Connectivity

Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum

Previously

Used Sperner's Lemma to show *k*-set agreement impossible when protocol complex is a manifold.

But in many models, protocol complexes are not manifolds ...

Road Map

Consensus Impossibility

General theorem

Application to read-write models

k-set agreement Impossibility

General theorem

Application to read-write models

Road Map

Consensus Impossibility

General theorem

Application to read-write models

k-set agreement Impossibility

General theorem

Application to read-write models

Path Connected

Theorem

If, for protocol $(\mathcal{I}, \mathcal{P}, \Xi)$...

Theorem

If, for protocol $(\mathcal{I}, \mathcal{P}, \Xi)$...

For every *n*-simplex σ^n ,

 $\Xi(\sigma^n)$ is path-connected ...

Theorem

If, for protocol $(\mathcal{I}, \mathcal{P}, \Xi)$...

For every *n*-simplex σ^n ,

 Ξ (σ^n) is path-connected ...

For every (*n*-1)-simplex
$$\sigma^{n-1}$$
,
 $\Xi(\sigma^{n-1})$ is non-empty ...

Then $\Xi(\cdot)$ cannot solve consensus.

Model Independence

Holds for message-passing or shared memory

Synchronous, asynchronous, or in-between ...

Any adversarial scheduler ...

As long as one failure is possible.

Protocol Complex Notation

Complex is Path-Connected

Road Map

Consensus Impossibility

General theorem

Application to read-write models

k-set agreement Impossibility

General theorem

Application to read-write models

Application

We now show that consensus is impossible in wait-free read-write memory

For every *n*-simplex σ^n , $\Xi(\sigma^n)$ is path-connected ...

For every (*n*-1)-simplex σ^{n-1} , Ξ (σ^{n-1}) is non-empty.

Critical States Exist

Path-Connectivity is an Eventual Property

Individual simplex is path-connected

Path-Connectivity has a Critical State

Critical State in Layered IS

Notation

Configuration reached by running processes in U in next layer

Critical State in Layered IS

One-Dimensional Nerve Lemma

Reason about path-connectivity of a graph ...

From path-connectivity of components ...

And how they fit together.

$\text{Graph}\ \mathcal{K}$

One-Dimensional Nerve Lemma

If each \mathcal{K}_i is path-connected ...

and the nerve graph $\mathcal{N}_{i}(\mathcal{K}_{i})$ is path-connected ...

then \mathcal{K}_i is path-connected ...

Critical State in Layered IS

Intersections (Case 1)

If $V \subseteq U$, then

$$\begin{split} \varXi(C \uparrow U) \cap \varXi(C \uparrow V) \text{ is the complex} \\ \text{reachable from } C \uparrow U \text{ in executions where} \\ \text{no process in } V \text{ takes another step} \end{split}$$

Notation

Complex reachable from C in executions where processes in U halt and the rest finish.

Notation

$$(\Xi \downarrow U)(C)$$

Complex reachable from C in executions where processes in U halt and the rest finish.

If
$$V \subseteq U$$
, then
 $\Xi(C \uparrow U) \cap \Xi(C \uparrow V) = (\Xi \downarrow V)(C \uparrow U)$

Notation

$$(\Xi \downarrow U)(C)$$

Complex reachable from C in executions where processes in U halt and the rest finish.

If
$$V \subseteq U$$
, then
 $\Xi(C \uparrow U) \cap \Xi(C \uparrow V) = (\Xi \downarrow V)(C \uparrow U)$

Lemma

Lemma

The nerve graph $\mathcal{N}(\Xi(C \uparrow U))$ is path-connected

Consider vertex
$$v = \Xi(C \uparrow \Pi)$$

Show every vertex has an edge to v

Consider vertex $v = \Xi(C \uparrow \Pi)$

Consider vertex $v = \Xi(C \uparrow \Pi)$

for every $U \subset \Pi$ consider possible edge ...

Consider vertex $v = \Xi(C \uparrow \Pi)$

for every $U \subset \Pi$ consider possible edge ...

$$\Xi(\mathsf{C}\uparrow\Pi)\cap\Xi(\mathsf{C}\uparrow\mathsf{U})=(\Xi\downarrow\mathsf{U})(\mathsf{C}\uparrow\Pi)$$

Consider vertex $v = \Xi(C \uparrow \Pi)$

for every $U \subset \Pi$ consider possible edge ...

$$\Xi(\mathbf{C} \uparrow \Pi) \cap \Xi(\mathbf{C} \uparrow \mathbf{U}) = (\Xi \downarrow \mathbf{U})(\mathbf{C} \uparrow \Pi)$$

Run everyone in next layer

Consider vertex $v = \Xi(C \uparrow \Pi)$

for every $U \subset \Pi$ consider possible edge ...

Consider vertex $v = \Xi(C \uparrow \Pi)$

for every $U \subset \Pi$ consider possible edge ...

$$\begin{array}{c} \varXi(\mathsf{C} \uparrow \varPi) \cap \varXi(\mathsf{C} \uparrow \mathsf{U}) = (\varXi \downarrow \mathsf{U})(\mathsf{C} \uparrow \varPi) \\ \hline \mathsf{Because} \ \mathsf{U} \subset \varPi \ , \\ \mathsf{complex} \ \mathsf{non-empty}, \\ \mathsf{hence} \ \mathsf{edge} \ \mathsf{exists} \end{array}$$

crash everyone in U

28-Feb-15

Theorem

For every input simplex σ , the layered IS protocol complex $\Xi(\sigma)$ is path-connected Proof Induction on n **Case** n=0: $\Xi(\sigma)$ is a single vertex Case induction step ...

27-Feb-15

Road Map

Consensus Impossibility

General theorem

Application to read-write models

k-set agreement Impossibility

General theorem

Application to read-write models

So Far ...

Expressed solvability of *consensus* as a topological property of protocol complex

And applied the result to wait-free read-write memory.

Next: do the same for *k*-set agreement!

1-Connectivity

This Complex is not 1-Connected

n-connectivity

C is *n*-connected, if, for $m \le n$, every continuous map of the *m*-sphere

$$f:S^m\to \mathcal{C}$$

can be extended to a continuous map of the (m+1)-disk

$$f:D^{m+1}\to \mathcal{C}$$

(-1)-connected is non-empty

27-Feb-15

Road Map

Consensus Impossibility

General theorem

Application to read-write models

k-set agreement Impossibility

General theorem

Application to read-write models

Connectivity and *k*-Set Agreement

Theorem

 $(\mathcal{I}, \mathcal{O}, \Delta)$ an (n+1)-process k-set agreement task...

 $(\mathcal{I},\mathcal{P},\Xi)$ a protocol ...

such that $\Xi(\sigma)$ is (k-1)-connected for all σ in \mathcal{I} ...

then $(\mathcal{I}, \mathcal{P}, \Xi)$ cannot solve *k*-set agreement.

Lemma

carrier map $\Phi: \mathcal{A} \mapsto 2^{\mathcal{B}}$

such that for all $\alpha \in \mathcal{A}$,

$$\Phi(\alpha)$$
 is ((dim α) – 1)-connected.

Then Φ has a simplicial approximation ϕ : Div^N $\mathcal{A} \to \mathcal{B}$.

Lemma Proof Sketch

carrier map
$$\Phi: \mathcal{A} \to 2^{\mathcal{B}}$$

has continuous approximation $f: |\mathcal{A}| \to |\mathcal{B}|$

$$f(|\sigma|) \subseteq |\varPhi(\sigma)|$$

Inductive construction ...
Lemma Proof Sketch

continuous approximation $f: |\mathcal{A}| \to |\mathcal{B}|$

Lemma Proof Sketch

continuous approximation $f: |\mathcal{A}| \to |\mathcal{B}|$

take simplicial approximation

$$\phi$$
: Div $\mathcal{A} \to \mathcal{B}$ of f : $|\mathcal{A}| \to |\mathcal{B}|$

Theorem Proof Sketch

let $\sigma \in \mathcal{I}$ have *k*+1 distinct input values

let Δ^k be simplex labeled with k+1 values

 $\partial \Delta^k$ its (k-1)-skeleton

c: $\Xi(\sigma) \rightarrow \partial \Delta^k$ well-defined simplicial map

By lemma, Ξ has simplicial approximation

$$\phi$$
: Div $\sigma \to \Xi(\sigma)$ of $f: |\mathcal{A}| \to |\mathcal{B}|$

Theorem Proof Sketch

c: $\Xi(\sigma) \rightarrow \partial \Delta^k$ well-defined simplicial map

By lemma, Ξ has simplicial approximation

$$\phi$$
: Div $\sigma \to \Xi(\sigma)$ of f : $|\mathcal{A}| \to |\mathcal{B}|$

composition Div $\sigma \to \Xi(\sigma) \to \partial \Delta^k$

defines a Sperner coloring of Div

some τ in Div σ maps to all of Δ^k production

28-Feb-15

k-Connectivity is an Eventual Property

Individual simplex is *k*-connected

k-Connectivity has a Critical State

28-Feb-15

Critical State in Layered IS

Nerve Lemma

Reason about connectivity of a complex...

From connectivity of components ...

And how they fit together.

Covering

 $\mathcal{N}(C_0,\ldots,\mathcal{C}_\ell)$

Nerve Example: Sphere

...Then

C is *k*-connected ...

if and only if ..

$$\mathcal{N}(\mathcal{C}_0, \ldots, \mathcal{C}_m)$$
 is *k*-connected.

Nerve Example: Sphere

Nerve Complex Lemma

The nerve complex $\mathcal{N}(\Xi(C \uparrow U) \mid \emptyset \subseteq U \subseteq \Pi)$ is *n*-connected

ProofConsider vertex
$$v = \Xi(C \uparrow \Pi)$$

Show the nerve complex is a *cone* with apex v

Nerve Complex Lemma

each $\Xi(C \uparrow U_i)$ is a vertex

each set {
$$\Xi$$
(C \uparrow U_i) | i = 0, ..., m}

Is a simplex if and only if

$$\bigcap_{\mathsf{i}} \Xi(\mathsf{C} \uparrow \mathsf{U}_{\mathsf{i}}) \neq \emptyset$$

Reasoning About Intersections

Let U_0, \ldots, U_m sets of process names ...

Indexed so $|U_0| \ge ... \ge |U_m|$

Intersection Lemma

Proof is inductive version of earlier lemma

Corollary

If $\bigcup_i U_i = \Pi$ but each $U_i \neq \Pi$,

then
$$\bigcap_i \Xi(C \uparrow U_i) = \emptyset$$
.

Nerve Complex

Let vertex
$$v = \Xi(C \uparrow \Pi)$$

Let $\sigma = \{\Xi(C \uparrow U_i)\}$ be a simplex

So
$$\bigcap_i$$
 Ξ(C ↑ U_i) ≠ Ø

and $\bigcup_i U_i \neq \Pi$

must show that $\sigma \cup \{v\}$ is a simplex ...

Intersection Lemma Proof

to show that $\sigma \cup \{v\}$ is a simplex, show that ...

 $\Xi(C \uparrow \Pi) \bigcap \bigcap_{i} \Xi(C \uparrow U_{i})$

is non-empty.

Intersection Lemma Proof

Lemma

$$\bigcap_{i \in I} \Xi(C \uparrow U_i)$$
 is (*n*-||+1)-connected

argue by induction on n

trivial for $n = 0 \dots$

Proof

$$\bigcap_{\Box \in \mathsf{I}} \Xi(\mathsf{C} \uparrow \mathsf{U}_{\mathsf{i}}) = (\Xi \downarrow \mathsf{W})(\mathsf{C} \uparrow \mathsf{X})$$

for
$$|W| > 0$$
, $W \subseteq X \subseteq \cup_i U_i$.

a protocol complex for *n*-|W|+1 processes ...

either empty, or *n*-connected by induction hypothesis.

therefore (n-||+1)-connected

Theorem

For every input simplex σ , the layered IS protocol complex $\Xi(\sigma)$ is k-connected Proof Induction on n **Case** n=0: $\Xi(\sigma)$ is a single vertex Case induction step ...

28-Feb-15

Conclusions

Model-independent topological
properties that prevent ...consensusk-set agreementpath-connectivityk-connectivity

Model-specific application to wait-free read-write memory

This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 Unported License.