
Participatory Networking:
An API for Application Control of SDNs

Andrew Ferguson, Arjun Guha, Chen Liang,
Rodrigo Fonseca, and Shriram Krishnamurthi

1

Cornell

Participatory Networking
2

3

Motivation

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard

4

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard blocks hosts in response to login attempts

uses knowledge from host OS

prefers to deny traffic close to source

SSHGuard

SSHGuard

SSHGuard

SSHGuard

SSHGuard

SSHGuard SSHGuard

5

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard open source VOIP client

network needs dictated by end-user

prefers to reserve bandwidth

Ekiga

Ekiga

6

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard Paxos-like coordination service

network needs dictated by placement

prefers high-priority switch queues

ZooKeeper

ZooKeeper

ZooKeeper

7

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard open source data processing platform

network weights known by scheduler

prefers to reserve bandwidth

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

8

SDN Controllers

SSHGuardSSHGuardSSHGuard Ekiga ZooKeeper HadoopEkiga

9

10

1. decompose control and visibility
2. resolve conflicts between requests

Challenges

Participatory
Networking

11

PANE

Participatory
Networking

12

1. Requests
2. Hints
3. Queries

13

Participatory
Networking

• End-user API for SDNs
• Exposes existing mechanisms
• No effect on unmodified applications

14

Decomposing Control

15



 












Shares

Hadoop

15



 












Shares

Hadoop

15



 












Shares

Hadoop

15



 












Shares

Hadoop

16

Share Tree

16

Share Tree

16

Share Tree

16

Share Tree

16

bandwidth
50Mbps

Share Tree

16

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

16

root

root

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

16

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

16

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

16

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

17



17



PANE

17



PANE
Reserve 2 Mbpsfrom now to +5min?

17



PANE
Yes

17



PANE


is traffic will be

short and bursty

17



PANE
OK

17



PANE
How much web trafficin the last hour?

17



PANE67,560 bytes

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

ShareA ShareB

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

ShareA ShareB

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

ShareA ShareB

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Reserve 80 Mbps?

ShareA ShareB

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Yes

Current: 80 Mbps

ShareA ShareB

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Current: 80 Mbps

Re
se

rv
e 5

0 M
bp

s? ShareA ShareB

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Current: 80 Mbps

No

ShareA ShareB

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Current: 80 Mbps

ShareA ShareB

19

Resolving Conflicts

20

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

21

Policy Trees

21

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Policy Trees

(srcIP=10.0.0.2, GMB=20)

22

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Policy Trees

(srcIP=10.0.0.2, GMB=20)

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Packet Evaluation

(srcIP=10.0.0.1, GMB=20)

Hierarchical
Flow Tables

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S0 +P

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

GMB=10

0 +P

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

GMB=10GMB=30

0 +P

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

+D

Hierarchical
Flow Tables

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

GMB=10GMB=30

0 +P

GMB=30

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

+D

Hierarchical
Flow Tables

24

GMB=10
GMB=30

GMB=30

Conflict Resolution

GMB=10
(dstPort=80, GMB=10)

Allow
(srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.1, GMB=20)

(dstIP=10.0.0.2, GMB=30)

+P

+D

+S

Hierarchical
Flow Tables

24

GMB=10
GMB=30

GMB=30

Conflict Resolution
Only Requirements:

Associative, 0-identity

GMB=10
(dstPort=80, GMB=10)

Allow
(srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.1, GMB=20)

(dstIP=10.0.0.2, GMB=30)

+P

+D

+S

Hierarchical
Flow Tables

25

+D

+P

+S Sibling

Parent-Sibling

In node
D and S identical.

 Deny overrides Allow.
GMB combines as max

Rate-limit combines as min

Child overrides Parent
for Access Control

GMB combines as max
Rate-limit combines as min

PANE’s Conflict Resolution Operators

26

Implementation

27

(d
(d

(d (s

(d
(d

(d (s

(d
(d

(d (s

(d
(d

(d (s(d
(d

(d (s

PANE

28

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.2, GMB=20)

28

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.2, GMB=20)

29

PANE

29

PANE

30

PANE

30

PANE

31

PANE

31

PANE

32

PANE

32

PANE

32

PANE

32

PANE

33PANE

33

24Mbps

PANE

33

5Mbps

PANE

33

8Mbps

PANE

33

24Mbps

PANE

34

24Mbps

PANE

35

PANE

35

PANE

35

PANE

35

PANE

36

Evaluation

37

38

Evaluation

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard access control
bandwidth reservations

queues for low latency
centralized traffic weights

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

PANE

22
Hosts

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

Dynamically apply QoS to High
Priority flows using PANE.

PANE

22
Hosts

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

0

0.25

0.5

0.75

1

1.25

HighPri Speedup

Default With PANEDynamically apply QoS to High
Priority flows using PANE.

PANE

22
Hosts

40

Hadoop’s OpenFlow rules

40

Hadoop’s OpenFlow rules

 0 5 10 15 20 25 30
Time(min)

40

Hadoop’s OpenFlow rules

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30N
um

be
r o

f R
es

id
en

t R
ul

es

Time(min)

40

Hadoop’s OpenFlow rules

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f
R

e
si

d
e
n
t
R

u
le

s

Time(min)

PANE

22
Hosts

41

Conclusion

1. For applications that know what they
want from the network

2. Allows these applications to co-exist

42

Andrew Ferguson
adf@cs.brown.edupane.cs.brown.edu

mailto:adf@cs.brown.edu
mailto:adf@cs.brown.edu

43

Andrew Ferguson
adf@cs.brown.edu

• Arjun Guha

• Chen Liang

• Rodrigo Fonseca

• Shriram Krishnamurthi

Co
-a

ut
ho

rs

pane.cs.brown.edu

Brown ↦ Cornell ↦ UMass Amherst

Brown ↦ Duke

Brown

Brown

mailto:adf@cs.brown.edu
mailto:adf@cs.brown.edu

Backup
Slides

44

45

Proof of Correctness

46

Packet:
src 10.0.0.1

dst 10.0.0.2:80(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Hierarchical Flow Tables

Compiler Correctness 47

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Compiler Correctness 47

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Compiler Correctness 47

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Coq Proof Assistant 48

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Theorem

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Theorem

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80
GMB 30

Theorem

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80
GMB 30compile

Theorem

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80
GMB 30compile

Theorem

50

Protocol

51

PANE

51

PANE

Root

51

PANE

Root

Alice

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

Root

Alice

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Root

Alice

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice.
Root

Alice

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OKRoot

Alice

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

Root

Alice

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

Root

Alice

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

Root

Alice

51

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

Root

Alice

52

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

Time

Ba
nd

wi
dt
h

Reservation Limit

t

52

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

Time

Ba
nd

wi
dt
h

Reservation Limit

t

53

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

Time

Ba
nd

wi
dt
h

Reservation Limit

t

54

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

Time

Ba
nd

wi
dt
h

Reservation Limit
U

t

55

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

56

PANE

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.
NO

Alice

56

PANE

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.
NO

reserve(user=Alice,
dstPort=80) = 5Mb on aBW
from +20min to +30min.

Alice

Time

Ba
nd

wi
dt
h

Reservation Limit
U

t

57

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from +20min to +30min.

Time

Ba
nd

wi
dt
h

Reservation Limit
U

t

58

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from +20min to +30min.

Time

Ba
nd

wi
dt
h

Reservation LimitDU

t

59

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from +20min to +30min.

60

PANE

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.
NO

reserve(user=Alice,
dstPort=80) = 5Mb on aBW
from +20min to +30min.

OKAlice

61

PANE

61

PANE
Alice

61

PANE
10.0.0.2

Alice

61

PANE
10.0.0.2

Alice

Root

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE
10.0.0.2

Alice

Root

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE

OK

10.0.0.2
Alice

Root

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE

OK

Grant aAC to Alice.

10.0.0.2
Alice

Root

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE

OK

Grant aAC to Alice. OK

10.0.0.2
Alice

Root

62

PANE
10.0.0.2

Alice

10.0.0.3 Eve

62

PANE
10.0.0.2

Alice

10.0.0.3 Eve

62

PANE
10.0.0.2

deny(dstHost=10.0.0.2,
srcHost=10.0.0.3) on aAC

from now to +5min.

Alice

10.0.0.3 Eve

62

PANE
10.0.0.2

deny(dstHost=10.0.0.2,
srcHost=10.0.0.3) on aAC

from now to +5min.

OK

Alice

10.0.0.3 Eve

62

PANE
10.0.0.2

deny(dstHost=10.0.0.2,
srcHost=10.0.0.3) on aAC

from now to +5min.

OK

Alice

Netflix

63

64

65

66

TCP Nice: A Mechanism for Background Transfers
Arun Venkataramani Ravi Kokku Mike Dahlin

Laboratory of Advanced Systems Research
Department of Computer Sciences

University of Texas at Austin, Austin, TX 78712
arun, rkoku, dahlin @cs.utexas.edu

Abstract

Many distributed applications can make use of large
background transfers transfers of data that humans
are not waiting for to improve availability, reliability,
latency or consistency. However, given the rapid fluc-
tuations of available network bandwidth and changing
resource costs due to technology trends, hand tuning the
aggressiveness of background transfers risks (1) compli-
cating applications, (2) being too aggressive and inter-
fering with other applications, and (3) being too timid
and not gaining the benefits of background transfers.
Our goal is for the operating system to manage network
resources in order to provide a simple abstraction of near
zero-cost background transfers. Our system, TCP Nice,
can provably bound the interference inflicted by back-
ground flows on foregroundflows in a restricted network
model. And our microbenchmarks and case study appli-
cations suggest that in practice it interferes little with
foreground flows, reaps a large fraction of spare net-
work bandwidth, and simplifies application construction
and deployment. For example, in our prefetching case
study application, aggressive prefetching improves de-
mand performance by a factor of three when Nice man-
ages resources; but the same prefetching hurts demand
performance by a factor of six under standard network
congestion control.

1 Introduction

Many distributed applications can make use of large
background transfers transfers of data that humans are
not waiting for to improve service quality. For exam-
ple, a broad range of applications and services such as
data backup [29], prefetching [50], enterprise data dis-
tribution [20], Internet content distribution [2], and peer-
to-peer storage [16, 43] can trade increased network

This work was supported in part by an NSF CISE grant (CDA-
9624082), the Texas Advanced Technology Program, the Texas Ad-
vanced Research Program, and Tivoli. Dahlin was also supported by
an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan Re-
search Fellowship.

bandwidth consumption and possibly disk space for im-
proved service latency [15, 18, 26, 32, 38, 50], improved
availability [11, 53], increased scalability [2], stronger
consistency [53], or support for mobility [28, 41, 47].
Many of these services have potentially unlimited band-
width demands where incrementally more bandwidth
consumption provides incrementally better service. For
example, a web prefetching system can improve its hit
rate by fetching objects from a virtually unlimited col-
lection of objects that have non-zero probability of ac-
cess [8, 10] or by updating cached copies more fre-
quently as data change [13, 50, 48]; Technology trends
suggest that “wasting” bandwidth and storage to im-
prove latency and availability will become increasingly
attractive in the future: per-byte network transport costs
and disk storage costs are low and have been improv-
ing at 80-100% per year [9, 17, 37]; conversely net-
work availability [11, 40, 54] and network latencies im-
prove slowly, and long latencies and failures waste hu-
man time.

Current operating systems and networks do not provide
good support for aggressive background transfers. In
particular, because background transfers compete with
foreground requests, they can hurt overall performance
and availability by increasing network congestion. Ap-
plications must therefore carefully balance the benefits
of background transfers against the risk of both self-
interference, where applications hurt their own perfor-
mance, and cross-interference, where applications hurt
other applications’ performance. Often, applications at-
tempt to achieve this balance by setting “magic num-
bers” (e.g., the prefetch threshold in prefetching algo-
rithms [18, 26]) that have little obvious relationship to
system goals (e.g., availability or latency) or constraints
(e.g., current spare network bandwidth).

Our goal is for the operating system to manage net-
work resources in order to provide a simple abstrac-
tion of zero-cost background transfers. A self-tuning
background transport layer will enable new classes of
applications by (1) simplifying applications, (2) reduc-
ing the risk of being too aggressive, and (3) making

67

68

68

69

Datacenter

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

71Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

72Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

72Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

73Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

74

Enterprise

75

76

76

77

78

78

A problem in the datacenter
79

80

80

80

80

81

81

81

Participatory
Networking

82

83Ken Thompson & Dennis Ritchie

Jon Postel

85

Safe? Secure? Fair?

Loop freedom?

Participatory
Networking

Black holes?
86

