
Understanding Filesystem Imbalance in Hadoop

Andrew D. Ferguson
Brown University

Rodrigo Fonseca
Brown University

The Hadoop platform for MapReduce [1] is an increas-
ingly popular method for executing distributed computa-
tions, driven by free availability, an adaptable model, and
support for very large data sets. In order to support such
data sets efficiently, Hadoop executes most computations
near the data, rather than transferring the data over the
network. As a result, Hadoop’s performance is directly
affected by the distribution of data in the Hadoop Dis-
tributed Filesystem (HDFS).

In this work, we investigate the placement of blocks in
HDFS and show that it exhibits surprising non-uniformity.
When blocks are placed non-uniformly in the distributed
filesystem, network transfers must occur during job ex-
ecution in order to bring input data to available compu-
tational cores. Because cross-rack network bandwidth is
one of the most limited resources in the cluster, these un-
necessary transfers can degrade performance.

The locations of file blocks read by a MapReduce job
are collectively called the input split. In order to achieve
best performance, the input split should intuitively con-
sist of an equal number of file blocks on each node in the
cluster. We show that under Hadoop’s default block place-
ment strategy, the number of blocks on each node in the
cluster is instead binomially distributed.

In order to visualize the existing file placement strategy
and its effect on task performance, we have developed a
real-time “heatmap” which illustrates how “hot” or “cold”
each host in the cluster is. A node is considered “hot” if
it is carrying at least one standard deviation above the ex-
pected number of input splits. A node is “cold” if it sup-
ports less than one standard deviation below expectation.
This heatmap is prepared both on a job-by-job level, and
across the complete workload. By watching the heatmap
during job execution, its possible to observe the block im-
balance directly.

In order to further characterize the placement of blocks
in HDFS, we have analyzed 93 MapReduce jobs run at
a large internet company. These tasks were each run on
a cluster with around 1400 nodes. For large jobs (those
with more than 1000 tasks), the well-known normal ap-
proximation to the binomial distribution applies (see Fig-
ure 1). We are currently investigating the hypothesis that
tasks on nodes at both ends of the featured histogram be-
come stragglers because they are competing for network
or disk bandwidth. Reducing the performance effect of

this data placement imbalance may also mitigate the need
for speculative task execution.

Further analysis of these jobs indicate that non-local
tasks are quite prevalent. Of the 41,377 tasks in the sam-
ple, 13,299 (32.14%) read data from the local rack, and
2,938 (7.1%) read data from another rack. For small jobs,
the percentage of non-local tasks is higher than average,
because it is unlikely for a task slot to be available on a
node which also contains data for that small job.

Ultimately, we are interested in dynamically rebalanc-
ing the input data for submitted jobs in order to minimize
contention for the disks and network. As a first step, we
consider alternate algorithms for static block placement
such as round-robin. We evaluate the performance change
by comparing the effect on the runtime of a representative
benchmark suite.

References
[1] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified data processing on large clusters, Com-
mun. ACM, 51(1):107-113, 2008.

Figure 1: Distribution of blocks for a job with 11,790
tasks run on 1471 hosts. The curve plots the normal ap-
proximation to a binomial distribution with n = 11,790
and p = 1/1471.


