Renaming and Oriented Manifolds

Companion slides for Distributed Computing Through Combinatorial Topology
Maurice Herlihy \& Dmitry Kozlov \& Sergio Rajsbaum
Distributed Computing though

Autonomous Air Traffic Control

Pick your own altitude!

Road Map

An Upper Bound: 2n+1 Names

Weak Symmetry-Breaking
The Index Lemma

Binary Colorings
A Lower Bound for 2n-Renaming

Road Map

An Upper Bound: $2 n+1$ Names

Weak Symmetry-Breaking

The Index Lemma

Binary Colorings

A Lower Bound for 2n-Renaming

Index Independence

Avoid trivial solutions ...

P_{i} chooses output name i?
P_{i} knows its name, but not i

Can test names for order \& equality only

Output depends on input and interleavings only

Protocol for $2 n+1$ Names

ρ : Rename $\left(\sigma^{n}\right) \rightarrow \Delta^{2 n}$

Protocol for $2 n$ Names

$$
\rho: \text { Rename }\left(\sigma^{n}\right) \rightarrow \Delta^{2 n}
$$

means that a wait-free immediate snapshot protocol exists

we will also display the protocol ...

2 processes, 3 names

1
(2)
(0)

easy to check that map is rigid, and depends only on order of process names

shared Boolean flag[2] = \{false, false\}

// code for P_1
flag[1] := true if (flag[0])
decide 1
else
decide 0

// code for P_0
flag[0] := true if (flag[1])
decide 2
else decide 0

3 processes, 5 names
 \square

3 processes, 5 names
 \square

3 processes, 5 names

3 processes, 5 names

union each boundary simplex with complementary central face

3 processes, 5 names

3 processes, 5 names

add new names?

3 processes, 5 names

except go "down" from $2 n-1$

3 processes, 5 names

rename(tag, first, direction, r) peers := \{P | same tag, round\}
first :=
first + 2|peers|
first := first - 2|peers|

return rename(
return first
tag+peers, first,
!direction, r+1)

Road Map

An Upper Bound: 2n+1 Names

Weak Symmetry-Breaking

The Index Lemma

Binary Colorings

A Lower Bound for 2n-Renaming

Weak Symmetry-Breaking

Weak Symmetry-Breaking

Claim:

Weak symmetry-breaking is equivalent to $2 n$-renaming

Lower bound for WSB is lower bound for $2 n$-renaming ...

> Upper bound too ...

WSB $\Rightarrow 2 n$-Renaming

WSB $\Rightarrow 2 n$-Renaming

WSB $\Rightarrow 2 n$-Renaming

renaming
$0 . .2 q$
Ranges do not overlap
renaming

$$
0 . .2 q \quad 2 n-1, \ldots, 2 q+1
$$

2n-Renaming \Rightarrow WSB

2n-Renaming \Rightarrow WSB

Theorem

There is no 3-process weak symmetry-breaking protocol

Hence no renaming for 3 processes and 4 names

Reminder: Cannot Map Boundary Around a Hole

12-Mar-15

WSB Output Complex

Protocol Complex (schematic)

Boundary = 2-Process

 Executions

Protocol Complex for One Process Execution

$\Xi(O)$ decides 1 WLOG

$\Xi(\bigcirc)$ decides 1 by symmetry

$\Xi(O)$ decides 1 by symmetry

2-Process execution might be

 mapped this way ...Wraps around
-1 times

2-Process execution might be

 mapped that way ...
boundary

protocol
Wraps around +2 times

In General ...

protocol
Wraps around hole 3k-1 $=0$ times

boundary

QED!

Conjecture

For $n+1$ processes ...

the boundary wraps around the hole ...
$(n+1) \cdot k \neq 0$ times \ldots
so $2 n$-renaming is impossible!

Conjecture

Only holds

Road Map

An Upper Bound: $2 n+1$ Names

Weak Symmetry-Breaking
The Index Lemma

Binary Colorings

A Lower Bound for \$2n\$-Renaming

Simplex

Oriented Simplex

Sequence: O ○ O

Oriented Simplex

Counter-clockwise ...

Induced orientation on faces

Oriented n-manifold

 with boundary

Adjacent n-simplexes induce opposite orientations on common face

Oriented n-manifold

 with boundary

Oriented n-manifold

 with boundary

Arbitrary ($n+1$)-coloring

Content: number of properlycolored n-simplexes ...

Content: number of properlycolored n-simplex 000

Content: number of properlycolored n-simplex 000

If content is non-zero, there are properly-colored simplexes.

If zero, there may or may not be properly-colored simplexes.

000

-1

Counted by orientation.

$$
C=1-1+1=1
$$

Content: number of properlycolored n-simplexes ...

If content is non-zero, there are properly-colored simplexes.

If zero, there may or may not be properly-colored simplexes.

Counted by orientation.

Index: number of boundary (n-1)-simplexes properly colored by colors other than i ...

Index Lemma

Proof for Dim 2

Let S be the number of 01 edges counted by orientation

boundary edges contribute to I_{i}

So $S=I_{i}$

Proof for Dim 2

For properly colored triangle, 01 edge adds same value to both C and I_{i}

Proof for Dim 2

For non-properly colored triangle, either no 01-edges ...

Proof for Dim 2

For non-properly colored triangle, either or two 01-edges that cancel

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Think of the index as the number of times the boundary of \mathcal{K} is wrapped around the boundary of $\Delta^{2 n}$

Road Map

An Upper Bound: 2n+1 Names

Weak Symmetry-Breaking

The Index Lemma

Binary Colorings

A Lower Bound for 2n-Renaming

Strategy

$\mathrm{Ch}^{\mathrm{N}}(\sigma)=$ WF immediate snapshot protocol complex

Protocol Complex

Every simplex properly colored by process name

Every vertex colored by binary decision value

Every vertex colored by (name + value) mod $n+1$

Every vertex colored by (name + value) $\bmod n+1$

Properly colored \Leftrightarrow monochrome

Number of monochromatic n-simplexes ...

Determined by coloring on boundary!

If number of monochromatic simplexes is

 determined by boundary ...

We can color interior vertexes any way we want!

If number of monochromatic simplexes is

 determined by boundary ...

We can color interior vertexes any way we want!

Only 0-monochromatic simplexes ...

Easier to count!

Road Map

An Upper Bound: 2n+1 Names

Weak Symmetry-Breaking

The Index Lemma

Binary Colorings

A Lower Bound for $2 n$-Renaming

Anonymity \& Symmetry

$$
\Pi=\{\bigcirc \bigcirc \bigcirc\}
$$

permutation π

$$
\Pi=\{\bigcirc \bigcirc \bigcirc \bigcirc
$$

Orientations of symmetric simplexes?

"Flip" reverses orientation

How many monochromatic simplexes?

How many monochromatic n-simplexes?

No 1-monochromatic n-simplexes

How many 0-monochromatic n-simplexes?

WLOG "corner" color is 0

How many 0-monochromatic n-simplexes?

There are $n+1$ symmetric simplexes ...

How many 0-monochromatic n-simplexes?

q-face has $k_{q} 0$-monochromatic simplexes ...

How many 0-monochromatic n-simplexes?

There are $\binom{n+1}{q+1}$ symmetric faces...

How many 0-monochromatic n-simplexes?

Total number of monochromatic simplexes ...

Counted by orientation ...

$$
\begin{array}{r}
1+\sum_{i=0}^{n-1}\binom{n+1}{i+1} k_{i} \\
\\
\text { Integers } k_{i} \ldots
\end{array}
$$

WSB requires this number to be zero ...

This sum cannot be zero if ...

$$
1+\sum_{i=0}^{n-1}\binom{n+1}{i+1} k_{i}
$$

$$
\left\{\binom{n+1}{1}, \ldots,\binom{n+1}{n}\right\}
$$

Binomial coefficients have a common factor!

Fact

Binomial coefficients have a common factor if and only if $n+1$ is a prime power

Lower Bound

$2 n$-Renaming is impossible if ...

$$
\left\{\binom{n+1}{1}, \ldots,\binom{n+1}{n}\right\}
$$

$n+1$ is not a prime power

$n=5$ smallest n for which impossibility fails ...

Possible to prove that an algorithm exists ...

But no explicit constriction known ...

Yet. Creative Commons Attribution Creative Commons Attribution Creative Commons AttributionNoncommercial 3.0 UnportedNoncommercial 3.0 UnportedNoncommercial 3.0 Unported License. License. License.

 \section*{

 \section*{
 \section*{\title{
This work is licensed under a
}

 \section*{

 \section*{
 \section*{\title{
This work is licensed under a
}

 \section*{

 \section*{
 \section*{\title{
This work is licensed under a
}

 \section*{

 \section*{
 \section*{\title{
This work is licensed under a
}

 \section*{}}
}
}

 I

 I

 I

 }

 }

 }
,

都

\square ?

