
uld be
e able

nts are
d

intro-
us to
5] then
adop-

eeded
h
t that

esign.

tro-

ram-

ct-ori-
 neces-
other

ledge
the
Java: Language and Environment as Important Tools in
Object-Oriented Design and Programming Instruction

Andrew H. Schulak

Abstract

As noted inRequirements For A First Year Object-Oriented Teaching Language [Kolling95] the
language used in an introductory programming course is very important. The language sho
robust enough to allow students the complete feel of an object-oriented language and also b
to pick up on other object-oriented languages, and should be light enough so that the stude
not bogged down with language artifacts which are not conducive to learning object-oriente
design.

Two years ago we, at Brown University, switched to the Java programming language for our
ductory course. As in [Kolling95] we also conducted a language survey. Our results pointed
the then brand new language Java. Java meets more of the requirements posed by [Kolling9
any of the languages surveyed by them or us. Some of the better points of Java that led to its
tion have been its portability, robustness, cleanliness and range of use.

In this paper I will discuss how we have used Java in the last two years, how we have succ
and how we have failed and where I think we can go with it. I will also discuss how we teac
object-oriented design and programming should be modeled in a programming environmen
students use to create and program their projects.

Current Uses of Java

We currently use the Java programming language as the main tool to teach object-oriented d
Our approach to teaching programming is very different from most casual approaches.
Other universities have focused in on teaching straight programming (i.e. syntax) in their in
ductory courses. Design is either something to be picked up on indirectly or is left for later
courses down the road. Our approach is to make design the most important aspect of prog
ming, syntax is picked up during the process.

Teaching Design With Java
As mentioned our primary concern in teaching an introductory programming course is obje
ented design. Within the first four weeks of class students have received all the knowledge
sary to understand and implement full object-oriented programs. Where we differ from most
introductory programming classes is that wedo notfocus in on syntax at all in these first four
weeks.

At first this might seem very difficult. Such languages as C++, where one needs a good know
of the, at times quirky, syntax would not allow such a direction to be taken. However with Java

thout

ensive
led
n exis-
prob-
a,
are writ-
 of the

 stu-

r ses-
realize
wn pro-

s an
ncepts
under-
ince
ro-
ncepts
resting

esting

s does

mon
inter-
e on

aces
n time.

ts who
spend

ide an
syntax is simple enough that we can fully teach object-oriented design and programming wi
focusing in on syntax.

One thing must be noted here, however. That is that the students are given a very compreh
set of graphical libraries to use for their assignments. In the beginning assignments are sca
such that the amount of real syntax (parameter passing, loops, conditionals, etc.) used is no
tent. Support code is written such that syntax matters which might be relevant to solving a
lem are taken care of a level above the students view. As programs, and knowledge of Jav
progress the amount the support code does for the student decreases. Eventually students
ing code that uses a minimal amount of support code, that is to say code which hides parts
language from the student.

Design is initially given to them in the form of help sessions. In these sessions TAs walk the
dents through an example design session. “Wrong turns” as well as “right turns” are taken
throughout the sessions to demonstrate to the students how designs are created. In smalle
sions, called section, students become involved in group design sessions and start to fully
how good designs, and bad designs, emerge. Eventually students are left to design their o
grams with no TA intervention.

Another feature are in class demos. Every lecture in our introductory programming class ha
accompanying demo or so. Demos, written in Java as well, are used to demonstrate the co
being taught in the lecture. Full code is given out to students as well so as to perpetuate the
standing of how code is put together to embody the constructs of object-oriented design. S
demo code is available to the students, the demos must also follow this line of complexity p
gression. That is, in the beginning the code that the students see should not contain any co
or artifacts that they have not seen. This presents a problem because in order to present inte
and motivating demos we have to use all of Java’s robustness. Writing demos that do inter
things yet hide constructs not familiar to the students has become something of a black art
amongst the TA staff that works on the course.

Java Interfaces
For our needs Java is a perfect match for us. Java does not support multiple inheritance (a
C++) and provides for us the idea ofinterfaces native in the language. Inheritance is usually
taught as an “is a” relationship. This is usually the only relationship (besides the more com
“has a” and “knows about” relationships) that students learn about and use. Having native
faces in Java allows us to teach the “acts as” relationship. Using interfaces, objects can tak
capabilities of many things besides the one thing that they happento be. Figure 1 below shows a
class, SmallUFO, which happens to inherit from class UFO,but also takes on the capabilities of
something which can Move. It thus appears as being two things at once. In fact, Java interf
can be used more than once and a class may implement more than one interface at any give
This language construct allows us to teach a more robust idea of design to first year studen
have never programmed before. Also, because it is native in the language, we do not have to
extra time motivating an abstract design idea that has no basis in “real code.” Interfaces prov
intuitive, easy to teach work around to multiple inheritance.

e

d by
wser

ent

e con-
ditor,
n
w.

f
iliar

d in an

t and
Figure 1: Class implementing an interface takes on capabilities of the interface as well as th
class it inherits from

public class SmallUFO extends UFO implements Mover {

 public SmallUFO(GP.Container container) {
 super(container);
 _body = new UFOBody(container,this);
 _bubble = new UFOBubble(container);
 _location = new Position(500,500);
 this.SetPosition(_location);
 }

 public void Move(Position placeToGo) {
 this.FlyToLocation(placeToGo);
 }

}

The Wave Programming Environment
Currently students create their programs using the Wave programming environment create
Ben Boer at Brown University. Wave combines the hyperlink capabilities of the Netscape bro
and the powerful editing capabilities of the Emacs editor to provide an easy to use environm
for beginning students.

Students beginning a program select a program stencil from a menu of projects in the Wav
sole. This brings up some stencil code for the assignment, if any is needed, in the Emacs e
and brings up documentation for any support classes in the Netscape browser. Students ca
browse documentation, select files to edit, and compile their code from the Netscape windo
among other things.

Some of the benefits beginning programmers get from using Wave are that no knowledge o
UNIX, the system our lab machines run on, is necessary, documentation for otherwise unfam
support classes is provided and easy to locate, commands to build and run code are provide
easy to use interface.

Currently Wave has been used for two years and has received very encouraging reviews.
Students who have never programmed before, and those who have, find it easy to use, fas
helpful in program construction.

resh-
ans is

ming.
ted

s on to
e that
 our
cel-

, a very
n other
t it’s

a at
 and
first.
d have

new
rior

 of
nts of

udents
ell as

he

ts are
de we
ter is
riented
Successes In Teaching With Java

Our introductory programming class, CS15, prides itself by taking a class of mostly college f
men and graduating about 85% of the starting population. What graduation from CS15 me
that the student has received a comprehensive study of object-oriented design and program
has learned a substantial windowing toolkit (not AWT), and is able to write fully object-orien
programs of up to 3,000 lines of code.

As Java is a very marketable language to know, we have also graduated many of our student
good internships with such companies as Marimba and Comunica. It is also important to not
because of our methodology in approaching object-oriented programming (and because of
whole department) many of the graduates from the department are note worthy for their ex
lence in object-oriented programming ability.

Aside from these issues we feel, as educators, that Java has been, and will continue to be
good teaching language. It is robust enough that any student who wishes to go on and lear
object-oriented languages can and will have no problem with them, and it is light enough tha
inherent nature does not get in the way of our teaching of design.

Failures in Teaching With Java

One failure of how we teach object-oriented programming really has very little do to with Jav
all. Many people, including TAs, students and faculty, have criticized us for teaching design
object-oriented concepts first instead of following the “natural” course and teaching syntax
Having gone through the system, and teaching it for two years, I can say that it does indee
its drawbacks, which will be outlined shortly, but that it does have merit.

Object-oriented programming is more than learning a language or syntax. It involves a whole
way of thinking. Many students who come into an object-oriented programming class with p
procedural knowledge are very confused in the beginning. It is very difficult to switch trains
thought. Starting up from the beginning with object-oriented ideas and designs allows stude
all caliber’s to become acquainted with the system and more importantly, to think within the
bounds of the system.

However this does and has led to some problems. First off, new students and experienced st
do not start off on the same level. New students have to pick up object-oriented ideas as w
syntax. Even though the syntax is minimal in the beginning the learning curve is still tough
enough that it proves to still be a problem. Experienced users, in contrast, only battle with t
object-oriented paradigm. Once they pick that up it is smooth sailing for them.

One of the main arguments for object-oriented programming is for code reuse. Once objec
written you should just be able to reuse them over and over again. Aside from the support co
give students, no code reuse is done in CS15. Nothing that is written early on in the semes
ever used again. Even though students are taught that this is an important aspect of object o
programming they never experience it themselves.

t has
re is
ime, is
knows

) there
n the

othing
never

hours
re it

nd
. the

ucation

of
 com-

ign-
 and
is an
prob-

eated
ith a

 and
sign-
d this
ility
Another failure I see in our use of Java is that we have totally forsaken the world-wide-web. I
often been remarked how it is funny that our webpage contains no Java applets. While the
indeed a real world reason for this (our graphics package, GP, uses Java 1.1 which, at this t
not supported) I believe that it is due to a more fundamental reason. That is, no one really
how to use the web for educational purposes.

The Future Of Teaching With Java

CS15 has everywhere to go. With new Java structures becoming available (Java3D, beans
are many new areas for us to explore. First I will discuss the last two problems mentioned i
above section, then I will discuss further ideas.

Code Reuse
As mentioned code reuse is something in CS15 that students do not actively take place in.
Each project stands in and of itself (aside from our aforementioned support code) and has n
to do with any other projects the students have written. This is detrimental because students
experience why they should be writing code “as extensible” as possible. Constantly on TA
our TAs must try to motivate extensibility abstractly, always saying that in some far away futu
will be important.

With other concepts we teach, such as inheritance and polymorphism, students get first ha
knowledge of them. Students classes extend each other, and polymorphism is always used
idea of extensibility gets no exposure. Because of this students only get a second-hand ed
of what extensibility really means.

To amend this problem I propose a new program track that allows for the greatest amount
extensibility. Early programs which are simple could reappear in later assignments as more
plex and interesting problems. Properly design and implemented code from the earlier ass
ments could effortlessly be reused in these assignments. If this earlier code was not design
implemented correctly students would have a first hand chance at seeing how extensibility
important concept in object-oriented programming and would be able to actively correct the
lem.

For students who absolutely failed the original assignment TA provided classes could be cr
and given to the student provided the student went over their design and implementation w
TA to insure proper understanding.

Something like this has been done casually (without intent I presume) in classes like CS04
CS16. Students were given the option to reuse data-structures already created in earlier as
ments when they were called for in further, more advanced assignments. Having experience
in CS16 and having taught this in CS04 I feel that it is a very good way of teaching extensib
and is extremely fruitful to the student.

s to
form
or two

urther
scape
 as

r, in a
n-line

atted
dvan-
tistics
lass.

esign.
ed as

esign
ad

 pro-
ign
ed all
n.

 to be
t we
tice.
 stu-

ct-ori-
Java and The Web
Utilizing the world-wide-web for educational purposes has not been looked at when it come
CS15. This seems almost unbelievable seeing as Java’s number one asset is its cross-plat
capabilities. However it is somewhat understandable as we have only been teaching Java f
years and have just now gotten our two feet on the ground.

The first issue involved is that, as of now, applets created using our graphics package (and f
more Java 1.1) does not run inside the Netscape browser. Hopefully browsers such as Net
will soon support Java 1.1 and this stumbling block will be overcome. Other browsers, such
JWS’s HotJava may be able to be incorporated into our environment (which it will as will be
shown later).

Aside from this problem no one really knows what could be done. It was suggested, howeve
GISP (group independent study project) last semester, that diagnostics could be provided o
for instant feedback on assignments. Currently all but one homework in CS15 could be form
to an on-line version that could provide instant access to students. This would both be an a
tage for the students and TAs. An on-line database could be maintained that would keep sta
on problems so that students could see how they were doing compared to the rest of the c
I believe that an addition like this to CS15 would be a very plausible and very helpful.

Teaching Design With No Syntax
It was also brought up in this GISP that design could be taught withno syntax at all. That some
sort of interpreter with a specific, design-oriented, language could be used to better teach d
This would level the playing field were beginners and experienced programmer’s are concern
well as allow us to focus strictly on design and not have to worry about syntax. Then, once d
was learned, the students could jump into learning the syntax and applying it to what they h
already learned.

Some objections were immediately raised. Many people felt that one could not learn how to
gram at all without syntax from day one. It would be impossible to make the jump from des
oriented thinking to syntax oriented thinking. It was also argued that once design was learn
one would need to do is learn syntax as another way of expressing the ideas behind desig

I think what can be gleaned from this idea is that it may indeed be helpful to some students
able to learn design in this way. So rather than force all students to go through this regimen
could provide this tool as a supportive measure for students who wanted extra help or prac
It would also, theoretically, be possible to incorporate a tool like this with web, thus allowing
dents to work from home, at any time, or perhaps with each other.

Teaching design is something that we feel is very important when it comes to teaching obje
ented programming. Finding other methods of teaching it should be made a top priority.

t not

g trip
ss to,
ay

ocu-

eemed
s as
ng

ocery
nches
owl-
or our

o some
a help-
ould
ter-
l like

 that
design
three
cess in
ide

nt is
n-first
er of

ch we

gener-
 how
, can
A New Design-Oriented Environment
Seeing as design is very important to how we teach object-oriented programming, should i
also be an integral part of the students environment, and how they create programs?

The answer, we feel, is a definitive yes. We feel that project creation should be like a shoppin
[Boer97]. That is, students would be able to browse all of the support libraries they have acce
and be able to pick and choose which classes they would like to use in their project. They m
choose classes which they will directly use, inherit from, or just classes that provide helpful d
mentation.

In the current invocation of Wave students are given classes pre-selected by TAs what are d
helpful. Students are taken entirely out of the project construction phase. Such simple task
having to build your project from class libraries can lead to more advanced means of thinki
about design.

The shopping model provides us with a great way of seeing design. Normally we go to a gr
store and select ingredients from everything that is available to assemble our breakfasts, lu
and dinners. Design and programming can be seen in the same way [Boer97]. Having a kn
edge base of what is available to us, and what is not, we start to envision what is necessary f
program, what we need to get and what we need to create.

One could imagine being able to select a bunch of classes and being able to export them t
other tool, one being the Wave environment which would organize the selected classes into
ful page of documentation, or perhaps another tool being an OMT style design tool which w
create dialogue boxes and start object relations such as inheritance and implementation (in
faces). One could also imagine automatically starting this process with the results from a too
FOOD [Reiss96].

The students could then proceed to create her design in the OMT tool and then implement
design in the Wave environment. Such selection and automation allows the student to make
choices, and also prods him on his way to making better choices. As of right now, aside from
mandatory design checks for three programs, students do not have to engage the design pro
any official way. They are free to go straight into the coding process. Providing tools that gu
them into a formal design setting can help infuse them with good design habits.

It is important to note here that for what we want to accomplish in CS15 the Wave environme
essential. Without its design assisting capabilities there would be no way to enforce a desig
mentality. Programming environments, in general, are important in that they integrate a numb
helpful tools for the student/user to use. If programming is more than code generation, whi
feel it is, then we need an environment that supports this notion as well.

Documentation and the Wave Environment
As has been thought for many years programming is indeed much more than just the act of
ating code. Much more goes into the creating of a program. One is concerned with design:
extensible is the program, is it easily maintainable, usability: how easy is the program to use

e this

re pre-
 one
at we

only
e of

pping

base of
From
 can be

m.
Using
yone
ion.

r is
t the

ron-

t aids
envi-

t other
e engi-

ulta-
in New
ack-
s to the

ent to
if stu-
,

to be
anyone use it, and also documentation: what do I know about this program, how can I mak
program easier to understand.

This last idea is something we have taken to heart. In the current Wave environment users a
sented with a static javadoc page of documentation about a class. This is all the knowledge
gets about and class in contention. The user is unable to interact with the documentation. Wh
conceived of was the ability of being able to interact with the documentation. Perhaps you
wanted to see the public interface for a particular class? Maybe you wanted to create a pag
documentation for classes whose comments contained the keyword “Data.”? Aside from fli
through tons and tons of already generated documentation you could not easily do this.

Taking Steve Reiss’s idea of a fragment database [Reiss95] we have created our own data
documentation. Now the user is able to generate a multitude of requests for documentation.
the fragments contained in the database pages and pages of user specified documentation
generated. Requests like those mentioned above are now a reality.

Another important aspect of documentation is that it really is an integral aspect of a progra
Users who get access to, or pay for, libraries also want to know how to use them properly.
Java’s new.jar file specification we envision packaging these fragments with the code so an
who has access to the code files also has access to user specified documentation generat

Documentation is an important part of not only a program, but of program creation. If a use
building a program and has many large libraries at her fingertips she wants to be able to ge
specific knowledge she needs, quickly, to be able to create her project. With the Wave envi
ment this is possible.

Final Remarks on the Wave Environment
It has been shown that an environment that not only aids in the construction of a program, bu
in the process of learning is very important. As a result, we a re striving to make the Wave
ronment as suitable to the needs of CS15, and users in general, as possible.

The idea of documentation as an important aspect of program creation leads us to see wha
ways we can use the documentation fragments for program creation. One aspect of softwar
neering which is rapidly becoming very important is group work.

Groups of people, local and non-local, need to be able to work on a project or projects sim
neously. People in Seattle need to have access to the same documentation as the people
York do. With the Wave environment we can effectively share this documentation easily. By p
aging the documentation with the source code we can be assured that everyone has acces
same kind of documentation.

Besides documentation sharing, we would like people to be able to use the Wave environm
engage in group projects. Currently projects are available to only individual users. That is,
dent A is working on Tetris and student B is working on Tetris they are working on their own
localized versions of the program. With the new Wave environment it would be encouraging

up

that
rans-
ho
d at
rsion

uld all
hich

cently
users
nager
on of

bia

nd
as elec-
sign-
to be

 and
his in
i-
e

sed
o imple-
e with
d pro-
t all

on as
able to not only be allowed to start up localized projects, but to also be able to open up gro
projects and to also join existing group projects.

When a user is a member of a group project that user would only be able to work on code
other users are not currently working on. This would follow a standard check-in/check-out t
action scheme. The current version of the code would be left in the repository so anyone w
wanted to create a build at anytime could do so. The code to be modified would be localize
check-out time. Only after the code had been edited and checked back in would the new ve
be available to all the users of the project.

Other project artifacts could be managed this way as well. Design documents, notes, etc. co
be based on the transaction scheme. What I feel would be really useful would to have a tool w
would monitor users editing the system. Selecting a user would show you what they had re
changed, what they currently had checked-out and perhaps any project restrictions (some
can only edit certain files, some users can only edit design documents, etc.). This user ma
would allow users to monitor the creation process of the entire project as well as the creati
the parts they are working on, thereby creating a more group oriented process.

Work in this nature has been done by a couple of groups, one such being a team at Colum
which reported positive results in their student classes [Kaiser97].

Conclusions

Using Java for object-oriented design and programming instruction is a very fruitful action a
presumes to be even more fruitful in the future. Such extended uses of the language such
tronic WWW-based diagnostic tools, interpreters for design-without-syntax learning, and de
oriented environments that include project construction in the programming process all seem
viable aspects which will reward those who use Java as their language of choice.

The environment used to teach object-oriented design and programming is the heart of how
where the students learn everything about object-oriented software construction. Keeping t
mind, it is important that this environment be fully integrated with the ideals of the object-or
ented paradigm. The Wave environment promises to do just that by providing an easy to us
“shopping model” for project construction and design.

Aside from what has been mentioned, other aspects of Java, including the soon to be relea
Java3D, Java Beans (which have yet to be tested in an educational arena) and Java’s easy t
ment networking system, also promise to add to Java’s educational attraction. What is don
Java over the next year or so, especially in CS15, will most likely define how object-oriente
gramming is taught in introductory courses at colleges. Therefore I feel it is very important tha
aspects of the language be closely examined and brought into the educational arena as so
possible.

	Java: Language and Environment as Important Tools in Object-Oriented Design and Programming Instr...
	Abstract
	Current Uses of Java
	Teaching Design With Java
	Java Interfaces
	Figure 1: Class implementing an interface takes on capabilities of the interface as well as the c...
	The Wave Programming Environment

	Successes In Teaching With Java
	Failures in Teaching With Java
	The Future Of Teaching With Java
	Code Reuse
	Java and The Web
	Teaching Design With No Syntax
	A New Design-Oriented Environment
	Documentation and the Wave Environment
	Final Remarks on the Wave Environment

	Conclusions

