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Abstract

Let G be a simple graph of order n and size m which is not a tree. If ` > 3 is a nat-

ural number and the length of every cycle of G is divisible by `, then m 6 `

`−2
(n− 2),

and the equality holds if and only if the following hold: (i) ` is odd and G is a cycle

of order l or (ii) ` is even and G is a generalized θ-graph with paths of length `

2
. Also

it is shown that for these graphs m

n
< 2 and 2 is the best upper bound.
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Introduction.

In this article we follow all definitions and terminologies of [4]. Throughout this paper

all graphs are simple with no loop and no multiple edges. Let G be a graph. The set

of vertices and the set of edges of G are denoted by V (G) and E(G), respectively. The

number of vertices and the number of edges of G are called the order of G and the size of

G, respectively. We denote the cycle and the complete graph of order n, by Cn and Kn,

respectively. A graph G is said to be an (r mod `)-cycle graph if the length of every cycle

of G is r modulo of `. Clearly, a graph is bipartite if and only if it is a (0 mod 2)-cycle
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graph. An arc of a graph G is a path in G whose internal vertices have degree 2 in G. We

recall that an ear of G is a maximal arc of G. For instance for every e ∈ E(Cn), Cn\{e}

is an ear of Cn. Note that every ear of a graph G has the form uPv, where u and v are

end vertices and P is a path. A block of G is a maximal subgraph of G which has no cut

vertex. Let G be a connected graph with blocks, B1, . . . , Br. A block Bi of G is called

a leaf block, if |V (Bi)
⋂ ⋃r

j=1,j 6=i V (Bj)| = 1. A generalized θ-graph, denoted by θm, is a

graph consisting of m internally disjoint (u, v)-paths, where m > 2.

(r mod `)-cycle graphs have been studied extensively by several authors, see [1], [2] and

[3]. Let ` > 3 be a natural number. In this paper we study the maximum size of a (0 mod

`)-cycle graph. We show that these graphs are sparse.

Results.

The main goal of this paper is showing that for ` > 3, the size of (0 mod `)-cycle

graphs can not be large. Indeed, we prove that if G is a (0 mod `)-cycle graph of order n,

then m
n

< 2, and for each ε > 0, there exists a (0 mod `)-cycle graph such that m
n

> 2− ε.

We note that for ` = 2, there are (0 mod 2)-cycle graphs for which m/n can be arbitrary

large (m is the size and n is the order of graph). For instance for the complete bipartite

graph Kr,r, we have m
n

= r
2 .

Lemma 1. Let G be a 2-connected (0 mod `)-cycle graph with at least 3 vertices, where

` > 2 is a natural number. Then the following hold:

(i) If ` is odd and G 6= C`, then G has an arc of length k`, for some natural number k.

(ii) If ` is even, then G has an arc of length k`
2 , for some natural number k.

Proof. (i) If G is a cycle, then clearly the assertion holds. If G is not a cycle, then

consider an ear decomposition for G, see [4, p.163]. Let uPv be the last ear in this

ear decomposition. Since G \ V (P ) has an ear decomposition, by Theorem 4.2.8 of [4],
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G \ V (P ) is a 2-connected graph. Using Menger’s Theorem [4, p.167], there are two

internally disjoint paths Q and T between u and v in G\V (P ). Suppose that uPv has

length y, and Q and T have lengths x and z, respectively.

Figure 1

Since G is a (0 mod `)-cycle graph we have

x + y = y + z = x + z = 0 (mod `). (∗)

This implies that ` | 2y and since ` is odd, ` | y and (i) is proved.

(ii) Similarly, the equations in (∗) yield `
2 | y and the proof is complete. �

Remark 1. We note that if G is not a cycle, then one can consider the last ear in the ear

decomposition of G as the arc given in Lemma 1.

Remark 2. Let G be a (0 mod `)-cycle graph and u, v ∈ V (G). If there are three

internally disjoint paths of lengths x, y and z, between u, v, then x, y and z are divisible

by l
(l,2) .

Theorem 1. Let G be a graph of order n and size m. If ` > 3 is a natural number and

G is a 2-connected (0 mod `)-cycle graph, then the following hold:

(i) If ` is odd and G 6= C`, then m 6 `
`−1(n − 2). The equality holds if and only if G is a

generalized θ-graph with paths of length `.
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(ii) If ` is even, then m 6 `
`−2(n− 2). The equality holds if and only if G is a generalized

θ-graph with paths of length `
2 .

Proof. (i) We prove this part by induction on m. Since G is a 2-connected graph it

contains a cycle. If G is not a cycle, then as we saw in the proof of Lemma 1, Cr` is

a subgraph of G for some r > 2. Thus C2` is the smallest graph which satisfies the

assumption of Part (i). Thus m > 2`. Evidently, the assertion holds for C2`. If G is a

cycle, then we are done. Hence assume that G is not a cycle. By Remark 1, the length

of the last ear in the ear decomposition of G is divisible by `. If this ear is uPv, where

P is a path, then H1 = G \ V (P ) is a 2-connected (0 mod `)-cycle graph. By Remark 2

H1 6= Cl. Now, by induction hypothesis if |V (H1)| = n1 and |E(H1)| = m1, then we have

m1 6 `
`−1(n1 − 2). By Remark 2, the length of uPv is k`, for some natural number k, and

so we find,

m 6
`

` − 1
(n1 − 2) + k` =

`

` − 1
(n1 − 2 + k`− k) =

`

` − 1
(n− k − 1) 6

`

` − 1
(n− 2) (∗∗)

and we are done. It is not hard to see that the equality holds for all generalized θ-graphs

with paths of length `. Now, assume that m = `
`−1(n − 2). If G is a cycle, then G = C2l.

Otherwise, since G is 2-connected, G has an ear decomposition with at least one ear, say

tQw, which has length s`. Let H2 = G\V (Q). If we consider the relations in (∗∗) for

H2 instead of H1, then noting that m = `
`−1(n− 2), both inequalities are indeed equality.

Therefore s = 1 and m2 = `
`−1(n2 − 2), where n2 = |V (H2)| and m2 = |E(H2)|. Since

H2 is a 2-connected (0 mod `)-cycle graph, by induction hypothesis, H2 is a generalized

θ-graph whose paths have length `. If H2 is a cycle, then clearly we are done. Therefore

one may assume that G has the following form:

Figure 2
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Noting to the cycles tQwbt and wQtabw, we have ` |β ±α. This yields that ` | 2β, and

since ` is odd and α, β 6 `, we have α = ` and β = 0 or, α = 0 and β = `. Hence G is a

generalized θ-graph with paths of length `, as desired.

(ii) The proof is similar to Part (i). �

Theorem 2. Let G be a graph of order n and size m. If ` > 3 is an odd natural number

and G is a (0 mod `)-cycle graph, then m 6 `
`−1(n − 1). The equality holds if and only if

G is a connected graph whose every block is C`.

Proof. First assume that G is a connected graph. We prove the theorem by induction

on m. If m = 1, then obviously the assertion holds. Now, suppose that G is a graph and

m > 2. If G 6= C` and G is a 2-connected graph then by Theorem 1, the assertion holds.

If G = C`, clearly we are done. Thus suppose that G is not a 2-connected graph. Assume

that G has the following form where B is a leaf block of G.

Figure 3

Let H = G\(V (B)\{v}). Since H is a (0 mod `)-cycle graph by induction hypothesis

we have mH 6 `
`−1(nH − 1) and mB 6 `

`−1(nB − 1), where mH = |E(H)|, nH = |V (H)|,

mB = |E(B)|, and nB = |V (B)|. Thus m 6 `
`−1(n − 1) as desired. Now, assume that G

is not a connected graph and G1, . . . , Gk (k > 2) are the connected components of G. Let

ni = |V (Gi)| and mi = |E(Gi)|. We have

m =
k∑

i=1

mi 6

k∑

i=1

`

` − 1
(ni − 1) =

`

` − 1
(n − k) <

`

` − 1
(n − 1).
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Now, we would like to verify the equality case. If G is a connected graph whose every

block is C`, then using induction on the number of blocks we get the equality. For the

other side suppose that m = `
`−1(n − 1). By the above inequalities, G is a connected

graph. If G is a 2-connected graph, then by Theorem 1, G = C`. Thus suppose that G

is not a 2-connected graph and B ′ is a leaf block of G. Assume that G has the following

form:

Figure 4

Let H ′ = G\(V (B′)\{v′}). We have mH′ 6 `
`−1(nH′−1) and mB′ 6 `

`−1(nB′−1), where

mH′ = |E(H ′)|, nH′ = |V (H ′)|, mB′ = |E(B′)| and nB′ = |V (B)|. Since m = `
`−1(n − 1),

then mH′ = `
`−1(nH′ − 1) and mB′ = `

`−1(nB′ − 1). Now, by induction the proof is

complete. �

Theorem 3. Let G be a graph of order n and size m which is not a tree. If ` ≥ 3 is a

natural number and G is a (0 mod `)-cycle graph, then m 6 `
`−2(n − 2), and the equality

holds if and only if the following hold:

(i) ` is odd and G = C`,

(ii) ` is even and G is a generalized θ-graph with paths of length `
2 .

Proof. If G is a forest, then m 6 n − 2 6 `
`−2(n − 2). So suppose that G contains a

cycle. This implies that ` 6 n. First assume that G is a connected graph. If ` is odd, then

by Theorem 2,

m 6
`

` − 1
(n − 1) 6

`

` − 2
(n − 2).
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If m = `
`−2(n− 2), then ` = n and G = C`. Evidently, if G = C`, then the equality in the

statement of theorem holds.

Now, assume that ` is even. In this case by induction on the number of blocks of G we

prove the assertion. If G is a 2-connected graph, then by Theorem 1, we are done. Hence

one can assume that G has at least two leaf blocks. Clearly, G has a block B, such that

H = G\(V (B)\{v}) is not a tree, see Figure 3. By induction hypothesis mH ≤ `
`−2(nH−2),

where nH and mH denote the order and the size of H, respectively. If B = K2, then we

find m = mH +1 6 `
`−2(nH −2)+1 < `

`−2(n−2). If B 6= K2, then by induction hypothesis

we have

m = mH + mB 6
`

` − 2
(nH − 2) +

`

` − 2
(nB − 2) <

`

` − 2
(n − 2),

where mB = |E(B)| and nB = |V (B)|. Now, if m = `
`−2(n − 2), then G is a 2-connected

graph and by Theorem 1, G is a generalized θ-graph with paths of length `
2 . Obviously, if

G is a generalized θ-graph with paths of length `
2 , then the equality holds in the statement

of theorem.

Now, assume that G is not a connected graph and G1, . . . , Gk (k > 2) are the connected

components of G. Let vi ∈ V (Gi), i = 1, . . . , k. Join vi to vi+1 for every i, i = 1, . . . , k− 1

and call the resultant graph by S. Since S is a (0 mod `)-cycle connected graph, we find

m < m + k − 1 = mS 6 `
`−2(n − 2), where mS is the size of S. The proof is complete. �

Remark 3. If `, 3 6 ` 6 n is a natural number, then the condition not being tree in the

previous theorem is superfluous.

Corollary 1. Let G be a graph of order n and size m. If ` > 3 is a natural number and

G is a (0 mod `)-cycle graph, then m
n

< 2. Moreover, for every ε > 0, there exists a (0

mod `)-cycle graph such that m
n

> 2 − ε.

Proof. If G is a tree, then clearly the assertion holds. Thus assume that G is not a tree.

If ` > 4, then by Theorem 3, m
n

< 2. If ` = 3, then by Theorem 2, m
n

< 2. Now, suppose
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that ε > 0 is given. Consider the generalized θ-graph with r paths of length 2 and call it

by Gr. Obviously, Gr is a (0 mod 4)-cycle graph and we have

|E(Gr)|

|V (Gr)|
=

2r

r + 2
.

Now, if r is sufficiently large, then 2r
r+2 > 2 − ε and the proof is complete. �
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