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Kinds of Results 

2 

Impossibility 

Separation 

Task T cannot be solved 
in model M 

Task T can be solved by a protocol 
for T’, but not vice-versa 
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Presenter
Presentation Notes

In this lecture, we a simple impossibility result, showing that one cannot construct a protocol for the \emph{set agreement} in the \emph{round-by-round immediate snapshot} model of computation. We also show that set agreement is strictly stronger than the \emph{weak symmetry-breaking} task: we can construct a protocol for weak symmetry-breaking from a ``black box'' that solves set agreement, but not vice-versa.



Road Map 
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Manifolds 

Sperner’s Lemma and k-Set Agreement 

Immediate Snapshot Model 

Weak Symmetry-Breaking 

Separation results 
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Manifolds 

Sperner’s Lemma and k-Set Agreement 

Immediate Snapshot Model 

Weak Symmetry-Breaking 
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Simplicial Complex 
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Presenter
Presentation Notes
A simplicial complex (or complex) is a set of simplexes closed under inclusion: if S  and T are both in a complex then their intersection is either empty or a simplex in the complex.

Like simplexes, complexes can also be viewed both as combinatorial objects or as geometric objects.

The complex shown here is a kind of torus constructed by joining triangles together.  Most of the complexes we will consider will not have such a nice geometric structure (though some will).
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Manifolds 
Every (n-1)-simplex a 

face of two n-simplexes 
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Presenter
Presentation Notes
A n-dimensional complex is a manifold (sometimes called a pseudo-manifold )if each (n-1)-simplex is contained in precisely two n-simplexes. This kind of manifold is also a manifold in the other sense, of looking locally like Euclidean space, but it is obviously not continuous.
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Manifolds 
Every (n-1)-simplex a 

face of two n-simplexes 
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Presenter
Presentation Notes
A n-dimensional complex is a manifold (sometimes called a pseudo-manifold )if each (n-1)-simplex is contained in precisely two n-simplexes. This kind of manifold is also a manifold in the other sense, of looking locally like Euclidean space, but it is obviously not continuous.
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Manifold with Boundary 
Internal (n-1)-simplex a 
face of two n-simplexes 

Boundary (n-1)-simplex a 
face of one n-simplex 

Boundary ∂ C 

Presenter
Presentation Notes
A complex is a manifold with boundary if each (n-1)-simplex is contained in precisely one or two n-simplexes. An (n-1)-simplex is internal if it a face of two n-simplexes, and exernal otherwise. The subcomplex generated by the external (n-1)-simplexes is called the boundary of the manifold. Sometimes we just say “Manifold” when we mean “manifold with boundary”.



Why Manifolds? 
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Nice combinatorial properties 

Many useful theorems 

Easy to prove certain claims 

True, most complexes are not manifolds …. 

Still a good place to start. 
Distributed Computing Through 
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Presenter
Presentation Notes
Few of the complexes that arise naturally in the study of distributed computing
are manifolds.  We study them anyway because they provide an excellent way to
approach more complicated models.  Manifolds have nice combinatorial properties
not shared with more general classes of complexes.  Later, we will see how to
generalize the techniques developed here to other, more natural models of
computation.




Road Map 
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Manifolds 

Sperner’s Lemma and k-Set Agreement 

Immediate Snapshot Model 

Weak Symmetry-Breaking 

Separation results 
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Immediate Snapshot 
Executions 

11 

Restricted form of Read-Write memory 

Protocol complexes are manifolds 

(Equivalent to regular R-W memory) 
But we will not prove it yet. 
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Presenter
Presentation Notes
The \emph{immediate snapshot} model is a simplified model of computation whose
protocol complexes are manifolds.  These executions are constrained, in the
sense that they encompass only a subset of the interleavings possible in an
asynchronous model.  Nevertheless, any \emph{impossibility} results that we
prove for a restricted set of interleavings are valid for the less restricted
model.  It is easy to see why: solving a task in a distributed system means
that the outputs should be valid in \emph{every} execution.  So if we can show
a subset of executions where no valid decision is possible, then no valid
decision is possible in general.  Another way to formulate this observation is
to imagine that executions are chosen by an ``adversary'' who always chooses
the worst set of executions.
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0 0 0 
1 

Write 

Single-writer, multi-reader variables 
12 

Presenter
Presentation Notes
Consider an asynchronous system where $n+1$ processes share an $(n+1)$-element
array $m$.  When process $P_i$ is scheduled to run, it writes its state to
$m[i]$,
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1 0 0 

100 
Snapshot 

Single-writer, multi-reader variables 
13 

Presenter
Presentation Notes
When process $P_i$ is scheduled to run, it writes its state to $m[i]$, and then
atomically reads the entire array.  (We call such an atomic read a
\emph{snapshot}, and its result a \emph{view}.)




Immediate Snapshot 
Executions 
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Pick a set of processes 

write together 

snapshot together 

Repeat with 
another set 
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Presenter
Presentation Notes
For simplicity, we restrict how these steps can be interleaved.  Each execution
is divided into a sequence of \emph{phases}.  In each phase, select a set of
processes that have not yet taken a step.  All processes in that set
simultaneously write, and then they simultaneously take a memory snapshot.
Phases proceed until every process has been scheduled exactly once.  Because
each snapshot is scheduled immediately after the preceding write, we call this
the \emph{immediate snapshot} model.




Example Executions 

P Q R 
write 
snap 

write 
snap 

write 
snap 

P?? PQ? PQR 
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Each process writes, 
then takes snapshot 

Each process has a view 

tim
e 
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Example Executions 

P Q R 
write 
snap 

write write 
snap snap 

write 
snap 

P?? PQR PQR 
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Moving last process 
one round earlier,  

Changes this view from PQ? to PQR 

P Q R 
write 
snap 

write 
snap 

write 
snap 

P?? PQ? PQR 
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P Q R 
write write write 
snap snap snap 

write write 
snap snap 

PQR PQR PQR 

P Q R 
write write write 
snap snap snap 

write write 
snap snap 

PQR PQR PQR 

P Q R 
write 
snap 

write write 
snap snap 

write 
snap 

P?? PQR PQR 

Example Executions 
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Moving last processes 
one round earlier,  

Changes this view from P?? to PQR 
Distributed Computing Through 

Combinatorial Topology 



Protocol Complex 
Process (color) 

& view 
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Presenter
Presentation Notes
This slide shows the full immediate snapshot complex for three
processes. Informally, we can see that this complex is a manifold, although
such a claim requires proof.




Protocol Complex 
P Q R 

write 
snap 

write 
snap 

write 
snap 

P Q R 
write write write 
snap snap snap 

P Q R 
write 
snap 

write write 
snap snap 
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Standard Chromatic 
Subdivision 
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Presenter
Presentation Notes
We will call this simplex the standard chromatic subdivision, even though we haven’t proved it’s a subdivision, or even defined what a subdivision is. We will discuss subdivisions later, so for now it’s just a complex given by the combinatorial definition that follows.



Vertex (Pi, ¾i) 

Combinatorial Definition (I) 

21 

Process name view ¾i µ ¾ 

Input simplex ¾ 

Protocol complex IS(¾) 

Distributed Computing Through 
Combinatorial Topology 

Presenter
Presentation Notes
Let us examine this complex from a purely combinatorial perspective.
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Combinatorial Definition (II) 
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Each process's write appears in its own view 
Pi 2 names(¾i). 

Snapshots are ordered 
¾i µ ¾j or vice-versa 

Each snapshot ordered immediately after write 
if Pi 2 ids(¾j), then ¾i µ ¾j. 

If Pj saw Pi write … then Pj‘s snapshot not 
later than Pj‘s. 



Manifold Theorem 
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If the input complex I is a manifold … 
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Manifold Theorem 
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… so is the immediate snapshot 
protocol complex IS(I). 
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Proof of Manifold Theorem 
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Let ¿n-1 be an (n-1)-
simplex of IS(I). 

Must prove that ¿n-1 is a face of exactly 
one or two n-simplexes of IS(I). 
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Without Loss of Generality … 
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¿n¡1 = fhP0; ¾0i; : : : ; hPn¡1; ¾n¡1ig

Simplex of I seen by last process 

Where ¾i µ ¾i+1 for 0 · i < n 

Re-index processes in execution order 
(ignoring ties) 
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Proof Strategy 
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Count the ways we can extend… 

Where ¾n is an n-simplex of IS(¾) 

¿n-1 = {(P0, ¾0), …, (Pn-1, ¾n-1)} 

¿n = {(P0, ¾0), …, (Pn-1, ¾n-1i, (Pn, ¾n)} 
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Cases 

28 

¿n¡1 = fhP0; ¾0i; : : : ; hPn¡1; ¾n¡1ig

dim n-1 or dim n 

Boundary or internal 

3 cases 

Distributed Computing Through 
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Presenter
Presentation Notes
There are three casses: \sigma_{n-1} has dimension at least n-1, and possibly n. If the dimension is n-1, then it could be an internal simplex or a boundary simplex
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¿ n-1 

¾n-1 

¿n¡1 = fhP0; ¾0i; : : : ; hPn¡1; ¾n¡1ig Boundary 
(n-1)-simplex 
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Presenter
Presentation Notes
Suppose \sigma_{n-1} is a boundary simplex of \cI. This picture shows the situation for three processes where the blue edge is \sigma_{n-1}, the largest simplex seen, and the red edge is \tau^{n-1}, the simplex we are analyzing. Note that \tau^{n_1} could be any of these three edges --- we picked this one for the sake of the example.



30 

Exactly one n-simplex ¾ of I contains ¾n-1 

¾ 

¾n-1 

¿n-1 
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Presenter
Presentation Notes
By hypothesis, there is exactly one n-simplex of \cI that contains \sigma_{n-1}.
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Exactly one n-simplex ¿n of IS(I) contains ¿n-1 

¿n = ¿n-1 [ hPn, ¾i 

¾ 
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Presenter
Presentation Notes
This implies that there is exactly one way to extend \tau^{n-1} to an n-simplex: the remaining process P_n could only have seen \sigma. That’s the first case.
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¿n-1 

¾n-1 

¿n¡1 = fhP0; ¾0i; : : : ; hPn¡1; ¾n¡1ig Internal 
(n-1)-simplex 
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Presenter
Presentation Notes
For the next case, assume \sigma_{n-1}, the last simplex seen, is an internal (n-1)-simplex, like the blue simplex shown here. Then the simplex we are analyzing is one of these --- we pick the middle one for this example.
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Exactly two n-simplexes ¾0 & ¾1 of I contain ¾n-1 

¾0 

¾1 
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Presenter
Presentation Notes
There are two n-simplexes of \cI that contains \sigma_{n-1}
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Exactly 2 n-simplexes ¿0
n & ¿1

n of IS(I) contain ¿n-1 

¿n
0  = ¿n-1 [ hPn, ¾0i 

¿n
1
 = ¿n-1 [ hPn, ¾1i 

¾0 

¾1 
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Presenter
Presentation Notes
That means there are two ways to “fill in” \tau^{n-1} to an n-simplex: eitehr P_n say \sigma_0 or it saw \sigma_1
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¿n-1 

¾n-1 

¿n¡1 = fhP0; ¾0i; : : : ; hPn¡1; ¾n¡1ig n-simplex 

Distributed Computing Through 
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Presenter
Presentation Notes
For the final case, suppose \sigma_{n-1} is an n-simplex of \cI. We want to show that \tau^{n-1} is an internal simplex of the protocol complex.



Suppose 
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Pn 2 ids(¾k) 
(Pk saw Pn’s write) 

Pn ∉ ids(¾k-1) 
(Pk-1 did not see Pn’s write) 

Special case: k=0, ¾-1 = ; 

¾n µ ¾k ) 

¾k-1 ½ ¾n ) 

Either ¾k-1 ½ ¾n ½ ¾k or ¾k-1 ½ ¾n = ¾k  

Presenter
Presentation Notes
Operationally, because P_k saw P_n’s write, P_n must either be scheduled before P_k or with P_k. Because P_{k-1} did not see P_n’s write, P_n must be scheduled after P_{k-1}.
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Pk-1 did not see Pn 

Pk did see Pn 

Pn between Pk-1 & Pk 

Pn with Pk 

This completes the proof. 
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Manifold Protocols 

38 

A protocol M(I) is a manifold protocol if 

If I is a manifold, so is M(I) 

M(∂I) = ∂M(I). 

Example: immediate snapshot 

Important: closed under composition 
Distributed Computing Through 

Combinatorial Topology 



Road Map 
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Manifolds 

Sperner’s Lemma and k-Set Agreement 

Immediate Snapshot Model 

Weak Symmetry-Breaking 

Separation results 
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k-set Agreement: before 
32 19 

21 

40 
40 



19 19 

21 

41 

k-set Agreement: after 

k = 2 
Distributed Computing Through 
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Theorem 

42 

No Manifold Protocol can solve 
n-set agreement 

Including Immediate Snapshot 
Including read-write memory 

Distributed Computing Through 
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Sperner Coloring 
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Sperner Coloring 
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“Corners” have distinct colors 



Sperner Coloring 
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Edge vertexes have 
corner colors 

“Corners” have distinct colors 



Sperner Coloring 

46 Distributed Computing Through 
Combinatorial Topology 

Edge vertexes have 
corner colors 

“Corners” have distinct colors 

Every vertex has face 
boundary colors 



Sperner’s Lemma 
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In any Sperner coloring, at least 
one n-simplex has all n+1 colors 



Sperner Coloring for Manifolds 
with Boundary (base) 

48 

One color here 
Other color here 

Only those colors in interior 
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Sperner Coloring for Manifolds 
with Boundary (inductive) 
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M is n-manifold colored with ¦ 

∂ M = [i Mi 

Where Mi is non-empty (n-1)-
manifold Sperner-colored with ¦ n {i } 
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Sperner’s Lemma for Manifolds 
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∂M 

Odd number of n-
simplexes have all 

n+1 colors 

Sperner Coloring on 
Manifold 

M 



Proof of Sperner’s Lemma 
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Induction on n 
Base 

One color here 
Other color here 

Odd number of changes 
Distributed Computing Through 

Combinatorial Topology 



Induction Step 

52 Distributed Computing Through 
Combinatorial Topology 

Presenter
Presentation Notes
We will call this simplex the standard chromatic subdivision, even though we haven’t proved it’s a subdivision, or even defined what a subdivision is. We will discuss subdivisions later, so for now it’s just a complex given by the combinatorial definition that follows.



Dual Graph 

One vertex per n-simplex … 
53 Distributed Computing Through 
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Presenter
Presentation Notes
We will call this simplex the standard chromatic subdivision, even though we haven’t proved it’s a subdivision, or even defined what a subdivision is. We will discuss subdivisions later, so for now it’s just a complex given by the combinatorial definition that follows.



Dual Graph 

One vertex per n-simplex … 

One “external” vertex 
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Presenter
Presentation Notes
We will call this simplex the standard chromatic subdivision, even though we haven’t proved it’s a subdivision, or even defined what a subdivision is. We will discuss subdivisions later, so for now it’s just a complex given by the combinatorial definition that follows.



Discard One Color 
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n+1 colors 

“restricted”n colors 
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Edges 
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If two n-simplexes share an (n-1)-face … 
with restricted n colors … 

add an edge. 
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Edges 
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Same for external vertex 
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Some Vertexes have Degree 
Zero 
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Even degree 
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Some Vertexes have Degree 
Two 
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Even degree 

Only n restricted colors 
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All n+1 Colors ) Degree 1  
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Odd degree 
Distributed Computing Through 
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Induction Hypothesis 

Odd number of 
n-colored 
simplexes 
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Presenter
Presentation Notes
We will call this simplex the standard chromatic subdivision, even though we haven’t proved it’s a subdivision, or even defined what a subdivision is. We will discuss subdivisions later, so for now it’s just a complex given by the combinatorial definition that follows.



Induction Hypothesis 

External vertex 
has odd degree 

62 Distributed Computing Through 
Combinatorial Topology 

Presenter
Presentation Notes
We will call this simplex the standard chromatic subdivision, even though we haven’t proved it’s a subdivision, or even defined what a subdivision is. We will discuss subdivisions later, so for now it’s just a complex given by the combinatorial definition that follows.



Odd 
Degrees 

63 

One external vertex 

Even 

n-simplexes with n+1 colors? 

All the rest 
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Odd 
Degrees 

64 

One external vertex 

Even 

n-simplexes with n+1 colors? 

All the rest 

Every graph 

Even number of odd degree 
vertexes  

sum of degrees is even… 
each edge contributes 2 
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Odd 
Degrees 
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One external vertex 

Even 

n-simplexes with n+1 colors? 

All the rest 

Even number of odd degree 
vertexes  
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Parity 
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One external vertex 

Even number of odd degree 
vertexes  

n-simplexes with n+1 colors? 
Even 

Odd 

Odd 
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Parity 
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One external vertex 

Even number of odd degree 
vertexes  

n-simplexes with n+1 colors? 
Even 

Odd 

Odd 

QED 
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No Manifold Task can solve 
n-Set Agreement 

68 

Assume protocol exists:  
Run manifold task protocol 

Choose value based on vertex 

Idea: 
Color vertex with “winning” 

process name … 
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Manifold Task for n-Set 
Agreement 

manifold 

Only P wins 

Only Q and R win 

Sperner coloring 
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Manifold Task for n-Set 
Agreement 

manifold 

Sperner coloring 
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Manifold Task for n-Set 
Agreement 

manifold 

Sperner coloring 

n+1 colors 

Contradiction: at most n can win 

Execution with n+1 winners 
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Road Map 
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Manifolds 

Sperner’s Lemma and k-Set Agreement 

Immediate Snapshot Model 

Weak Symmetry-Breaking 

Separation results 
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Weak Symmetry-Breaking 

73 Group 0 Group 1 

If all processes 
participate … 

At least one process 
in each group 

Distributed Computing Through 
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Presenter
Presentation Notes
Weak symmetry-breaking requires breaking processes into two groups.



Weak Symmetry-Breaking 

74 Group 0 Group 1 

If fewer participate … 

we don’t care. 

Distributed Computing Through 
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Presenter
Presentation Notes
Weak symmetry-breaking requires breaking processes into two groups.



Anonymous Protocols 

75 

Trivial solution: choose name parity 

WSB protocol should be anonymous 

Output depends on … 
Input … 
Interleaving … 

But not name 

Restriction on protocol, not task! 



Road Map 
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Manifolds 

Sperner’s Lemma and k-Set Agreement 

Immediate Snapshot Model 

Weak Symmetry-Breaking 

Separation results 



Next Step 

77 

Construct manifold task that solves 
weak-symmetry-breaking 

Because it is a manifold, it 
cannot solve n-set agreement 

Separation: n-set agreement is 
harder than WSB 
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A Simplex 
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Standard Chromatic Subdivision 

79 Distributed Computing Through 
Combinatorial Topology 



Glue Three Copies Together 
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Glue Opposite Edges 
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The Moebius Task 

82 Distributed Computing Through 
Combinatorial Topology 



Defines a Manifold Task 
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boundary boundary 

boundary 



Manifold Task 
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Note Sperner coloring on 
boundary 

boundary boundary 

boundary 



Terminology 
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Each face has 
a central 
simplex 

1-dim 

2-dim 



Subdivided Faces 
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external 

internal 
internal 



Black-and-White Coloring (I) 
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Central 2-simplex: 

White near external face 

Black elsewhere 



Black-and-White Coloring (II) 
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Black 

Central simplex 
of external face: 



Black-and-White Coloring (III) 
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All others 

White 



Moebius Solves WSB 
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Moebius Solves WSB 
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Moebius Solves WSB 
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Every n-simplex has both 
black & white colors. 

Boundary coloring 
is symmetric! 



General Construction 
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n+1 “copies” »0, … »n of IS(¾) 

»0 »n 
… 

»1 

(picture not exact!) 

n = 2N 
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General Construction 
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»0 »i-1 
… 

n = 2N 
»i 

»i+1 

Face i is 
external 

»k 
… … 

»n 
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General Construction 
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»0 »i-1 
… 

n = 2N 
»i 

»i+1 

Face i is 
external 

»k 
… … 

»n 

2N others 
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General Construction 

96 

»0 »i-1 
… 

n = 2N 
»i 

»i+1 »k 
… … 

»n 

Identify 
Faces j 

Rank j+N out of 2N 

Face i is 
external 
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General Construction 

97 

»0 »i-1 
… 

n = 2N 
»i 

»i+1 »k 
… … 

»n 

Symmetric! 

Rank j+N out of 2N 

Face i is 
external 

Why it’s a 
(non-orientable) 

manifold Why it works 
only for even 
dimensions 



Open Problem 
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Generalize to odd 
dimensions … 

or find 
counterexample. 
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Black-and-White Coloring (I) 
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Central n-simplex: 

White near external face 

Black elsewhere 



Black-and-White Coloring (II) 
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Black 

Central m-simplexes 
of external face for 

m > 0 



Black-and-White Coloring (III) 
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All others 

White 



No Monochromatic 
n-simplexes 
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Central n-simplex 
By construction 



No Monochromatic 
n-simplexes 
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Intersects internal face Black at n-center 

White at edge 



No Monochromatic 
n-simplexes 
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Intersects external face White at n-center 

Black at m-center, 0 < m < n 



Progress 
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Weak Symmetry-Breaking 

Moebius Task 
no 

yes 

Set Agreement 



Next Step 
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Weak Symmetry-Breaking 

Moebius Task 
no 

yes 

Anonymous Set Agreement 
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Group 1 

Choose name with 
anonymous 

n-Set agreement 

My name 
written? Group 0 

no 

· n+1 

Write name 

Read names 

yes 

Set Agreement ⇒ 
WSB 
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Choose name with 
anonymous 

n-Set agreement 
Proof 

108 

Group 1 

My name 
written? Group 0 

no 

· n+1 

Write name 

Read names 

yes 

Set Agreement ⇒ 
WSB 

If all n+1 participate … 
First name written 

joins Group 0 
Some name not 
chosen, it joins 

Group 1 
Distributed Computing Through 
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Choose name with 
anonymous 

n-Set agreement 
Proof 
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Group 1 

My name 
written? Group 0 

no 

· n+1 

Write name 

Read names 

yes 

Set Agreement ⇒ 
WSB 

Protocol is anonymous … 
Because we use anonymous 

set agreement “black box” 
(Any set agreement protocol can be 

made anonymous) 
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Conclusions 
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Some tasks harder than others … 

n-set agreement solves 
weak-symmetry breaking 

But not vice-versa 
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Remarks 
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Combinatorial and algorithmic 
arguments complement one 

another 
Combinatorial: what we can’t do 

Algorithmic: what we can do 
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.  

• You are free: 
– to Share — to copy, distribute and transmit the work  
– to Remix — to adapt the work  

• Under the following conditions: 
– Attribution. You must attribute the work to “Distributed Computing through 
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