## Wait-Free Computability for General Tasks



Companion slides for
Distributed Computing
Through Combinatorial Topology
Maurice Herlihy \& Dmitry Kozlov \& Sergio Rajsbaum

## Road Map

## Inherently colored tasks

## Solvability for colored tasks

Protocol $\Rightarrow$ map
Map $\Rightarrow$ protocol

A Sufficient Topological Conditions

## Review

## Star


$\operatorname{Star}(\sigma, \mathcal{K})$ is the complex of facets of $\mathcal{K}$ containing $\sigma$ Complex

## Review



## A facet is a simplex of maximal dimension

Distributed

## Review

## Open Star


$\operatorname{Star}^{\circ}(\sigma, \mathcal{K})$ union of interiors of simplexes containing $\sigma$
Point Set

## Review


$\operatorname{Link}(\sigma, \mathcal{K})$ is the complex of simplices of $\operatorname{Star}(\sigma, \mathcal{K})$ not containing $\sigma$

## A simplicial map $\phi$ is rigid if $\operatorname{dim} \phi(\sigma)=\operatorname{dim} \sigma$.

## Road Map

## Inherently colored tasks

## Solvability for colored tasks

Protocol $\Rightarrow$ map
Map $\Rightarrow$ protocol

## A Sufficient Topological Conditions

The Hourglass task

$\mathcal{I}$
$\mathcal{O}$

## Single-Process Executions



P and R only (P and Q Symmetric)


R

$\mathcal{I}$
$\mathcal{O}$

## $Q$ and $R$ only


$\mathcal{I}$
$\mathcal{O}$

## Claim:

Hourglass satisfies conditions of fundamental theorem ... But has no wait-free immediate snapshot protocol!

## Claim: <br> Hourglass satisfies conditions of fundamental theorem ...



## Hourglass satisfies conditions of fundamental theorem ...

But has no wait-free immediate snapshot protocol!

## Claim:

## The Hourglass task solves <br> 2-set agreement ... Which has no wait-free read-write protocol.

## Protocol:

## Write input value to announce array ...

## Run Hourglass task ...



## Look in announce[] array ...

## What Went Wrong?

## Theorem

A colorless $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free immediate snapshot protocol iff there is a continuous map ...

$$
\frac{\mathrm{f}:}{} \underset{\mathrm{I} \mid}{ } \rightarrow|\mathcal{O}| \ldots
$$

## One Direction is OK

## Theorem

## If $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free read-write protocol ...

## then there is a continuous map ...

$$
\mathrm{f}:|\mathcal{I}| \rightarrow|\mathcal{O}| \ldots
$$

carried by $\Delta$

## The Other Direction Fails

## Theorem?

## If there is a continuous map ...

$$
\mathrm{f}:|\mathcal{I}| \rightarrow|\mathcal{O}| \ldots
$$

## carried by $\Delta \ldots$

then does $(\mathcal{I}, \mathcal{O}, \Delta)$ have a wait-free IS protocol?

## Review



## Review



## Road Map

## Inherently colored tasks

## Solvability for colored tasks

Protocol $\Rightarrow$ map
Map $\Rightarrow$ protocol

A Sufficient Topological Conditions

## Theorem

A colorless $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free immediate snapshot protocol iff there is a continuous map ...

$$
\frac{\mathrm{f}:|\mathcal{I}| \rightarrow|\mathcal{O}| \ldots}{} \quad \text { carried by } \Delta
$$

How can we adapt this theorem to colored tasks?

## Fundamental Theorem for Colored Tasks

## Theorem

$(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free read-write protocol iff ...
$\mathcal{I}$ has a chromatic subdivision $\operatorname{Div} \mathcal{I}$...
\& color-preserving simplicial map $\phi: \operatorname{Div} \mathcal{I} \rightarrow \mathcal{O} \ldots$
carried by $\Delta$

## Quasi-Consensus


$\mathcal{I}$
$\mathcal{O}$

## Quasi-Consensus



## Quasi-Consensus


$\mathcal{I}$
$\mathcal{O}$

## Quasi-Consensus


$\mathcal{I}$
$\mathcal{O}$
Not a colorless task!

## Quasi-Consensus



## Quasi-Consensus





## Road Map

## Inherently colored tasks

## Solvability for colored tasks

## Protocol $\Rightarrow$ map

$$
\text { Map } \Rightarrow \text { protocol }
$$

A Sufficient Topological Conditions

## Protocol $\Rightarrow$ Map



## Protocol $\Rightarrow$ Map



## Road Map

## Inherently colored tasks

## Solvability for colored tasks

## Protocol $\Rightarrow$ map

Map $\Rightarrow$ protocol
A Sufficient Topological Conditions

Task $(\mathcal{I}, \mathcal{O}, \Delta)$




12-Mar-15

## Theorem says ...

If there is a chromatic subdivision ...


## Theorem says ...

If there is a chromatic subdivision ...

## and a simplicial map $\psi$ carried by $\Delta \ldots$



## Theorem says ...

If there is a chromatic subdivision ...

## and a simplicial map $\psi$ carried by $\Delta \ldots$


$\mathcal{I}$
$\mathcal{O}$

12-Mar-15 ... then there is a wait-free IS protoco!!

Let's start with something easier ...

## Let's start with a special case ...

If there is a simplicial map $\psi: \mathrm{Ch}^{\mathrm{N}} \sigma \rightarrow \Delta(\sigma) \ldots$


## Let's start with something easier ...

If there is a simplicial map $\phi: \mathrm{Ch}^{\mathrm{N}} \sigma \rightarrow \Delta(\sigma) \ldots$


I
$\mathcal{O}$ ... then there is a wait-free IS protocol!

## Protocol

Iterated immediate snapshot


## For any chromatic subdivision Div $\sigma \ldots$

If there is a color and carrier-preserving simplicial $\operatorname{map} \phi: \mathrm{Ch}^{\mathrm{N}} \sigma \rightarrow \operatorname{Div} \sigma \ldots$


## Geometric construction



## Inductively divide boundary

## Geometric construction



## Geometric construction



## Geometric construction



Mesh(Ch $\sigma$ ) is max diameter of a simplex

## Subdivision shrinks mesh


$\operatorname{mesh}(\mathrm{Ch} \sigma) \leq \mathrm{c} \operatorname{mesh}(\sigma)$ for some $0<\mathrm{c}<1$

## Open cover



## Lesbesgue Number



## Open stars form an open cover for a complex



## Intersection Lemma



Pick N large enough that each (closed) star of $\mathrm{Ch}^{\mathrm{N}} \sigma$ has diameter less than $\lambda \ldots$

$\ldots$ each star of $\mathrm{Ch}^{\mathrm{N}} \sigma$ lies in a open star of $\operatorname{Div} \sigma$

## Defines a vertex map ....



## We have just proved the Simplicial Approximation Theorem



There is a carrier-preserving simplicial map $\phi: \mathrm{Ch}^{\mathrm{N}} \sigma \rightarrow$ Div $\sigma$

An open-star cover is chromatic if every simplex $\tau$ of $\mathrm{Ch}^{\mathrm{N}} \sigma$ is covered by open stars of of the same color.


## If the open-star cover is chromatic ....

## Then the simplicial map ....



## Open Cover Fail



Two simplexes conflict ...

If colors disjoint, but ...
polyhedrons overlap.

## Open Cover Fail



An open-star cover is chromatic iff there are no conflicting simplexes.

We will show how to eliminate conflicting simplexes

## Carriers



12-Mar-15

## Perturbation



## Room for perturbation



## Star contains $\epsilon$ ball in carrier around vertex

## Room for perturbation



Can perturb to any point within $\epsilon$ ball in carrier and still have

## Open Cover Fail



## $\rho$ has $q+1$ colors

$\tau$ has $p+1$ colors

## Simplexes lie in hyperplane of dimension $p+q$ (because they overlap)




Some vertex has carrier of dimension $p+q+1$ (because there are $p+q+2$ colors)

## Can perturb vertex within ( $p+q+1$ )dimension $\epsilon$ ball ...



## Can perturb vertex within $(p+q+1)$ dimension $\epsilon$ ball ...



Repeat until star diameter < Lebesgue number:

## Construct $\mathrm{Ch} \mathrm{Ch}^{\mathrm{N}-1}{ }_{*} \sigma$

## Perturb to $\mathrm{Ch}^{\mathrm{N}}{ }_{\star} \sigma$

## So open-star cover is chromatic

Construct color-preserving simplicial map




## Road Map

## Inherently colored tasks

## Solvability for colored tasks

Protocol $\Rightarrow$ map
Map $\Rightarrow$ protocol

A Sufficient Topological Condition

## Link-Connected


$\mathcal{O}$ is link-connected if for each $\tau \in \mathcal{O}$, $\operatorname{link}(\tau, \mathcal{O})$ is $(n-2-\operatorname{dim} \tau)$-connected.


## Theorem

## If, for all $\sigma \in \mathcal{I}, \Delta(\sigma)$ is

((dim $\sigma)-1)$-connected, and
$\mathcal{O}$ is link-connected
then $(\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free IS protocol

## Proof Strategy

If, for all $\sigma \in \mathcal{I}, \Delta(\sigma)$ is
((dim $\sigma)-1)$-connected, and
$\mathcal{O}$ is link-connected,
there exists subdivision Div \& color-preserving simplicial map $\mu$ : Div $\mathcal{I} \rightarrow \mathcal{O}$ carried by $\Delta$.

## Proof Strategy



## Lemma

rigid \& color-preserving on boundary means color-preserving everywhere
suppose we have a rigid simplicial map

$$
\phi: \operatorname{Div} \sigma \rightarrow \mathcal{O}
$$

that is color-preserving on Div $\partial \sigma$
then $\phi$ is color-preserving on Div $\sigma$

## Lemma

## If $\mathcal{O}$ is link-connected ...

## can extend rigid simplicial map

$$
\phi_{\mathrm{n}-1}: \text { skel }^{\mathrm{n}-1} \mathcal{I} \rightarrow \mathcal{O}
$$

to a rigid simplicial map

$$
\phi_{\mathrm{n}}: \operatorname{Div} \mathcal{I} \rightarrow \mathcal{O}
$$

$$
\text { where Div skel }{ }^{n-1} \mathcal{I}=\text { skel }^{\mathrm{n}-1} \mathcal{I}
$$

Induction Base: $n=1$


## Induction Step: $\phi$ does not collapse ( $n$-1)-simplexes





## Summary

## connectivity of $\Delta(\sigma)$ <br> Inductively use ... link-connectivity of $\mathcal{O}$

## to construct a color-preserving simplicial map

## $\phi: \operatorname{Div} \mathcal{I} \rightarrow \mathcal{O}$ carried by $\Delta$.

protocol follows from main theorem

Creative Commons AttributionNoncommercial 3.0 Unported
License. <br> \title{
This work is licensed under a
} <br> \title{
This work is licensed under a
}

## 百

## 

## 



-

## 都

$\square$

