
CSCI 2951U: Topics in Software Security
Introduction

Vasileios (Vasilis) Kemerlis
January 25, 2021

Department of Computer Science
Brown University

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 1 / 7

https://www.cs.brown.edu/courses/csci2951-u/
https://www.cs.brown.edu/~vpk
https://www.cs.brown.edu
https://www.brown.edu
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Course Overview (1/2)

▶ What is this course about?

4 State-of-the-art in software exploitation and defense Ü CSCI 1650++
8 Memory unsafe code (written in C/C++, asm, ...)

▶ Software Security
1. Prevalent software defects

• Stack/Heap smashing
• Format string bugs
• Pointer errors
• ...

2. Modern defenses
• W^X, ASLR
• Stack/Heap canaries
• RELRO, BIND_NOW
• BPF_SECCOMP, FORTIFY_SRC
• CFI, CPI, ...

▶ Software Exploitation
1. Code injection
2. Code reuse

• Return-to-libc (ret2libc)
• Return-oriented prog. (ROP)
• Just-In-Time ROP (JIT-ROP)
• Blind ROP (BROP)
• Signal-oriented prog. (SROP)
• ...

3. Data-only attacks

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 2 / 7

https://www.cs.brown.edu/courses/csci1650/
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Course Overview (1/2)

▶ What is this course about?
4 State-of-the-art in software exploitation and defense Ü CSCI 1650++

8 Memory unsafe code (written in C/C++, asm, ...)
▶ Software Security
1. Prevalent software defects

• Stack/Heap smashing
• Format string bugs
• Pointer errors
• ...

2. Modern defenses
• W^X, ASLR
• Stack/Heap canaries
• RELRO, BIND_NOW
• BPF_SECCOMP, FORTIFY_SRC
• CFI, CPI, ...

▶ Software Exploitation
1. Code injection
2. Code reuse

• Return-to-libc (ret2libc)
• Return-oriented prog. (ROP)
• Just-In-Time ROP (JIT-ROP)
• Blind ROP (BROP)
• Signal-oriented prog. (SROP)
• ...

3. Data-only attacks

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 2 / 7

https://www.cs.brown.edu/courses/csci1650/
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Course Overview (1/2)

▶ What is this course about?
4 State-of-the-art in software exploitation and defense Ü CSCI 1650++
8 Memory unsafe code (written in C/C++, asm, ...)

▶ Software Security
1. Prevalent software defects

• Stack/Heap smashing
• Format string bugs
• Pointer errors
• ...

2. Modern defenses
• W^X, ASLR
• Stack/Heap canaries
• RELRO, BIND_NOW
• BPF_SECCOMP, FORTIFY_SRC
• CFI, CPI, ...

▶ Software Exploitation
1. Code injection
2. Code reuse

• Return-to-libc (ret2libc)
• Return-oriented prog. (ROP)
• Just-In-Time ROP (JIT-ROP)
• Blind ROP (BROP)
• Signal-oriented prog. (SROP)
• ...

3. Data-only attacks

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 2 / 7

https://www.cs.brown.edu/courses/csci1650/
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Course Overview (2/2)

▶ Why take this course?

, Defense
4 Understand the boundaries of

protection mechanisms and
argue about their effectiveness

4 Familiarize with experimental
mitigation techniques

- Offense
4 Learn how and why (certain)

defenses can be bypassed
• Exploit “weaponization”

▶ Why are these useful?
• To design effective (and efficient) software protection
mechanisms you need to:
(a) understand what sorts of attacks are possible
(b) how exactly these attacks work
(c) why previous attempts failed

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 3 / 7

mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Course Overview (2/2)

▶ Why take this course?

, Defense
4 Understand the boundaries of

protection mechanisms and
argue about their effectiveness

4 Familiarize with experimental
mitigation techniques

- Offense
4 Learn how and why (certain)

defenses can be bypassed
• Exploit “weaponization”

▶ Why are these useful?
• To design effective (and efficient) software protection
mechanisms you need to:
(a) understand what sorts of attacks are possible
(b) how exactly these attacks work
(c) why previous attempts failed

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 3 / 7

mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Course Overview (2/2)

▶ Why take this course?
, Defense
4 Understand the boundaries of

protection mechanisms and
argue about their effectiveness

4 Familiarize with experimental
mitigation techniques

- Offense
4 Learn how and why (certain)

defenses can be bypassed
• Exploit “weaponization”

▶ Why are these useful?
• To design effective (and efficient) software protection
mechanisms you need to:
(a) understand what sorts of attacks are possible
(b) how exactly these attacks work
(c) why previous attempts failed

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 3 / 7

mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Course Overview (2/2)

▶ Why take this course?
, Defense
4 Understand the boundaries of

protection mechanisms and
argue about their effectiveness

4 Familiarize with experimental
mitigation techniques

- Offense
4 Learn how and why (certain)

defenses can be bypassed
• Exploit “weaponization”

▶ Why are these useful?
• To design effective (and efficient) software protection
mechanisms you need to:
(a) understand what sorts of attacks are possible
(b) how exactly these attacks work
(c) why previous attempts failed

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 3 / 7

mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Prerequisites

▶ CSCI 1650 (Software Security and Exploitation)
• Control-flow Hijacking
• Code Injection (Shellcode dev.)
• Code Reuse (ROP)

▶ CSCI 1670 (Operating Systems)
• C/C++, x86 asm
• Linking and Loading
• Virtual Memory

4 Having taken the following courses is a plus, but not required:
• CSCI 1660 (Computer Systems Security)
• CSCI 2951E (Topics in Computer System Security)

J We will review (most of) the important concepts

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 4 / 7

https://www.cs.brown.edu/courses/csci1650/
https://www.cs.brown.edu/courses/csci1670/
https://www.cs.brown.edu/courses/csci1660/
https://sites.google.com/site/browncs2951e/
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Prerequisites

▶ CSCI 1650 (Software Security and Exploitation)
• Control-flow Hijacking
• Code Injection (Shellcode dev.)
• Code Reuse (ROP)

▶ CSCI 1670 (Operating Systems)
• C/C++, x86 asm
• Linking and Loading
• Virtual Memory

4 Having taken the following courses is a plus, but not required:
• CSCI 1660 (Computer Systems Security)
• CSCI 2951E (Topics in Computer System Security)

J We will review (most of) the important concepts

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 4 / 7

https://www.cs.brown.edu/courses/csci1650/
https://www.cs.brown.edu/courses/csci1670/
https://www.cs.brown.edu/courses/csci1660/
https://sites.google.com/site/browncs2951e/
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Prerequisites

▶ CSCI 1650 (Software Security and Exploitation)
• Control-flow Hijacking
• Code Injection (Shellcode dev.)
• Code Reuse (ROP)

▶ CSCI 1670 (Operating Systems)
• C/C++, x86 asm
• Linking and Loading
• Virtual Memory

4 Having taken the following courses is a plus, but not required:
• CSCI 1660 (Computer Systems Security)
• CSCI 2951E (Topics in Computer System Security)

J We will review (most of) the important concepts

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 4 / 7

https://www.cs.brown.edu/courses/csci1650/
https://www.cs.brown.edu/courses/csci1670/
https://www.cs.brown.edu/courses/csci1660/
https://sites.google.com/site/browncs2951e/
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Logistics

� Meetings
• Mondays, 3PM – 5:20PM (M hour)

• Zoom

▶ Grading
4 Paper reviews Ü 10%
4 Paper presentations Ü 20%
4 Discussion part. Ü 20%
4 Project report Ü 40%
4 Project presentation Ü 10%

@ Communication
• https://cs.brown.edu/courses/csci2951-u/

• course.csci.2951u.2021-

spring.s01@lists.brown.edu

J Check the website!
• Announcements
• Lecture slides
• Readings

▶ Study material
■ No required textbook Ü Assigned readings

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 5 / 7

https://www.cs.brown.edu/courses/csci2951-u/
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Logistics

� Meetings
• Mondays, 3PM – 5:20PM (M hour)

• Zoom

▶ Grading
4 Paper reviews Ü 10%
4 Paper presentations Ü 20%
4 Discussion part. Ü 20%
4 Project report Ü 40%
4 Project presentation Ü 10%

@ Communication
• https://cs.brown.edu/courses/csci2951-u/

• course.csci.2951u.2021-

spring.s01@lists.brown.edu

J Check the website!
• Announcements
• Lecture slides
• Readings

▶ Study material
■ No required textbook Ü Assigned readings

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 5 / 7

https://www.cs.brown.edu/courses/csci2951-u/
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Logistics

� Meetings
• Mondays, 3PM – 5:20PM (M hour)

• Zoom

▶ Grading
4 Paper reviews Ü 10%
4 Paper presentations Ü 20%
4 Discussion part. Ü 20%
4 Project report Ü 40%
4 Project presentation Ü 10%

@ Communication
• https://cs.brown.edu/courses/csci2951-u/

• course.csci.2951u.2021-

spring.s01@lists.brown.edu

J Check the website!
• Announcements
• Lecture slides
• Readings

▶ Study material
■ No required textbook Ü Assigned readings

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 5 / 7

https://www.cs.brown.edu/courses/csci2951-u/
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Logistics

� Meetings
• Mondays, 3PM – 5:20PM (M hour)

• Zoom

▶ Grading
4 Paper reviews Ü 10%
4 Paper presentations Ü 20%
4 Discussion part. Ü 20%
4 Project report Ü 40%
4 Project presentation Ü 10%

@ Communication
• https://cs.brown.edu/courses/csci2951-u/

• course.csci.2951u.2021-

spring.s01@lists.brown.edu

J Check the website!
• Announcements
• Lecture slides
• Readings

▶ Study material
■ No required textbook Ü Assigned readings

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 5 / 7

https://www.cs.brown.edu/courses/csci2951-u/
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Logistics

� Meetings
• Mondays, 3PM – 5:20PM (M hour)

• Zoom

▶ Grading
4 Paper reviews Ü 10%
4 Paper presentations Ü 20%
4 Discussion part. Ü 20%
4 Project report Ü 40%
4 Project presentation Ü 10%

@ Communication
• https://cs.brown.edu/courses/csci2951-u/

• course.csci.2951u.2021-

spring.s01@lists.brown.edu

J Check the website!
• Announcements
• Lecture slides
• Readings

▶ Study material
■ No required textbook Ü Assigned readings

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 5 / 7

https://www.cs.brown.edu/courses/csci2951-u/
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Logistics

� Meetings
• Mondays, 3PM – 5:20PM (M hour)

• Zoom

▶ Grading
4 Paper reviews Ü 10%
4 Paper presentations Ü 20%
4 Discussion part. Ü 20%
4 Project report Ü 40%
4 Project presentation Ü 10%

@ Communication
• https://cs.brown.edu/courses/csci2951-u/

• course.csci.2951u.2021-

spring.s01@lists.brown.edu

J Check the website!
• Announcements
• Lecture slides
• Readings

▶ Study material
■ No required textbook Ü Assigned readings

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 5 / 7

https://www.cs.brown.edu/courses/csci2951-u/
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:course.csci.2951u.2021-spring.s01@lists.brown.edu
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Staff

▶ Instructor
Vasileios (Vasilis) Kemerlis
• vpk@cs.brown.edu
• https://www.cs.brown.edu/~vpk

Office hours: Mon. 6PM – 7PM (Zoom)

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 6 / 7

mailto:vpk@cs.brown.edu
https://www.cs.brown.edu/~vpk
mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

Memory Safety Circus

Non-executable Data /
Instruction Set Randomization

VII.A.

Data Integrity

V.B.

Data Space
Randomization

VII.B.

Data-flow Integrity

VIII.B.

Control-flow Integrity

V.A.

Address Space
Randomization

Code Integrity
VIII.A.

Code Pointer Integrity

Instruction Set
Randomization

VI.

Memory Safety

Information

leak

Make a pointer go

out of bounds

Make a pointer

become dangling

Use pointer

to write (or free)

Use pointer

to read

Modify a

code pointer ...

Output data

variable

… to the address of

shellcode / gadget

Use pointer by

indirect call/jump

Execute injected

shellcode

Execute available

gadgets / functions

Control-flow

hijack attack

Modify

code ...

Code corruption

attack

Modify a

data pointer

Modify a data

variable ...

Data-only

attack

… to the attacker

specified value

Use corrupted

data variable

Use pointer by

return instruction

… to the attacker

specified code

Interpret the

output data

1

2

3

4

5

6

Figure 1. Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

included in the output. The classic example of this attack is
the printf format string bug, where the format string is
controlled by the attacker. By specifying the format string
the attacker creates invalid pointers and reads (and writes)
arbitrary memory locations.

printf(user_input); // input "%3$x" prints the

// 3rd integer on the stack

If an attacker controlled pointer is used to write the
memory, then any variable, including other pointers or even
code, can be overwritten. Buffer overflows and indexing
bugs can be exploited to overwrite sensitive data such as
a return address or virtual table (vtable) pointer. Corrupting
the vtable pointer is an example of the backward loop in
Figure 1. Suppose a buffer overflow makes an array pointer
out of bounds in the first round that is exploited (in Step 3)
to corrupt a nearby vtable pointer in memory in the second
round. When the corrupted vtable pointer is dereferenced (in
Step 2), a bogus virtual function pointer will be used. It is
important to see that with one memory error, more and more
memory errors can be raised by corrupting other pointers.
Calling free() with an attacker controlled pointer can also
be exploited to carry out arbitrary memory writes [19]. Write
dereferences can be exploited to leak information as well.

printf("%s\n", err_msg);

For instance, the attacker is able to leak arbitrary mem-
ory contents in the above line of code by corrupting the
err_msg pointer.

Temporal errors, when a dangling pointer is dereferenced
in Step 2, can be exploited similarly to spatial errors. A
constraint for exploitable temporal errors is that the memory
area of the deallocated object (the old object) is reused by
another object (new object). The type mismatch between
the old and new object can allow the attacker to access
unintended memory.

Let us consider first reading through a dangling pointer
with the old object’s type but pointing to the new object,
which is controlled by the attacker. When a virtual function
of the old object is called and the virtual function pointer is
looked up, the contents of the new object will be interpreted
as the vtable pointer of the old object. This allows the
corruption of the vtable pointer, comparable to exploiting
a spatial write error, but in this case the dangling pointer
is only dereferenced for a read. An additional aspect of
this attack is that the new object may contain sensitive
information that can be leaked when read through the
dangling pointer of the old object’s type.

Source: “SoK: Eternal War in Memory.” [IEEE S&P ’13]

vpk@cs.brown.edu (Brown University) CSCI 2951U Spring ’21 7 / 7

mailto:vpk@cs.brown.edu
https://www.cs.brown.edu

