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Previously

Used Sperner’s Lemma to show k-set
agreement impossible when protocol
complex is a manifold.

But in many models, protocol
complexes are not manifolds ...
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Road Map

‘Consensus Impossibility ‘

‘General theorem ‘

‘Application to read-write models ‘

‘k-set agreement Impossibility ‘

‘General theorem ‘

‘Application to read-write models ‘
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Road Map

‘Consensus Impossibility ‘

‘General theorem ‘
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A Path

simplicial
complex

vertex \Q/
\edge




Path Connected

/’.\.
/Ny

Any two vertexes can be linked by a path
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Theorem

If, for protocol (Z,P,=) ...
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Theorem

f. for protocol (ZP.=) ...

For every n-simplex o”,
Z(o™) is path-connected ...
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Theorem

f. for protocol (ZP.=) ...

For every n-simplex o”,
=(o™) is path-connected ...

(If no process falls)
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Theorem

f. for protocol (ZP.=) ...

For every n-simplex o”,
=(o™) is path-connected ...

For every (n-1)-simplex o™*,
= (0™1) is non-empty ...

Then ...

(If one process falils)
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Theorem

For

f. for protocol (ZP.=) ...

= (o™) is path-connected ...

every n-simplex o”,

For every (n-1)-simplex o™*,
= (o™1) is non-empty ...

Theny

27-Feb-15

| = () cannot solve consensus.
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Model Independence

‘Holds for message-passing or shared memory .... ‘

‘Synchronous, asynchronous, or in-between ... ‘

‘Any adversarial scheduler ... ‘

‘As long as one failure is possible. ‘
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Protocol Complex Notation

| All 3 participate | | Z(PQR) |

|2 participate | [ Z(PQ), Z(QR), Z(PR), |

|1 participates | | Z(P), Z(Q), Z(R), |




27-Feb-15

Proof

Z(PQR)
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Proof

Z(PQR)
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=(P)
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Proof

Z(PQR)
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=(P)

27-Feb-15

Proof
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Complex I1s Path-Connected
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One-dimensional Sperner’s
Lemma

Some edge has two “colors”
An execution that decides two
distinct values
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Road Map

‘Consensus Impossibility ‘

‘Application to read-write models

27-Feb-15
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Application

Impossible in wait-free read-write memory

We now show that consensus IS

27-Feb-15

For every n-simplex o”,
= (o) is path-connected ...

For every (n-1)-simplex o™,
= (0™1) is non-empty.
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Reachable Complexes

Protocol f@ Reachable part
complex / \ of protocol

complex

A moves B moves

Reachable part
of protocol
complex
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Reachable Complexes

At the end, ~—__  Initially,
sin gI mpl entire protocol
achable CO ex

T

TLXEET




disfied by Eventual Property

(=)

%%é
[f -

A A

O,

B
iid
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Eventual Property

\\\\E_Suppose
@ It does

-
;7¢f not hold
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Critical States

critical

o



Critical States Exist

O -
- - critical
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Eventual Property

@ Critical

. < N —  states
- -

N *

A

satisfying states In
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Path-Connectivity Is an
Eventual Property

Individual simplex Is
path-connected
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Path-Connectivity has a
Critical State

‘ not path connected ‘

| next steps

each path connected
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Critical State Iin Layered IS

28-Feb-15

‘ not path connected ‘

each path connected

participants
next layer
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Notation

[C 1 U]

Configuration reached by running processes
In U In next layer

28-Feb-15
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Critical State Iin Layered IS

28-Feb-15

‘ not path connected ‘

each path connected

participants
next layer
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il
ath connected

T

(Fe ()

y

each path connected
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One-Dimensional Nerve
Lemma

‘Reason about path-connectivity of a graph ... ‘

‘From path-connectivity of components ... ‘

And how they fit together. ‘
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Graph K
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Covering K
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orve Graph Vertices
e
Ky



\lerve Graph Edges
- y K

Ko

Edge between K, and K. if I, N K. =0

h%
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One-Dimensional Nerve
Lemma

‘If each /C, is path-connected ... ‘ .
and the nerve graph /\/i(ICi )

IS path-connected ...

then K is path-connected ... @
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Critical State Iin Layered IS

28-Feb-15

‘ not path connected ‘

each path connected

participants
next layer
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Configurations

‘The =(C 1 U) form a cover for reachable complex‘




Conflgurations

Want to show|
each =(C 1

- U) Is path-connected ‘

28-Feb-15 ‘ eac

i Z(C

- U) N =Z(C 1 V) Is non-empty ‘




Computing Intersections

U = {P.QR}| IV = {P.Q}|

write write write write write

snap snap snap snap snap

Ct+U C+V write
% \L' shap
CTV)tuU\V
Memory state same CTVITUA
‘Only V can distinguish \

Distributed Computing Through 44
Combinatorial Topology




Intersections (Case 1)

[IfV C U, then|

=Z(C 1T U)N Z(C 1T V) is the complex
reachable from C 1 U in executions where
no process in V takes another step
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Notation

(1L U)©Q)]

Complex reachable from C In executions
where processes in U halt and the rest finish.

27-Feb-15
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Notation

(1L U)©Q)]

Complex reachable from C In executions
where processes in U halt and the rest finish.

IfV C U, then |
S(CtU)NESCTV)=(5LV)(C1U) |
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Notation

(1L U)©Q)]

Complex reachable from C In executions
where processes in U halt and the rest finish.

IfV C U, then |
S(CtU)NESCTV)=(5LV)(C1U) |
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Computing Intersections

U = {P}] IV = {Q}]
shap | | shap

uc T U Snap Snap uc TV
[(CTU) TV \U] [(CTV)TU\V]

‘Memory state same ‘

‘Only U U V can distinguish Lugh

Combinatorial Topology

49




Intersections (Case 2)

‘Then crash processes inU UV

‘If U, V incomparable, then ‘ /

\E(CTU)mE(CTV):{Ewuv CTUUVD

‘Run processes in U U V‘
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Lemma

IZCTU)NECHV)=(ELW)(CTUUV) |

‘Where‘

lUifuCV|

[w =] |VifV CU|

‘U J V otherwise ‘
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Lemma

‘The nerve graph M(Z(C 1 U)) is path-connected

‘ Proof‘

‘Consider vertex v = =(C 1 II) ‘

‘Show every vertex has an edge to v ‘
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Proof (con’t)

Consider vertex v = 5(C 1 IT) |
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Proof (con’t)

| Consider vertex v = Z(C 1 I) |

‘for every U C II consider possible edge ... ‘
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Proof (con’t)

| Consider vertex v = Z(C 1 I) |

‘for every U C II consider possible edge ... ‘

[S(CTI)NECTU)=(S4U)C 1) |




Proof (con’t)

| Consider vertex v = Z(C 1 I) |

‘for every U C II consider possible edge ... ‘

\E(cmmﬂcw):(mw@ﬂ

‘Run everyone in next layer ‘

28-Feb-15 566



Proof (con’t)

| Consider vertex v = Z(C 1 I) |

‘for every U C II consider possible edge ... ‘

\E(CTH)HE(CTU):

‘Run gveryone in next layer ‘

28-Feb-15 ‘crash everyone in U ‘ 557




Proof (con’t)

| Consider vertex v = Z(C 1 I) |

‘for every U C II consider possible edge ... ‘

|Z(C 1 II)Nn 5(C T U)=((Z | U) |

Because U C II,
complex non-empty, ‘Run g¢veryone in next layer ‘
hence edge exists

28 Fob-15 |crash everyone in U ‘ s8a




Theorem

For every input simplex o, the layered IS
protocol complex =(o) Is path-connected

Induction on n

‘Case n=0: =(o) Is a single vertex

Case Induction step ...

27-Feb-15
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assume =(C)
not path-connected

‘ each Z(C 1 U) is path connected ‘

‘their nerve graph path-connected ‘

28-Feb-15
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Proof

covering of E(C)‘

0 G

‘ each =(C 1 U) is path connected ‘

‘their nerve graph path-connected ‘

‘ =(C) Is path connected by Nerve Lemma ‘

N ‘ contradiction! ‘ 61




Road Map

‘k-set agreement Impossibility ‘

‘General theorem ‘

27-Feb-15
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So Far ...

Expressed solvability of consensus as a
topological property of protocol complex

And applied the result to wait-free

read-write memory.

Next: do the same for k-set
agreement!

27-Feb-15
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Rethinking Path Connectivity

O-sphere




1-Connectivity



This Complex is not 1-
Connected

—————



2-Connectivity




n-connectivity

C is n-connected, if, for m <n, every
continuous map of the m-sphere

f: 85 —=C

can be extended to a continuous
map of the (m+1)-disk

f.Dmtl 5 C

27-Feb-15 ‘(-1)-connected IS hon-empty




Road Map

‘k-set agreement Impossibility ‘

‘Application to read-write models ‘

27-Feb-15
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Connectivity and k-Set
Agreement

‘Theorem ‘

‘(I,(’),A) an (n+1)-process k-set agreement task... ‘

‘(I,P,E) a protocol ... ‘

‘such that =(o) Is (k-1)-connected forallcInZ ... ‘

‘then (Z,P,=) cannot solve k-set agreement. ‘
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Lemma

| carrier map &: A > 25|

‘such that for all a € A, ‘

‘@(a) IS ((dim «) — 1)-connected.

Then @ has a simplicial approximation
¢. DWN A — B.

28-Feb-15
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Lemma Proof Sketch

| carrier map ¢: A — 25|

‘has continuous approximation f: |A| — |B ‘

| f(lol) € |8(o) ]

Inductive construction ...

28-Feb-15 12



Lemma Proof Sketch

‘continuous approximation f: |A| — |B| ‘

|Base |

define on vertices ...

28-Feb-15
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Lemma Proof Sketch

28-Feb-15

connectivity allows “filling in”
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Lemma Proof Sketch

‘continuous approximation f: |A| — |B| ‘

take simplicial approximation
. Div A — Bof f. |A]l — |B]

28-Feb-15
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Theorem Proof Sketch

llet & € Z have k+1 distinct input values |

‘Iet AF be simplex labeled with k+1 values ‘

‘aA’f its (k-1)-skeleton ‘

c: =(0) — oA* well-defined simplicial map
By lemma, = has simplicial approximation

¢. Divo — Z(o) of f: |A|l — |B|

28-Feb-15
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Theorem Proof Sketch
c: =(o) — 0A* well-defined simplicial map
By lemma, = has simplicial approximation

¢. Divo — =(o) of f: | Al — |B]

‘composition Divo — Z(0) — 0A* ‘

L;gme 7in Div o maps to all of A*
28-Feb-

I



k-Connectivity Is an Eventual

28-Feb-15

Property

Individual simplex Is
k-connected
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k-Connectivity has a Critical
State

not k-connected ‘

| next steps

each k-connected

28-Feb-15
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Critical State Iin Layered IS

28-Feb-15

not k-connected ‘

each k-connected

participants
next layer
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Dt
k-connectec

S
(Fe ()

each k-connected

28-Feb-15

81




Nerve Lemma

‘Reason about connectivity of a complex... ‘

‘From connectivity of components ... ‘

And how they fit together. ‘

28-Feb-15
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Covering

‘ Complex




Covering

N

‘ Complex ‘ ‘ Covering




N(C()a'”?CZ)

— ‘ vertex

Co={ClicU

}\

e

Simplex, if NC; non-empty ‘

27-Feb-15
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Nerve Example: Sphere
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Reasoning About Connectivity

Covering

Nerve

27-Feb-15
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Nerve Lemma

If ...

27-Feb-15

“ k-connected ‘

‘ (k-|U]+1)-connected ‘

Ae.

U

88



...Then

C is k-connected ... |

27-Feb-15

| ifand only if .. |

|V (Co, --.Cyy) is k-connected. |
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Nerve Example: Sphere

1-connected ...
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Reasoning About Connectivity

Can apply Nerve
Lemmal

O-connected

27-Feb-15
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Reasoning About Connectivity

L W

‘ 1-connected ... ‘

27-Feb-15
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Reasoning About Connectivity

‘ 1-connected ! |

| QED |

®—,r0

‘ 1-connected ! ‘
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Nerve Complex Lemma

The nerve complex
MECTU)|0CUC )

IS n-connected

Proof]
Consider vertex v = =(C 1 II) ‘

‘Show the nerve complex is a cone with apex v

28-Feb-15 94



Nerve Complex Lemma

leach 5(C 1 U) is a vertex |

leach set {Z(CtU)|i=0, ..., m}|

‘Is a simplex if and only if ‘

N ECtU)=0 |

28-Feb-15
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Reasoning About
Intersections

‘Lemma‘

‘Let U, ... , U, sets of process names ...

‘Indexed SO |Ugl > ... > |U,| ‘

27-Feb-15
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Intersection Lemma

[NEC1TU)=(ELW)(CTuUU)

[Where | [Usim U if U U C U |

|Ui=o™ U, otherwise |

‘Proof IS inductive version of earlier lemma ‘

28-Feb-15 97



Corollary

‘h‘Ui U. = IT but each Ui;tﬂ,‘

Ithen N, Z(C + U) = 0. |

28-Feb-15
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Nerve Complex

|Let vertex v = 5(C 1 I) |

|Let o = {5(C 1 U)) } be a simplex |

ISoN,E(C1TU) =0 |

‘andUiUi;tH‘

‘must show that o U {v} Is a simplex ...




Intersection Lemma Proof

‘to show that ¢ U {v} is a simplex, show that ... ‘

E(C+ ) N E(C1U)

‘is non-empty. ‘




Intersection Lemma Proof

sCtm M (N ECru)=(E[LU U] €t

=

‘by corollary, U; # H‘

‘don’t halt everyone ‘

‘complex non-empty
lit's a simplex! | @




Lemma

‘ﬂm -1 =(C 1 U) is (n-|l]+1)-connected

‘argue by induction on n ‘

‘trivial forn=0 ... ‘

28-Feb-15 102



Proof

N <, S(CTU)=(Z L W)C1X)|

|for [W| >0, W C X C U, U, |

‘a protocol complex for n-|W|[+1 processes ... ‘

‘either empty, or n-connected by induction hypothesis. ‘

‘therefore (n-]l|+1)-connected ‘

28-Feb-15 103



Theorem

For every input simplex o, the layered IS
protocol complex =(o) Is k-connected

Induction on n

‘Case n=0: =(o) Is a single vertex

Case Induction step ...

28-Feb-15
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assume =(C)
not k-connected

covering of =(C)

‘ﬂm -1 =(C 1 U) is (n-|l]+1)-connected ‘

‘their nerve complex is k-connected ‘

28-Feb-15 105




Proof

covering of E(C)‘

each ., Z(C 1 U) is (n-|l|[+1)-connected ‘

‘their nerve graph k-connected ‘

| 5(C) is k-connected by Nerve Lemma |

- ‘ contradiction! 106




Conclusions

Model-independent topological

D[QDQ[TGS %ha,t prevent ...
~ |consensus k-set agreement |

d‘ path-connectivity| | k-connectivity

Model-specific application to wait-free
read-write memory
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This work Is licensed under a
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