Manifold Protocols

Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Kinds of Results

Task T cannot be solved in model M

Separation Task T can be solved by a protocol for T', but not vice-versa

Road Map

Manifolds

Immediate Snapshot Model

Sperner's Lemma and k-Set Agreement

Weak Symmetry-Breaking

Separation results

Road Map

Manifolds

Immediate Snapshot Model

Sperner's Lemma and k-Set Agreement

Weak Symmetry-Breaking

Separation results

Simplicial Complex

Manifolds

Manifolds

Why Manifolds?

Nice combinatorial properties

Many useful theorems

Easy to prove certain claims

True, most complexes are not manifolds

Still a good place to start.

Road Map

Manifolds

Immediate Snapshot Model

Sperner's Lemma and k-Set Agreement

Weak Symmetry-Breaking

Separation results

Immediate Snapshot Executions

Restricted form of Read-Write memory

Protocol complexes are manifolds

Write

Single-writer, multi-reader variables

Combinatorial Topology

Single-writer, multi-reader variables

Combinatorial Topology

Immediate Snapshot Executions

Example Executions

Example Executions

Changes this view from PQ? to PQR

Example Executions

Р	Q	R
write		
snap		
	write	write
	snap	snap
		write
		snap
P??	PQR	PQR
7		

Changes this view from P?? to PQR

Combinatorial Definition (I)

Input simplex σ

Protocol complex $\mathcal{IS}(\sigma)$

Process name

view $\sigma_i \subseteq \sigma$

Combinatorial Definition (II)

Manifold Theorem

Manifold Theorem

... so is the immediate snapshot protocol complex $\mathcal{IS}(\mathcal{I})$.

Proof of Manifold Theorem

Without Loss of Generality ...

Simplex of \mathcal{I} seen by last process

$$\tau^{n-1} = \{ \langle P_0, \sigma_0 \rangle, \dots, \langle P_{n-1}, \sigma_{n-1} \rangle \}$$

Where
$$\sigma_i \subseteq \sigma_{i+1}$$
 for $0 \le i < n$

Re-index processes in execution order (ignoring ties)

Proof Strategy

Count the ways we can extend...

$$\tau^{n-1} = \{ (\mathsf{P}_0, \, \sigma_0), \, \dots, \, (\mathsf{P}_{n-1}, \, \sigma_{n-1}) \}$$

$$\tau^{n} = \{ (\mathsf{P}_{0}, \sigma_{0}), \dots, (\mathsf{P}_{n-1}, \sigma_{n-1}), (\mathsf{P}_{n}, \sigma_{n}) \}$$

Where σ_n is an *n*-simplex of $\mathcal{IS}(\sigma)$

Cases

$$\tau^{n-1} = \{ \langle P_0, \sigma_0 \rangle, \dots, \langle P_{n-1}, \sigma_{n-1} \rangle \}$$

$$(\text{dim } n-1) \text{ or dim } n$$

$$3 \text{ cases}$$
Boundary or internal
$$\text{Distributed Computing Through}$$

28

Case Exactly one *n*-simplex σ of \mathcal{I} contains σ_{n-1}

Case One

 $\overline{\tau^{n-1}} = \{ \langle P_0, \sigma_0 \rangle, \dots, \langle P_{n-1}, \overline{\sigma_{n-1}} \rangle \}$ Internal (*n-1*)-simplex

Exactly two *n*-simplexes $\sigma_0 \& \sigma_1$ of \mathcal{I} contain σ_{n-1}

Case Two

Exactly 2 *n*-simplexes $\tau_0^n \& \tau_1^n$ of $\mathcal{IS}(\mathcal{I})$ contain τ^{n-1}

Case Three

Case Three $\tau^{n-1} = \{ \langle P_0, \sigma_0 \rangle, \dots, \langle P_{n-1}, \sigma_{n-1} \rangle \}$ *n*-simplex

Suppose

Manifold Protocols

A protocol
$$\mathcal{M}(\mathcal{I})$$
 is a manifold protocol if

If \mathcal{I} is a manifold, so is $\mathcal{M}(\mathcal{I})$

$$\mathcal{M}(\partial \mathcal{I}) = \partial \mathcal{M}(\mathcal{I}).$$

Example: immediate snapshot

Important: closed under composition

Road Map

Manifolds

Immediate Snapshot Model

Sperner's Lemma and k-Set Agreement

Weak Symmetry-Breaking

Separation results

Distributed Computing Through Combinatorial Topology

40

Theorem

No Manifold Protocol can solve *n*-set agreement Including Immediate Snapshot Including read-write memory

"Corners" have distinct colors

Edge vertexes have corner colors

"Corners" have distinct colors

Edge vertexes have corner colors

Every vertex has face boundary colors

Sperner's Lemma

Sperner Coloring for Manifolds with Boundary (base)

Sperner Coloring for Manifolds with Boundary (inductive)

 ${\mathcal M}$ is n-manifold colored with \varPi

$$\partial \ \mathcal{M} = \cup_i \ \mathcal{M}_i$$

Where M_i is non-empty (*n*-1)manifold Sperner-colored with $\Pi \setminus \{i\}$

Sperner's Lemma for Manifolds

Proof of Sperner's Lemma

Induction Step

Dual Graph

One vertex per *n*-simplex ...

Dual Graph

One vertex per *n*-simplex ...

Discard One Color

Edges

Edges

Same for external vertex

Some Vertexes have Degree Two

Only *n* restricted colors

All *n*+1 Colors \Rightarrow Degree 1

Induction Hypothesis

Induction Hypothesis

Combinatorial Topology

Even number of odd degree vertexes

No Manifold Task can solve n-Set Agreement

Assume protocol exists:

Run manifold task protocol

Choose value based on vertex

Idea: Color vertex with "winning" process name ...

Contradiction: at most *n* can win

Road Map

Manifolds

Immediate Snapshot Model

Sperner's Lemma and k-Set Agreement

Weak Symmetry-Breaking

Separation results

Anonymous Protocols

Trivial solution: choose name parity

WSB protocol should be anonymous

Restriction on protocol, not task!

Road Map

Manifolds

Immediate Snapshot Model

Sperner's Lemma and k-Set Agreement

Weak Symmetry-Breaking

Separation results

Next Step

Construct manifold task that solves weak-symmetry-breaking

Because it is a manifold, it cannot solve *n*-set agreement

Separation: *n*-set agreement is *harder* than WSB

A Simplex

Standard Chromatic Subdivision

Glue Three Copies Together

Glue Opposite Edges

The Moebius Task

Defines a Manifold Task

Manifold Task

Terminology Each face has a central simplex 1-dim 2-dim

Subdivided Faces

Combinatorial Topology

Black-and-White Coloring (I)

Black-and-White Coloring (II)

Black-and-White Coloring (III) All others White

Moebius Solves WSB

Moebius Solves WSB

94

General Construction

General Construction

General Construction

Open Problem

Generalize to odd dimensions ... or find counterexample.

Black-and-White Coloring (I)

Combinatorial Topology

Black-and-White Coloring (II)

Combinatorial Topology

Black-and-White Coloring (III) All others White

No Monochromatic *n*-simplexes

No Monochromatic *n*-simplexes

No Monochromatic *n*-simplexes

Progress

Next Step

Moebius Task

Anonymous Set Agreement

nc

Distributed Computing Through Combinatorial Topology yes

Conclusions

Some tasks harder than others ...

n-set agreement solves weak-symmetry breaking

But not vice-versa

Distributed Computing Through Combinatorial Topology

Remarks

Combinatorial and algorithmic arguments complement one another

Combinatorial: what we can't do

Algorithmic: what we can do

Distributed Computing Through Combinatorial Topology

This work is licensed under a <u>Creative Commons Attribution-</u> <u>ShareAlike 2.5 License</u>.

- You are free:
 - to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
 - Attribution. You must attribute the work to "Distributed Computing through Combinatorial Topology" (but not in any way that suggests that the authors endorse you or your use of the work).
 - Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to
 - http://creativecommons.org/licenses/by-sa/3.0/.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

