
Jockey: Guaranteed Job Latency in Data Parallel Clusters
Andrew D. Ferguson
adf@cs.brown.edu

Peter Bodík
peterb@microsoft.com

Srikanth Kandula
srikanth@microsoft.com

Eric Boutin
eric.boutin@microsft.com

Rodrigo Fonseca
rfonseca@cs.brown.edu

Jockey

Deadlines and Varying Latency Expressing Performance Targets Evaluation

Cosmos is Microsoft’s data parallel processing environment•	
It primarily supports Bing, Microsoft AdCenter, and MSN•	
Cosmos clusters contain 1000s of commodity servers, •	
each running multiple tasks for many jobs
Resources are managed by granting •	 tokens to tasks
Tokens are de-normalized weights in the scheduler and •	
guarantee	a	fixed	slice	of	CPU	and	memory

The Cosmos Environment

Conclusion

Users	of	data	parallel	clusters	now	demand	predictable	latency•	
Predictable	latency	can	be	required	for	deadlines	with	business	•	
partners;	missing	a	deadline	can	have	financial	consequences

It would be easy to
provide deadlines if job
latency had low variance;
unfortunately, it does not.

2

Job completion time
0

Users	provide	utility	curves	to	express	performance	targets

DeadlineFor single jobs,
scale doesn’t matter

For multiple jobs,
use	financial	penalty

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

CD
F

latency [minutes]

Runtime of
Recurring Jobs

CosmosStore: •	
distributed storage layer
Dryad: data-parallel •	
execution	engine
SCOPE:	SQL-like	query	•	
language for Dryad

Cosmos Components

C
os

m
os

 C
lu

st
er

Pipeline

Job

Stage

Team Boundaries

Pipeline	complexity:	Users	develop	multi-stage	pipelines	of •	
dependant jobs, variance in earlier jobs impacts later ones
Noisy environment: Simultaneous data parallel jobs compete •	
for highly utilized shared resources, which can also fail

Why does latency vary?

Allocation
above oracle

Released resources
due	to	excess	pessimism

Deadline lowered from
140 min. to 70 min.

“Oracle” allocation:
Total allocation-hours

deadline

How Jockey Managed a Real Job in a Production Cluster

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130%

C
D

F

job completion time relative to deadline

max allocation Jockey

Jockey w/o adapting
Jockey w/o simulator

deadline

Jockey’s Performance Relative to other Allocation Schemes

Allocated too
many resources

Simulator made
good predictions

Only missed 1
of 94 deadlines

Control-loop is
stable and
successful

0%

5%

10%

15%

20%

0% 25% 50% 75% 100%

fra
ct

io
n

of
 d

ea
dl

in
es

 m
is

se
d

fraction of allocation above oracle

Jockey w/o adaptation

max allocation

Jockey w/o simulator

Jockey

Compared with a naive •	
max	allocation	scheme,	
and simulator and control-
loop independently
21 jobs in production clus-•	
ter,	CPU	use:	~80%
Two metrics: Did jobs •	
complete before deadline?
Minimized impact on the
rest of the cluster?

Problem Solution
Pipeline	complexity Use	a	simulator
Noisy environment Dynamic control

Jockey	works	without	requiring	latency	guarantees	from •	
individual cluster components
When a shared environment is underloaded, guaranteed •	
latency	brings	predictability	to	the	user	experience
When a shared environment is overloaded, utility-based •	
resource allocation ensures jobs are completed by importance

Conceptually, Jockey is
1) a function from
progress and
allocation to
remaining run time
2) a control-loop which
dynamically adjusts
the resource allocation

simulator

offline during job runtime

running
job

utility
function job stats latency

predictions

resource allocation control loop

job profile

Our Goal:
Maximize utility, while minimizing resources
by dynamically adjusting the allocation

Our paper provides details and evaluation of each component

