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Previously 
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Used Sperner’s Lemma to show k-set 
agreement impossible when protocol 
complex is a manifold. 

But in many models, protocol 
complexes are not manifolds … 



Road Map 

27-Feb-15 3 

Consensus Impossibility 

General theorem 

Application to read-write models 

k-set agreement Impossibility 

General theorem 

Application to read-write models 



Road Map 
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Consensus Impossibility 

General theorem 

Application to read-write models 

k-set agreement Impossibility 

General theorem 

Application to read-write models 



A Path 
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vertex 

vertex 
vertex vertex 

vertex 

edge 
edge 

edge edge 

simplicial 
complex 



Path Connected 
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Any two vertexes can be linked by a path 



Theorem 
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If, for protocol (I,P,¥) … 



If, for protocol (I,P,¥) … 

Theorem 
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For every n-simplex ¾n, 
 ¥(¾n) is path-connected … 



If, for protocol (I,P,¥) … 

Theorem 
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(If no process fails) 

For every n-simplex ¾n, 
 ¥(¾n) is path-connected … 



If, for protocol (I,P,¥) … 

Then … 

Theorem 
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For every (n-1)-simplex ¾n-1, 
 ¥ (¾n-1) is non-empty … 

For every n-simplex ¾n, 
 ¥(¾n) is path-connected … 

(If one process fails) 



If, for protocol (I,P,¥) … 

Then … 

Theorem 
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For every (n-1)-simplex ¾n-1, 
 ¥ (¾n-1) is non-empty … 

For every n-simplex ¾n, 
 ¥ (¾n) is path-connected … 

¥ (¢) cannot solve consensus. 



Model Independence 
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Holds for message-passing or shared memory …. 

Synchronous, asynchronous, or in-between … 

Any adversarial scheduler … 

As long as one failure is possible. 



Protocol Complex Notation 

All 3 participate ¥(PQR)  

2 participate ¥(PQ), ¥(QR), ¥(PR),  

1 participates ¥(P), ¥(Q), ¥(R),  



Proof 
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¥(PQR) 



Proof 
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¥(PQ) 

¥(PQR) 



Proof 
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¥(P) 
¥(PQR) 

¥(PQ) 



Proof 
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¥(P) 
¥(R) 

¥(PQR) 

¥(PQ) ¥(QR) 



Complex is Path-Connected 
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¥(PQR) 

¥(PQ) ¥(QR) 

¥(P) 
¥(R) 



¥(PQR) 

One-dimensional Sperner’s 
Lemma 
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Some edge has two “colors” 
An execution that decides two 

distinct values 

QED 

¥(PQ) ¥(QR) 

¥(P) 
¥(R) 



Road Map 
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Consensus Impossibility 

General theorem 

Application to read-write models 

k-set agreement Impossibility 

General theorem 

Application to read-write models 



Application 
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We now show that consensus is 
impossible in wait-free read-write memory 

For every (n-1)-simplex ¾n-1, 
 ¥ (¾n-1) is non-empty. 

For every n-simplex ¾n, 
 ¥ (¾n) is path-connected … 
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Reachable Complexes 

A moves 

Protocol 
complex 

Reachable part 
of protocol 
complex 

B moves 
Reachable part 

of protocol 
complex 
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Reachable Complexes 
Initially, 

entire protocol 
complex 

reachable 

At the end, 
single simplex 

reachable 
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Eventual Property Satisfied by 
simplexes 
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Eventual Property 
Suppose 
it does 

not hold 
at start 
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Critical States 
critical 
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Critical States Exist 

 

 

critical 

Non-satisfying 
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Eventual Property 

Critical 
states 

Lowest non-
satisfying states in 

tree 



Path-Connectivity is an 
Eventual Property 
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Individual simplex is 
path-connected 



Path-Connectivity has a 
Critical State 
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C 

each path connected 

next steps 

not path connected 



Critical State in Layered IS 
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C 
U 

V 
W 

each path connected 

participants 
next layer 

not path connected 



Notation 
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C " U 

Configuration reached by running processes 
in U in next layer 



Critical State in Layered IS 
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C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 

each path connected 

participants 
next layer 

not path connected 



Proof Strategy 
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C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 

each path connected 

not path connected 
path connected 

Math! 



One-Dimensional Nerve 
Lemma 
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Reason about path-connectivity of a graph … 

From path-connectivity of components … 

And how they fit together. 



Graph K 
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Covering Ki 
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K0 
K1 

K2 

K = [
i
 Ki 



Nerve Graph Vertices 
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K0 
K1 

K2 

Each Ki is a vertex 



Nerve Graph Edges 
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K0 
K1 

K2 

Edge between Ki and Kj if Ki Å Kj ≠ ; 



One-Dimensional Nerve 
Lemma 
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If each Ki is path-connected … 

and the nerve graph N 
i
(Ki ) 

is path-connected … 

then Ki is path-connected … 



Critical State in Layered IS 
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C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 

each path connected 

participants 
next layer 

not path connected 



Configurations 

28-Feb-15 42 The ¥(C " U) form a cover for reachable complex 

C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 



Want to show 

Configurations 
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each ¥(C " U) is path-connected 

each ¥(C " U) Å ¥(C " V) is non-empty 

C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 



P Q R 
write write write 
snap snap snap 

Computing Intersections 

44 Distributed Computing Through 
Combinatorial Topology 

C " U 

P Q R 
write write 
snap snap 

write 
snap 

V = {P,Q} U = {P,Q,R} 

(C " V) " U n V 

C " V 

Memory state same 

Only V can distinguish 



Intersections (Case 1) 
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¥(C " U) Å ¥(C " V) is the complex 
reachable from C " U in executions where 
no process in V takes another step 

If V µ U, then 



Notation 
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(¥ # U)(C) 

Complex reachable from C in executions 
where processes in U halt and the rest finish. 



Notation 
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(¥ # U)(C) 

Complex reachable from C in executions 
where processes in U halt and the rest finish. 

¥(C " U) Å ¥(C " V) = (¥ # V)(C " U)  
If V µ U, then 



Notation 
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(¥ # U)(C) 

Complex reachable from C in executions 
where processes in U halt and the rest finish. 

¥(C " U) Å ¥(C " V) = (¥ # V)(C " U)  
If V µ U, then 



P Q R 
write 
snap 

write 
snap 

Computing Intersections 

49 Distributed Computing Through 
Combinatorial Topology 

C " U 

P Q R 
write 
snap 

write 
snap 

V = {Q} U = {P} 

(C " U) " V n U 

C " V 

Memory state same 

Only U [ V can distinguish 

(C " V) " U n V 



Intersections (Case 2) 
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¥(C " U) Å ¥(C " V) = (¥ # U [ V)(C " U [ V)  

If U, V incomparable, then 

Run processes in U [ V 

Then crash processes in U [ V 



Lemma 
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¥(C " U) Å ¥(C " V) = (¥ # W)(C " U [ V)  

Where 
U if U µ V 

V if V µ U 

U [ V otherwise 

W =  



Lemma 
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The nerve graph N(¥(C " U)) is path-connected 

Proof 

Consider vertex v = ¥(C " ¦)  

Show every vertex has an edge to v 



Proof (con’t) 
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Consider vertex v = ¥(C " ¦)  



Proof (con’t) 
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Consider vertex v = ¥(C " ¦)  

for every U ½ ¦ consider possible edge … 



Proof (con’t) 

Consider vertex v = ¥(C " ¦)  

¥(C " ¦) Å ¥(C " U) = (¥ # U)(C " ¦)  

for every U ½ ¦ consider possible edge … 



Proof (con’t) 
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Consider vertex v = ¥(C " ¦)  

¥(C " ¦) Å ¥(C " U) = (¥ # U)(C " ¦)  

Run everyone in next layer 

for every U ½ ¦ consider possible edge … 



Proof (con’t) 
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Consider vertex v = ¥(C " ¦)  

¥(C " ¦) Å ¥(C " U) = (¥ # U)(C " ¦)  

Run everyone in next layer 

crash everyone in U 

for every U ½ ¦ consider possible edge … 



Proof (con’t) 
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Consider vertex v = ¥(C " ¦)  

¥(C " ¦) Å ¥(C " U) = (¥ # U)(C " ¦)  

Run everyone in next layer 

crash everyone in U 

for every U ½ ¦ consider possible edge … 

Because U ½ ¦ , 
complex non-empty, 
hence edge exists 



Theorem 

27-Feb-15 

59 

For every input simplex ¾, the layered IS 
protocol complex ¥(¾) is path-connected 
Proof 
Induction on n 
Case n=0: ¥(¾) is a single vertex 
Case induction step … 



Proof 
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C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 

assume ¥(C) 
not path-connected 

each ¥(C " U) is path connected 

their nerve graph path-connected 

covering of ¥(C) 



covering of ¥(C) 
Proof 
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¥(C " U) ¥(C " V) ¥(C " W) 

each ¥(C " U) is path connected 

their nerve graph path-connected 

¥(C) is path connected by Nerve Lemma  

contradiction! 



Road Map 

27-Feb-15 62 

Consensus Impossibility 

General theorem 

Application to read-write models 

k-set agreement Impossibility 

General theorem 

Application to read-write models 



So Far … 
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Expressed solvability of consensus as a 
topological property of protocol complex 

… 

And applied the result to wait-free 
read-write memory. 

Next: do the same for k-set 
agreement! 



0-sphere 

1-disc 

Rethinking Path Connectivity 

Let’s call this complex 0-connected 



1-Connectivity 

1-sphere 

2-disc 



? 

This Complex is not 1-
Connected 



2-Connectivity 

3-disk 

2-sphere 



n-connectivity 
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        C is n-connected, if, for m · n, every 
continuous map of the m-sphere 

can be extended to a continuous 
map of the (m+1)-disk 

f : Sm ! C

f : Dm+1 ! C
(-1)-connected is non-empty 



Road Map 
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Consensus Impossibility 

General theorem 

Application to read-write models 

k-set agreement Impossibility 

General theorem 

Application to read-write models 



Connectivity and k-Set 
Agreement 
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Theorem 

(I,O,¢) an (n+1)-process k-set agreement task… 

(I,P,¥)  a protocol … 

such that ¥(¾) is (k-1)-connected for all ¾ in I … 

then (I,P,¥) cannot solve k-set agreement. 



Lemma 
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carrier map ©: A  2B 

such that for all ® 2 A, 

Then © has a simplicial approximation 
Á: DivN A ! B. 

©(®) is ((dim ®) – 1)-connected. 



Lemma Proof Sketch 
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carrier map ©: A ! 2B 

has continuous approximation f: |A| ! |B| 

f(|¾|) µ |©(¾)| 

Inductive construction … 



Lemma Proof Sketch 
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continuous approximation f: |A| ! |B| 

Base 

define on vertices … 

f0 



Lemma Proof Sketch 
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Step 

connectivity allows “filling in” 

f1 

f2 



Lemma Proof Sketch 
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continuous approximation f: |A| ! |B| 

take simplicial approximation 
Á: Div A ! B of f: |A| ! |B| 



Theorem Proof Sketch 
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let ¾ 2 I have k+1 distinct input values 

let ¢k be simplex labeled with k+1 values 

∂¢k its (k-1)-skeleton 

c: ¥(¾) ! ∂¢k well-defined simplicial map 

By lemma, ¥ has simplicial approximation 

Á: Div ¾ ! ¥(¾) of f: |A| ! |B| 



Theorem Proof Sketch 
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c: ¥(¾) ! ∂¢k well-defined simplicial map 

By lemma, ¥ has simplicial approximation 

Á: Div ¾ ! ¥(¾) of f: |A| ! |B| 

composition Div ¾ ! ¥(¾) ! ∂¢k 

defines a Sperner coloring of Div ¾ 

some ¿ in Div ¾ maps to all of ¢k 



k-Connectivity is an Eventual 
Property 
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Individual simplex is 
k-connected 



k-Connectivity has a Critical 
State 
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C 

each k-connected 

next steps 

not k-connected 



Critical State in Layered IS 
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C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 

each k-connected 

participants 
next layer 

not k-connected 



Proof Strategy 
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C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 

each k-connected 

not k- connected 
k-connected 

Math! 



Nerve Lemma 
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Reason about connectivity of a complex… 

From connectivity of components … 

And how they fit together. 



Covering 
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C = C0 [ ¢ ¢ ¢ [ C`

Complex 



Covering 
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C = C0 [ ¢ ¢ ¢ [ C`

Complex Covering 
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CU = fCiji 2 Ug

Vertex 

Simplex, if ÅCi non-empty 

Ci

N (C0; : : : ; C`)
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Nerve Example: Sphere 
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Reasoning About Connectivity 

Covering 

Nerve 



Nerve Lemma 
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Ci

CU =
\

i2U

Ci

k-connected 

(k-|U|+1)-connected If … 



…Then 
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if and only if .. 

N (C0, …Cm) is k-connected. 

C is k-connected … 
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Nerve Example: Sphere 

1-connected … 
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Reasoning About Connectivity 

0-connected 

Can apply Nerve 
Lemma! 
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Reasoning About Connectivity 

1-connected … 
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Reasoning About Connectivity 

1-connected ! 

1-connected ! 
QED 

implies 



Nerve Complex Lemma 
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The nerve complex 
N(¥(C " U) | ; µ U µ ¦) 

is n-connected 

Proof 
Consider vertex v = ¥(C " ¦)  

Show the nerve complex is a cone with apex v 



Nerve Complex Lemma 
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i ¥(C " Ui) ≠ ; 

each set {¥(C " Ui) | i = 0, …, m} 

Is a simplex if and only if 

each ¥(C " Ui) is a vertex 



Reasoning About 
Intersections 
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Lemma 

Let U0, … , Um sets of process names … 

Indexed so |U0| ¸ … ¸ |Um| 



Intersection Lemma 
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Å ¥(C " Ui) = (¥ # W) (C " [ Ui) 

Where i=1
m Ui if i=1 

m Ui µ U0 

W =  

i=0
m Ui otherwise 

Proof is inductive version of earlier lemma 



Corollary 
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If i Ui = ¦ but each Ui ≠ ¦, 

then i ¥(C " Ui) = ;. 



Nerve Complex 

So i ¥(C " Ui) ≠ ; 

Let ¾ = {¥(C " Ui) } be a simplex 

Let vertex v = ¥(C " ¦)  

must show that ¾ [ {v} is a simplex … 

and i Ui ≠ ¦ 



Intersection Lemma Proof 

to show that ¾ [ {v} is a simplex, show that … 

¥(C " ¦) Å i ¥(C " Ui) 

is non-empty. 



Intersection Lemma Proof 

¥(C " ¦) Å (I ¥(C " Ui)) = (¥ # i Ui ) (C " ¦) 

by corollary, Ui ≠ ¦ 

don’t halt everyone 

complex non-empty 

it’s a simplex! 



Lemma 
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� 2 I ¥(C " Ui) is (n-|I|+1)-connected 

argue by induction on n 

trivial for n = 0 … 



Proof 
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� 2 I ¥(C " Ui) = (¥ # W)(C " X) 

a protocol complex for n-|W|+1 processes … 

for |W| > 0, W µ X µ [i Ui.  

either empty, or n-connected by induction hypothesis. 

therefore (n-|I|+1)-connected 



Theorem 
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104 

For every input simplex ¾, the layered IS 
protocol complex ¥(¾) is k-connected 
Proof 
Induction on n 
Case n=0: ¥(¾) is a single vertex 
Case induction step … 



Proof 
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C 
U 

V 
W 

¥(C " U) ¥(C " V) ¥(C " W) 

assume ¥(C) 
not k-connected 

their nerve complex is k-connected 

covering of ¥(C) 

� 2 I ¥(C " Ui) is (n-|I|+1)-connected 



covering of ¥(C) 
Proof 
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¥(C " U) ¥(C " V) ¥(C " W) 

their nerve graph k-connected 

¥(C) is k-connected by Nerve Lemma  

contradiction! 

each i 2 I ¥(C " Ui) is (n-|I|+1)-connected 



Conclusions 
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Model-independent  topological 
properties that prevent … 

consensus 

Model-specific application to wait-free 
read-write memory 

path-connectivity 
k-set agreement 

k-connectivity 
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