Jockey: Guaranteed Job Latency in Data Parallel Clusters

Andrew D. Ferguson
adf@cs.brown.edu

Mﬁ osoft’

esearch

Deadlines and Varying Latency

Peter Bodik
peterb@microsoft.com

Srikanth Kandula

Expressing Performance Targets

Eric Boutin
srikanth@microsoft.com eric.houtin@microsft.com rfonseca@cs.brown.edu

Rodrigo Fonseca

Evaluation

» Users of data parallel clusters now demand predictable latency

* Predictable latency can be required for deadlines with business
partners; missing a deadline can have financial consequences

1

0.8

It would be easy to

provide deadlines if job 8§
latency had low variance;
unfortunately, it does not.

Runtime of
Recurring Jobs

0 5 10 15 20 25 30 35 40

latency [minutes]

Why does latency vary?

* Pipeline complexity: Users develop multi-stage pipelines of
dependant jobs, variance in earlier jobs impacts later ones

* Noisy environment: Simultaneous data parallel jobs compete
for highly utilized shared resources, which can also falil

The Cosmos Environment

For single jobs,
scale doesn’t matter T —

Deadline

>
For multiple jobs, — B 5
use financial penalty

Users provide utility curves to express performance targets

Our Goal:
Maximize utility, while minimizing resources
by dynamically adjusting the allocation

Jockey

Pipeline

@m%éé@d%

Stage
Cosmos Components

- CosmosStore:
distributed storage layer

\ éxg * Dryad: data-parallel
é execution engine

Job - SCOPE: SQL-like query
language for Dryad

Cosmos Cluster

™ Team Boundaries

» Cosmos is Microsoft’s data parallel processing environment
* It primarily supports Bing, Microsoft AdCenter, and MSN

» Cosmos clusters contain 1000s of commodity servers,
each running multiple tasks for many jobs

* Resources are managed by granting fokens to tasks

» Tokens are de-normalized weights in the scheduler and
guarantee a fixed slice of CPU and memory

during job runtime

Conceptually, Jockey is offline

|
1) a function from — ,
job profile .
progress and T . T~
. I -
allocation to simulator ——>| latency iob stats utility
predictions function

remaining run time

resource allocation control loop

2) a control-loop which
dynamically adjusts
the resource allocation

\’ running /

job

Our paper provides details and evaluation of each component

Conclusion

Solution
Use a simulator
Dynamic control

Problem
Pipeline complexity
Noisy environment

» Jockey works without requiring latency guarantees from
individual cluster components

* When a shared environment is underloaded, guaranteed
latency brings predictability to the user experience

* When a shared environment is overloaded, utility-based
resource allocation ensures jobs are completed by importance

How Jockey Managed a Real Job in a Production Cluster

“Oracle” allocation:

Total allocation-hours Released resources

60 — deadline due to excess pessimism
Allocation
= 48 - above oracle
= 36-
8 atal ‘x ' "n e s S
o 24 r ‘
712 I
0
0 10 20 30 40 50 60 70
Deadline lowered from ume — allocation
140 min. to 70 min. — # running

Jockey’s Performance Relative to other Allocation Schemes

, Control-loop is
Only missed 1 &0 16 and

Simulator made :
of 94 deadlines successful

Allocated too good predictions
0% . Many resources

max allocation
80%
60%

40%

CDF

Jockey w/o adapting

0
20% | deadline

- l

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130%
job completion time relative to deadline

0%

20% » Compared with a naive

¢ Jockey wio adaptation max allocation scheme

® Jockey w/o simulator _ ’
and simulator and control-

loop independently

15%

10%
» 21 jobs In production clus-

ter, CPU use: ~80%

 Two metrics: Did jobs
complete before deadline?
Minimized impact on the
rest of the cluster?

5%
k .
JO: Y max allocation
0% ¢
0% 25% 50% 75% 100%

fraction of allocation above oracle

fraction of deadlines missed

