns set of messages (values)

getQuorum(Tag: tag): Set of Message M :=< n+1-t or trusted(M) = \emptyset while M do eive(Q,tag,v) do up 0, tag, v) $M := M \cup$ return M wait to hear from all but t

getQuorum(Tag: tag): Set of Message M := Ø while |M| < n+1-t or trusted(M) upon RBReceive(Q,tag,v) do M := M U {(Q,tag,v)} return M</pre>

values reported by t+1

getQuorum(Tag: tag): Set of Message $M := \emptyset$ while |M| < n+1-t or trusted(M) = Ø do upon RBReceive(Q,tag,v) do $M := M \cup \{(Q,tag,v)\}$ return M

wait until you learn a trusted value

Set Agreement

SetAgree(v): value
 RBSend(P,INPUT,v)
 M: Set of Message := getQuorum(INPUT)
 return min Trusted(M)

Set Agreement

Barycentric Agreement (1)

return set of trusted input vertices.

Lemma

Sequence of \mathbf{M}_{i} vertex sets reliably broadcast by P_{i} are monotonically increasing as sent & as received

When sent, by construction ...

when received, because FIFO message channels

Lemma: Protocol Terminates

All M_i, M_j Totally Ordered

If P_i broadcasts $M^{(0)}$, ..., $M^{(k)}$, then $M^{(i)} \subset M^{(i+1)}$

To decide ... P_i received M_i from X, $|X| \ge n+1-t$ P_i received M_i from Y, $|Y| \ge n+1-t$

some $P_k \in X \cap Y$ sent both M_i , M_j

so M_i, M_i are ordered.

Lemma

$$\begin{array}{l} \textbf{Non-faulty } P_i \text{ and } P_j \text{ have} \\ |\mathsf{M}_i \cap \mathsf{M}_j| \geq n + 1 \text{-} t \\ \textbf{trusted}(\mathsf{M}_i \cap \mathsf{M}_j) \neq \emptyset \\ \mathsf{M}_i \subseteq \mathsf{M}_j \text{ or } \mathsf{M}_j \subseteq \mathsf{M}_i \end{array}$$

proof in book

Byzantine Computability

if *n*+1 > (dim *I* + 2) *t*

 $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free Byzantine protocol ...

if and only if ...

there is a continuous map

f:
$$|\text{skel}^t \mathcal{I}| \to |\mathcal{O}|$$
 carried by Δ

Protocol implies Map

reduction to crash-failure model

Lower Bound

A strict colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ is *trivial* if there is a simplicial map

$$\phi: \mathcal{I} \to \mathcal{O}$$
 carried by Δ .

(A trivial task can be solved without communication)

Theorem

If a strict colorless task $(\mathcal{I}, \mathcal{O}, \Delta)$ has a protocol, where $n+1 \leq (\dim \mathcal{I} + 2) t$ then that task is trivial

(A trivial task can be solved without communication)

Let $\sigma = \{v_0, ..., v_d\}$ be a *d*-simplex of \mathcal{I}

consider an execution where ...

 P_i has input $V_{i \mod d+1}$

If $u_i \in \Delta(\sigma_i)$ and ...

$$u_i \in \Delta(\sigma_i)$$
 then ...

$$u_i \in \Delta(\sigma_i \cap \sigma_i')$$
 so ...

there is a unique minimal σ_i such that

$$U_i \in \Delta(\sigma_i)$$

If all $\sigma_i = \{v_i\}$ then the task is trivial.

so some minimal $\sigma_i = \{v_i, v_j\}$

Every simplex τ such that $u_i \in \Delta(\tau)$ contains v_i

This work is licensed under a <u>Creative Commons Attribution-</u> <u>ShareAlike 2.5 License</u>.

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

