
Byzantine-Resilient Colorless
Computaton

Companion slides for
Distributed Computing

Through Combinatorial Topology
Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

1

Message-Passing

17-Feb-15
2 Distributed Computing through

Combinatorial Topology

Crash Failures

17-Feb-15
3 Distributed Computing through

Combinatorial Topology

Byzantine Failures

17-Feb-15
4 Distributed Computing through

Combinatorial Topology

He said, She said …

17-Feb-15
5 Distributed Computing through

Combinatorial Topology

He said, She said …

17-Feb-15
6 Distributed Computing through

Combinatorial Topology

Identifying Input Values

Distributed Computing through
Combinatorial Topology

7

sorry
t

Identifying Input Values

Distributed Computing through
Combinatorial Topology

8

 !

t+1

Nothing Learned

Distributed Computing through
Combinatorial Topology

9

t t t

…

each input reported by only t t are silent

(dim I + 1) t No input learned if
n+1 · (dim I+2) t

means t is “pretty small”
Byzantine is harder!

requirement that:

Requirement

Distributed Computing through
Combinatorial Topology

10

n+1 > (dim I + 2) t

dim I irrelevant for crash failures

Strict Tasks

Distributed Computing through
Combinatorial Topology

11

¢(¾0) Å ¢(¾1) = ¢(¾0 Å ¾1)

usually require only µ

Main Result

Distributed Computing through
Combinatorial Topology

12

(I,O,¢) has a wait-free Byzantine protocol …

if and only if …

there is a continuous map

f: |skelt I| → |O|
carried by ¢.

where n+1 > (dim I + 2) t

Communication

Distributed Computing through
Combinatorial Topology

13

message-passing

asynchronous layers

Messages

Distributed Computing through
Combinatorial Topology

14

(P, tag, v)

sender

message type

sequence
of values

cannot be
forged

can be
forged

Reliable Broadcast

Distributed Computing through
Combinatorial Topology

15

RBSend(P, tag, v)

RBReceive(P, tag, v)

Non-Faulty Integrity

Distributed Computing through
Combinatorial Topology

16

If non-faulty P never broadcasts (P,tag,v) …

Non-faulty Q never receives (P,tag,v)

via RBSend(P, tag, v)

via RBReceive(P, tag, v)

Non-Faulty Liveness

Distributed Computing through
Combinatorial Topology

17

If non-faulty P does broadcast (P,tag,v) …

Every non-faulty Q receives (P,tag,v)

via RBSend(P, tag, v)

via RBReceive(P, tag, v)

Global Uniqueness

Distributed Computing through
Combinatorial Topology

18

If non-faulty Q,R reliably receive…

then tag = tag’ and v = v’
even if P is faulty

(P,tag,v), (P,tag’,v’) respectively …

Global Liveness

Distributed Computing through
Combinatorial Topology

19

for non-faulty Q,R …

then R reliably receives (P,tag,v)…
even if P is faulty

if Q reliably receives (P,tag,v)…

Summary

Distributed Computing through
Combinatorial Topology

20

The only way ….

is by sending the same fake value to everyone

a Byzantine process can misbehave ….

RBSend Phase 1

Distributed Computing through
Combinatorial Topology

21

(P, SEND, v)

RBSend Phase 2

Distributed Computing through
Combinatorial Topology

22

(Q, P, ECHO, v)

first
(P, SEND, v) ?

background loop

RBSend Phase 3

Distributed Computing through
Combinatorial Topology

23

(Q, P, READY, v)

1st time received
 (*,P, ECHO,v)

from n+1-t?

background loop

RBSend Phase 4

Distributed Computing through
Combinatorial Topology

24

(Q, P, READY, v)

1st time received
 (*,P,READY,v)

from t+1?

background loop

RBSend Phase 5

Distributed Computing through
Combinatorial Topology

25

deliver (P, v)

1st time received
 (*,P,READY,v)

from n-t+1?

Lemma: Non-Faulty Integrity

Distributed Computing through
Combinatorial Topology

26

Suppose non-faulty P reliably receives
(Q,v) from non-faulty Q

P must have received n+1-t
(*, READY, Q, v) messages

At least n+1-2t non-faulty
processes sent (*,ECHO,Q,v)

Let R be the first
R must have received (Q,SEND,v) from Q

Lemma: Non-Faulty Liveness

Distributed Computing through
Combinatorial Topology

27

Non-faulty P broadcasts (P,SEND,v)

eventually received by n+1-t
non-faulty processes

each sends (*,ECHO,P,v)

eventually receives n+1-t (*,ECHO,P,v)

each sends (*,READY,P,v)

eventually receives n+1-t (*,READY,P,v)

Lemma: Global Uniqueness

Distributed Computing through
Combinatorial Topology

28

The uniqueness tests ensure that any process
that broadcasts (*,ECHO,P,v) or (*,READY,P,v)
will not broadcast (*,ECHO,P,v') or (*,READY,P,v)

where v ≠ v’.

Lemma: Global Liveness

Distributed Computing through
Combinatorial Topology

29

Non-faulty Q reliably receives (P, v) …
R another non-faulty process

Q received ¸ n+1-t (*,READY,P,v)

if ¸ t+1 non-faulty send (*,READY,P,v)
every non-faulty will receive & rebroadcast

every non-faulty eventually receives n+1-t

¸ n+1-2t from non-faulty

and delivers

Reading a Value

Distributed Computing through
Combinatorial Topology

30

getQuorum(Tag: tag): Set of Message
 M := ;
 while |M| < n+1-t or trusted(M) = ; do
 upon RBReceive(Q,tag,v) do
 M := M [{(Q,tag,v)}
 return M

Reading a Value

Distributed Computing through
Combinatorial Topology

31

getQuorum(Tag: tag): Set of Message
 M := ;
 while |M| < n+1-t or trusted(M) = ; do
 upon RBReceive(Q,tag,v) do
 M := M [{(Q,tag,v)}
 return M

returns set of messages (values)

getQuorum(Tag: tag): Set of Message
 M := ;
 while |M| < n+1-t or trusted(M) = ; do
 upon RBReceive(Q,tag,v) do
 M := M [{(Q,tag,v)}
 return M

Reading a Value

Distributed Computing through
Combinatorial Topology

32

wait to hear from all but t

Reading a Value

Distributed Computing through
Combinatorial Topology

33

getQuorum(Tag: tag): Set of Message
 M := ;
 while |M| < n+1-t or trusted(M) = ; do
 upon RBReceive(Q,tag,v) do
 M := M [{(Q,tag,v)}
 return M

values reported by t+1

Reading a Value

Distributed Computing through
Combinatorial Topology

34

getQuorum(Tag: tag): Set of Message
 M := ;
 while |M| < n+1-t or trusted(M) = ; do
 upon RBReceive(Q,tag,v) do
 M := M [{(Q,tag,v)}
 return M

wait until you learn a trusted value

Reading a Value

Distributed Computing through
Combinatorial Topology

35

getQuorum(Tag: tag): Set of Message
 M := ;
 while |M| < n+1-t or trusted(M) = ; do
 upon RBReceive(Q,tag,v) do
 M := M [{(Q,tag,v)}
 return M

safe to wait for both (why?)

returns ¸ 1 trusted values

Set Agreement

Distributed Computing through
Combinatorial Topology

36

SetAgree(v): value
 RBSend(P,INPUT,v)
 M: Set of Message := getQuorum(INPUT)
 return min Trusted(M)

Set Agreement

Distributed Computing through
Combinatorial Topology

37

SetAgree(v): value
 RBSend(P,INPUT,v)
 M: Set of Message := getQuorum(INPUT)
 return min Trusted(M)

at most t lower values missing

Barycenrtric Agreement

Distributed Computing through
Combinatorial Topology

38

Ri:= (;,…, ;)
Mi:= ;
Bi:= ;

Ri[j] = messages received by Pi from Pj

Mi = messages received by Pi

Bi = Pi ‘s buddies: processes
that reported same set of vertices

Barycentric Agreement (1)

Distributed Computing through
Combinatorial Topology

39

 RBSend(Pi,INPUT,v)
 Mi := getQuorum(INPUT)

reliably broadcast my input vertex

reliably receive others’ input vertices

Barycentric Agreement (2)

Distributed Computing through
Combinatorial Topology

40

background // run forever
 upon RBReceive(Pj,INPUT,u) do
 Mi := Mi [{u}
 RBSend(Pi,REPORT,Mi)

record newly-learned input vertices

forward set of vertices with REPORT tag

Barycentric Agreement

Distributed Computing through
Combinatorial Topology

41

while |Bi| < n+1-t do
 upon RBReceive(Pj,REPORT,Mj) do
 Ri[j] := Mj
 Bi := {P: Ri[l] = Mi, 0 · l · n}
return trusted(Mi)

until I have n+1-t buddies…

accumulate new reports …

return set of trusted input vertices.

Lemma

Distributed Computing through
Combinatorial Topology

42

Sequence of Mi vertex sets reliably broadcast by Pi
 are monotonically increasing as sent & as received

When sent, by construction …

when received, because FIFO message channels

Lemma: Protocol Terminates

Distributed Computing through
Combinatorial Topology

43

Suppose BWOC Pi runs forever …

Eventually Mi assumes final value M …

Non-faulty Pj, with Mj, receives M

Pj must have sent Mj to Pi

Mj ½ M Mj = M OR

Pi will sent M to Pj Pj has sent M to Pi

All Mi, Mj Totally Ordered

Distributed Computing through
Combinatorial Topology

44

If Pi broadcasts M(0), …, M(k), then M(i) ½ M(i+1)

To decide …

Pi received Mi from X, |X| ¸ n+1-t

Pj received Mj from Y, |Y| ¸ n+1-t

some Pk 2 X Å Y sent both Mi, Mj

so Mi, Mj are ordered.

Lemma

Distributed Computing through
Combinatorial Topology

45

Non-faulty Pi and Pj have
|Mi Å Mj| ¸ n+1-t

trusted(Mi Å Mj) ≠ ;
Mi µ Mj or Mj µ Mi

proof in book

Byzantine Computability

Distributed Computing through
Combinatorial Topology

46

(I,O,¢) has a wait-free Byzantine protocol …

if and only if …

there is a continuous map

f: |skelt I| → |O| carried by ¢.

if n+1 > (dim I + 2) t

Map Implies Protocol

Distributed Computing through
Combinatorial Topology

47

f: |skelt I| → |O|

Á: BaryN skelt I → O

Solve using …

barycentric agreement

t-set agreement

carried by ¢.

Protocol implies Map

Distributed Computing through
Combinatorial Topology

48

reduction to crash-failure model

Lower Bound

Distributed Computing through
Combinatorial Topology

49

Á: I → O carried by ¢.

A strict colorless task (I,O,¢)
is trivial if there is a simplicial map

(A trivial task can be solved without communication)

Theorem

Distributed Computing through
Combinatorial Topology

50

If a strict colorless task (I,O,¢)
has a protocol, where n+1 · (dim I + 2) t

then that task is trivial

(A trivial task can be solved without communication)

Proof

Distributed Computing through
Combinatorial Topology

51

Let ¾ = {v0, …, vd} be a d-simplex of I

consider an execution where …

Pi has input vi mod d+1

no failures

Proof

Distributed Computing through
Combinatorial Topology

52

… …

S = {P0, …, Pn-t} T = {Pn+1-t, …, Pn}

no communication
Pi decides ui

Si = {P| P in S has input vi}

Proof

Distributed Computing through
Combinatorial Topology

53

If ui 2 ¢(¾i) and …

there is a unique minimal ¾i such that

ui 2 ¢(¾i’) then …

ui 2 ¢(¾i Å ¾i’) so …

ui 2 ¢(¾i)

Proof

Distributed Computing through
Combinatorial Topology

54

If all ¾i = {vi} then the task is trivial.

so some minimal ¾i = {vi ,vj}

Every simplex ¿ such that ui 2 ¢(¿) contains vj

Proof

Distributed Computing through
Combinatorial Topology

55

… …

T have input vi

no communication Pi still decides ui

Sj change input to vi

Sj are Byzantine, still claim vj

ui 2 ¢(¾i n {vj}) contradiction

56

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “Distributed Computing through

Combinatorial Topology” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

Distributed Computing through
Combinatorial Topology

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

Distributed Computing through
Combinatorial Topology

57

	Byzantine-Resilient Colorless Computaton
	Message-Passing
	Crash Failures
	Byzantine Failures
	He said, She said …
	He said, She said …
	Identifying Input Values
	Identifying Input Values
	Nothing Learned
	Requirement
	Strict Tasks
	Main Result
	Communication
	Messages
	Reliable Broadcast
	Non-Faulty Integrity
	Non-Faulty Liveness
	Global Uniqueness
	Global Liveness
	Summary
	RBSend Phase 1
	RBSend Phase 2
	RBSend Phase 3
	RBSend Phase 4
	RBSend Phase 5
	Lemma: Non-Faulty Integrity
	Lemma: Non-Faulty Liveness
	Lemma: Global Uniqueness
	Lemma: Global Liveness
	Reading a Value
	Reading a Value
	Reading a Value
	Reading a Value
	Reading a Value
	Reading a Value
	Set Agreement
	Set Agreement
	Barycenrtric Agreement
	Barycentric Agreement (1)
	Barycentric Agreement (2)
	Barycentric Agreement
	Lemma
	Lemma: Protocol Terminates
	All Mi, Mj Totally Ordered
	Lemma
	Byzantine Computability
	Map Implies Protocol
	Protocol implies Map
	Lower Bound
	Theorem
	Proof
	Proof
	Proof
	Proof
	Proof
	Slide Number 56
	Slide Number 57

