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» Users of data parallel clusters now demand predictable latency

* Predictable latency can be required for deadlines with business
partners; missing a deadline can have financial consequences
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It would be easy to

provide deadlines if job 8§
latency had low variance;
unfortunately, it does not.
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Why does latency vary?

* Pipeline complexity: Users develop multi-stage pipelines of
dependant jobs, variance in earlier jobs impacts later ones

* Noisy environment: Simultaneous data parallel jobs compete
for highly utilized shared resources, which can also falil
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Users provide utility curves to express performance targets

Our Goal:
Maximize utility, while minimizing resources
by dynamically adjusting the allocation
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- CosmosStore:
distributed storage layer
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Job - SCOPE: SQL-like query
language for Dryad

Cosmos Cluster

™ Team Boundaries

» Cosmos is Microsoft’s data parallel processing environment
* It primarily supports Bing, Microsoft AdCenter, and MSN

» Cosmos clusters contain 1000s of commodity servers,
each running multiple tasks for many jobs

* Resources are managed by granting fokens to tasks

» Tokens are de-normalized weights in the scheduler and
guarantee a fixed slice of CPU and memory

during job runtime

Conceptually, Jockey is  offline
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Our paper provides details and evaluation of each component

Conclusion

Solution
Use a simulator
Dynamic control

Problem
Pipeline complexity
Noisy environment

» Jockey works without requiring latency guarantees from
individual cluster components

* When a shared environment is underloaded, guaranteed
latency brings predictability to the user experience

* When a shared environment is overloaded, utility-based
resource allocation ensures jobs are completed by importance

How Jockey Managed a Real Job in a Production Cluster

“Oracle” allocation:

Total allocation-hours Released resources

60 — deadline due to excess pessimism
Allocation
= 48 - above oracle
= 36-
8 atal ‘x ' "n e s S
o 24 r ‘
712 I
0 . . . . . .
0 10 20 30 40 50 60 70
Deadline lowered from ume — allocation
140 min. to 70 min. — # running

Jockey’s Performance Relative to other Allocation Schemes
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 Two metrics: Did jobs
complete before deadline?
Minimized impact on the
rest of the cluster?
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