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t t t 

… 

each input reported by only t t are silent 

(dim I + 1) t No input learned if 
n+1 · (dim I+2) t 



means t is “pretty small” 
Byzantine is harder! 

requirement that: 

Requirement 
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n+1 > (dim I + 2) t 

dim I irrelevant for crash failures 
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¢(¾0) Å ¢(¾1) = ¢(¾0 Å ¾1) 

usually require only µ 
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(I,O,¢) has a wait-free Byzantine protocol … 

if and only if … 

there is a continuous map 

f: |skelt I| → |O| 
carried by ¢. 

where n+1 > (dim I + 2) t 
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message-passing 

asynchronous layers 



Messages 
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(P, tag, v) 

sender 

message type 

sequence 
of values 

cannot be 
forged 

can be 
forged 
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RBSend(P, tag, v) 

RBReceive(P, tag, v) 
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If non-faulty P never broadcasts (P,tag,v) … 

Non-faulty Q never receives (P,tag,v) 

via RBSend(P, tag, v) 

via RBReceive(P, tag, v) 
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If non-faulty P does broadcast (P,tag,v) … 

Every non-faulty Q receives (P,tag,v) 

via RBSend(P, tag, v) 

via RBReceive(P, tag, v) 
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If non-faulty Q,R reliably receive… 

then tag = tag’ and v = v’ 
even if P is faulty 

(P,tag,v),  (P,tag’,v’) respectively … 



Global Liveness 
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for non-faulty Q,R … 

then R reliably receives (P,tag,v)… 
even if P is faulty 

if Q reliably receives (P,tag,v)… 



Summary 
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The only way ….  

is by sending the same fake value to everyone 

a Byzantine process can misbehave ….  
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(P, SEND, v) 



RBSend Phase 2 
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(Q, P, ECHO, v) 

first 
(P, SEND, v) ? 

background loop 
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(Q, P, READY, v) 

1st time received 
 (*,P, ECHO,v) 

from n+1-t? 

background loop 
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(Q, P, READY, v) 

1st time received 
 (*,P,READY,v) 

from t+1? 

background loop 



RBSend Phase 5 
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deliver (P, v) 

1st time received 
 (*,P,READY,v) 

from n-t+1? 



Lemma: Non-Faulty Integrity 
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Suppose non-faulty P reliably receives 
(Q,v) from non-faulty Q 

P must have received n+1-t 
(*, READY, Q, v) messages  

At least n+1-2t non-faulty 
processes sent (*,ECHO,Q,v) 

Let R be the first 
R must have received (Q,SEND,v) from Q 



Lemma: Non-Faulty Liveness 
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Non-faulty P broadcasts (P,SEND,v) 

eventually received by n+1-t 
non-faulty processes 

each sends (*,ECHO,P,v) 

eventually receives n+1-t (*,ECHO,P,v) 

each sends (*,READY,P,v) 

eventually receives n+1-t (*,READY,P,v) 



Lemma: Global Uniqueness 
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The uniqueness tests ensure that any process 
that broadcasts (*,ECHO,P,v) or (*,READY,P,v) 
will not broadcast (*,ECHO,P,v') or (*,READY,P,v) 

where v ≠ v’. 



Lemma: Global Liveness 
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Non-faulty Q reliably receives (P, v) … 
R another non-faulty process 

Q received ¸ n+1-t (*,READY,P,v) 

if ¸ t+1 non-faulty send (*,READY,P,v) 
every non-faulty will receive & rebroadcast 

every non-faulty eventually receives n+1-t 

¸ n+1-2t from non-faulty 

and delivers 
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getQuorum(Tag: tag): Set of Message 
  M := ;  
  while |M| < n+1-t or trusted(M) = ; do 
    upon RBReceive(Q,tag,v) do 
      M := M [ {(Q,tag,v)} 
  return M 
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getQuorum(Tag: tag): Set of Message 
  M := ;  
  while |M| < n+1-t or trusted(M) = ; do 
    upon RBReceive(Q,tag,v) do 
      M := M [ {(Q,tag,v)} 
  return M 

returns set of messages (values) 



getQuorum(Tag: tag): Set of Message 
  M := ;  
  while |M| < n+1-t or trusted(M) = ; do 
    upon RBReceive(Q,tag,v) do 
      M := M [ {(Q,tag,v)} 
  return M 
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wait to hear from all but t 
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getQuorum(Tag: tag): Set of Message 
  M := ;  
  while |M| < n+1-t or trusted(M) = ; do 
    upon RBReceive(Q,tag,v) do 
      M := M [ {(Q,tag,v)} 
  return M 

values reported by t+1 
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getQuorum(Tag: tag): Set of Message 
  M := ;  
  while |M| < n+1-t or trusted(M) = ; do 
    upon RBReceive(Q,tag,v) do 
      M := M [ {(Q,tag,v)} 
  return M 

wait until you learn a trusted value 
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getQuorum(Tag: tag): Set of Message 
  M := ;  
  while |M| < n+1-t or trusted(M) = ; do 
    upon RBReceive(Q,tag,v) do 
      M := M [ {(Q,tag,v)} 
  return M 

safe to wait for both (why?) 

returns ¸ 1 trusted values 
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SetAgree(v): value 
  RBSend(P,INPUT,v) 
  M: Set of Message := getQuorum(INPUT) 
  return min Trusted(M) 



Set Agreement 
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SetAgree(v): value 
  RBSend(P,INPUT,v) 
  M: Set of Message := getQuorum(INPUT) 
  return min Trusted(M) 

at most t lower values missing 
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Ri:= (;,…, ;) 
Mi:= ; 
Bi:= ; 

Ri[j] = messages received by Pi from Pj 

Mi = messages received by Pi 

Bi = Pi ‘s buddies: processes 
that reported same set of vertices 



Barycentric Agreement (1) 
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  RBSend(Pi,INPUT,v) 
 Mi := getQuorum(INPUT) 

reliably broadcast my input vertex 

reliably receive others’ input vertices 



Barycentric Agreement (2) 
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background // run forever 
  upon RBReceive(Pj,INPUT,u) do 
    Mi := Mi [ {u} 
    RBSend(Pi,REPORT,Mi) 

record newly-learned input vertices 

forward set of vertices with REPORT tag 



Barycentric Agreement 
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while |Bi| < n+1-t do 
  upon RBReceive(Pj,REPORT,Mj) do 
    Ri[j] := Mj 
    Bi := {P: Ri[l] = Mi, 0 · l · n} 
return trusted(Mi) 

until I have n+1-t buddies… 

accumulate new reports … 

return set of trusted input vertices. 



Lemma 
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Sequence of Mi vertex sets reliably broadcast by Pi 
 are monotonically increasing as sent & as received 

When sent, by construction … 

when received, because FIFO message channels 



Lemma: Protocol Terminates 

Distributed Computing through 
Combinatorial Topology 

43 

Suppose BWOC Pi runs forever … 

Eventually Mi assumes final value M … 

Non-faulty Pj, with Mj, receives M 

Pj must have sent Mj to Pi 

Mj ½ M Mj = M OR 

Pi will sent M to Pj Pj has sent M to Pi 



All Mi, Mj Totally Ordered 
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If Pi broadcasts M(0), …, M(k), then M(i) ½ M(i+1) 

To decide … 

Pi received Mi from X, |X| ¸ n+1-t 

Pj received Mj from Y, |Y| ¸ n+1-t 

some Pk 2 X Å Y sent both Mi, Mj 

so Mi, Mj are ordered. 



Lemma 
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Non-faulty Pi and Pj have 
|Mi Å Mj| ¸ n+1-t 

trusted(Mi Å Mj) ≠ ; 
Mi µ Mj or Mj µ Mi 

proof in book 
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(I,O,¢) has a wait-free Byzantine protocol … 

if and only if … 

there is a continuous map 

f: |skelt I| → |O| carried by ¢. 

if n+1 > (dim I + 2) t 



Map Implies Protocol 
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f: |skelt I| → |O| 

Á: BaryN skelt I → O 

Solve using … 

barycentric agreement 

t-set agreement 

carried by ¢. 



Protocol implies Map 
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reduction to crash-failure model 



Lower Bound 
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Á: I → O carried by ¢. 

A strict colorless task (I,O,¢) 
is trivial if there is a simplicial map 

(A trivial task can be solved without communication) 



Theorem 
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If a strict colorless task (I,O,¢) 
has a protocol, where n+1 · (dim I + 2) t  

then that task is trivial 

(A trivial task can be solved without communication) 



Proof 
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Let ¾ = {v0, …, vd} be a d-simplex of I 

consider an execution where … 

Pi has input vi mod d+1 

no failures 



Proof 
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… … 

S = {P0, …, Pn-t} T = {Pn+1-t, …, Pn} 

no communication 
Pi decides ui 

Si = {P| P in S has input vi} 



Proof 
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If ui 2 ¢(¾i) and … 

there is a unique minimal ¾i such that 

ui 2 ¢(¾i’) then … 

ui 2 ¢(¾i Å ¾i’) so … 

ui 2 ¢(¾i) 



Proof 
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If all ¾i = {vi} then the task is trivial. 

so some minimal ¾i = {vi ,vj}  

Every simplex ¿ such that ui 2 ¢(¿) contains vj 



Proof 
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… … 

T have input vi 

no communication Pi still decides ui 

Sj change input to vi 

Sj are Byzantine, still claim vj 

ui 2 ¢(¾i n {vj}) contradiction 
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 
– to Share — to copy, distribute and transmit the work  
– to Remix — to adapt the work  

• Under the following conditions: 
– Attribution. You must attribute the work to “Distributed Computing through 

Combinatorial Topology” (but not in any way that suggests that the authors 
endorse you or your use of the work).  

– Share Alike. If you alter, transform, or build upon this work, you may 
distribute the resulting work only under the same, similar or a compatible 
license.  

• For any reuse or distribution, you must make clear to others the license 
terms of this work. The best way to do this is with a link to 

– http://creativecommons.org/licenses/by-sa/3.0/.  
• Any of the above conditions can be waived if you get permission from 

the copyright holder.  
• Nothing in this license impairs or restricts the author's moral rights.  
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