On the Size of Graphs Whose Cycles Have Length Divisible by ℓ

S. AKBARI^{b,a}, M. JAMAALI^{a,b}, A. MAHMOODY^a, and S. A. SEYED FAKHARI^a

^aDepartment of Mathematical Sciences, Sharif University of Technology, ^bInstitute for Studies in Theoretical Physics and Mathematics

 $s_akbari@sharif.edu mjamaali@sharif.edu ahmadmahmoody@math.sharif.edu amin.fakhari85@gmail.com amin.fakhari85@gmail.com$

Abstract

Let G be a simple graph of order n and size m which is not a tree. If $\ell \ge 3$ is a natural number and the length of every cycle of G is divisible by ℓ , then $m \le \frac{\ell}{\ell-2}(n-2)$, and the equality holds if and only if the following hold: (i) ℓ is odd and G is a cycle of order l or (ii) ℓ is even and G is a generalized θ -graph with paths of length $\frac{\ell}{2}$. Also it is shown that for these graphs $\frac{m}{n} < 2$ and 2 is the best upper bound.

Keywords: (0 mod ℓ)-cycle graph. 2000 Mathematics Subject Classification: 05C38.

Introduction.

In this article we follow all definitions and terminologies of [4]. Throughout this paper all graphs are simple with no loop and no multiple edges. Let G be a graph. The set of vertices and the set of edges of G are denoted by V(G) and E(G), respectively. The number of vertices and the number of edges of G are called the *order* of G and the *size* of G, respectively. We denote the cycle and the complete graph of order n, by C_n and K_n , respectively. A graph G is said to be an $(r \mod \ell)$ -cycle graph if the length of every cycle of G is r modulo of ℓ . Clearly, a graph is bipartite if and only if it is a $(0 \mod 2)$ -cycle graph. An arc of a graph G is a path in G whose internal vertices have degree 2 in G. We recall that an ear of G is a maximal arc of G. For instance for every $e \in E(C_n)$, $C_n \setminus \{e\}$ is an ear of C_n . Note that every ear of a graph G has the form uPv, where u and v are end vertices and P is a path. A block of G is a maximal subgraph of G which has no cut vertex. Let G be a connected graph with blocks, B_1, \ldots, B_r . A block B_i of G is called a leaf block, if $|V(B_i) \cap \bigcup_{j=1, j \neq i}^r V(B_j)| = 1$. A generalized θ -graph, denoted by θ_m , is a graph consisting of m internally disjoint (u, v)-paths, where $m \ge 2$.

 $(r \mod \ell)$ -cycle graphs have been studied extensively by several authors, see [1], [2] and [3]. Let $\ell \ge 3$ be a natural number. In this paper we study the maximum size of a (0 mod ℓ)-cycle graph. We show that these graphs are sparse.

Results.

The main goal of this paper is showing that for $\ell \ge 3$, the size of $(0 \mod \ell)$ -cycle graphs can not be large. Indeed, we prove that if G is a $(0 \mod \ell)$ -cycle graph of order n, then $\frac{m}{n} < 2$, and for each $\epsilon > 0$, there exists a $(0 \mod \ell)$ -cycle graph such that $\frac{m}{n} > 2 - \epsilon$.

We note that for $\ell = 2$, there are $(0 \mod 2)$ -cycle graphs for which m/n can be arbitrary large (*m* is the size and *n* is the order of graph). For instance for the complete bipartite graph $K_{r,r}$, we have $\frac{m}{n} = \frac{r}{2}$.

Lemma 1. Let G be a 2-connected (0 mod ℓ)-cycle graph with at least 3 vertices, where $\ell \ge 2$ is a natural number. Then the following hold:

- (i) If ℓ is odd and $G \neq C_{\ell}$, then G has an arc of length $k\ell$, for some natural number k.
- (ii) If ℓ is even, then G has an arc of length $\frac{k\ell}{2}$, for some natural number k.

Proof. (i) If G is a cycle, then clearly the assertion holds. If G is not a cycle, then consider an ear decomposition for G, see [4, p.163]. Let uPv be the last ear in this ear decomposition. Since $G \setminus V(P)$ has an ear decomposition, by Theorem 4.2.8 of [4],

 $G \setminus V(P)$ is a 2-connected graph. Using Menger's Theorem [4, p.167], there are two internally disjoint paths Q and T between u and v in $G \setminus V(P)$. Suppose that uPv has length y, and Q and T have lengths x and z, respectively.

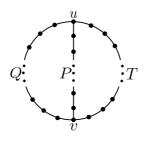


Figure 1

Since G is a $(0 \mod \ell)$ -cycle graph we have

$$x + y = y + z = x + z = 0 \pmod{\ell}$$
. (*)

This implies that $\ell \mid 2y$ and since ℓ is odd, $\ell \mid y$ and (i) is proved.

(ii) Similarly, the equations in (*) yield $\frac{\ell}{2} | y$ and the proof is complete.

Remark 1. We note that if G is not a cycle, then one can consider the last ear in the ear decomposition of G as the arc given in Lemma 1.

Remark 2. Let G be a (0 mod ℓ)-cycle graph and $u, v \in V(G)$. If there are three internally disjoint paths of lengths x, y and z, between u, v, then x, y and z are divisible by $\frac{l}{(l,2)}$.

Theorem 1. Let G be a graph of order n and size m. If $\ell \ge 3$ is a natural number and G is a 2-connected (0 mod ℓ)-cycle graph, then the following hold:

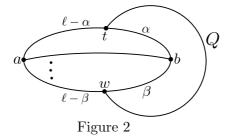
(i) If ℓ is odd and $G \neq C_{\ell}$, then $m \leq \frac{\ell}{\ell-1}(n-2)$. The equality holds if and only if G is a generalized θ -graph with paths of length ℓ .

(ii) If ℓ is even, then $m \leq \frac{\ell}{\ell-2}(n-2)$. The equality holds if and only if G is a generalized θ -graph with paths of length $\frac{\ell}{2}$.

Proof. (i) We prove this part by induction on m. Since G is a 2-connected graph it contains a cycle. If G is not a cycle, then as we saw in the proof of Lemma 1, $C_{r\ell}$ is a subgraph of G for some $r \ge 2$. Thus $C_{2\ell}$ is the smallest graph which satisfies the assumption of Part (i). Thus $m \ge 2\ell$. Evidently, the assertion holds for $C_{2\ell}$. If G is a cycle, then we are done. Hence assume that G is not a cycle. By Remark 1, the length of the last ear in the ear decomposition of G is divisible by ℓ . If this ear is uPv, where P is a path, then $H_1 = G \setminus V(P)$ is a 2-connected (0 mod ℓ)-cycle graph. By Remark 2 $H_1 \neq C_l$. Now, by induction hypothesis if $|V(H_1)| = n_1$ and $|E(H_1)| = m_1$, then we have $m_1 \leq \frac{\ell}{\ell-1}(n_1-2)$. By Remark 2, the length of uPv is $k\ell$, for some natural number k, and so we find,

$$m \leqslant \frac{\ell}{\ell - 1}(n_1 - 2) + k\ell = \frac{\ell}{\ell - 1}(n_1 - 2 + k\ell - k) = \frac{\ell}{\ell - 1}(n - k - 1) \leqslant \frac{\ell}{\ell - 1}(n - 2) \quad (**)$$

and we are done. It is not hard to see that the equality holds for all generalized θ -graphs with paths of length ℓ . Now, assume that $m = \frac{\ell}{\ell-1}(n-2)$. If G is a cycle, then $G = C_{2l}$. Otherwise, since G is 2-connected, G has an ear decomposition with at least one ear, say tQw, which has length $s\ell$. Let $H_2 = G \setminus V(Q)$. If we consider the relations in (**) for H_2 instead of H_1 , then noting that $m = \frac{\ell}{\ell-1}(n-2)$, both inequalities are indeed equality. Therefore s = 1 and $m_2 = \frac{\ell}{\ell-1}(n_2 - 2)$, where $n_2 = |V(H_2)|$ and $m_2 = |E(H_2)|$. Since H_2 is a 2-connected (0 mod ℓ)-cycle graph, by induction hypothesis, H_2 is a generalized θ -graph whose paths have length ℓ . If H_2 is a cycle, then clearly we are done. Therefore one may assume that G has the following form:



4

Noting to the cycles tQwbt and wQtabw, we have $\ell \mid \beta \pm \alpha$. This yields that $\ell \mid 2\beta$, and since ℓ is odd and $\alpha, \beta \leq \ell$, we have $\alpha = \ell$ and $\beta = 0$ or, $\alpha = 0$ and $\beta = \ell$. Hence G is a generalized θ -graph with paths of length ℓ , as desired.

(ii) The proof is similar to Part (i).

Theorem 2. Let G be a graph of order n and size m. If $\ell \ge 3$ is an odd natural number and G is a $(0 \mod \ell)$ -cycle graph, then $m \le \frac{\ell}{\ell-1}(n-1)$. The equality holds if and only if G is a connected graph whose every block is C_{ℓ} .

Proof. First assume that G is a connected graph. We prove the theorem by induction on m. If m = 1, then obviously the assertion holds. Now, suppose that G is a graph and $m \ge 2$. If $G \ne C_{\ell}$ and G is a 2-connected graph then by Theorem 1, the assertion holds. If $G = C_{\ell}$, clearly we are done. Thus suppose that G is not a 2-connected graph. Assume that G has the following form where B is a leaf block of G.

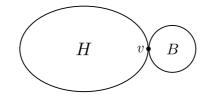


Figure 3

Let $H = G \setminus (V(B) \setminus \{v\})$. Since H is a $(0 \mod \ell)$ -cycle graph by induction hypothesis we have $m_H \leq \frac{\ell}{\ell-1}(n_H - 1)$ and $m_B \leq \frac{\ell}{\ell-1}(n_B - 1)$, where $m_H = |E(H)|$, $n_H = |V(H)|$, $m_B = |E(B)|$, and $n_B = |V(B)|$. Thus $m \leq \frac{\ell}{\ell-1}(n-1)$ as desired. Now, assume that Gis not a connected graph and G_1, \ldots, G_k $(k \geq 2)$ are the connected components of G. Let $n_i = |V(G_i)|$ and $m_i = |E(G_i)|$. We have

$$m = \sum_{i=1}^{k} m_i \leq \sum_{i=1}^{k} \frac{\ell}{\ell - 1} (n_i - 1) = \frac{\ell}{\ell - 1} (n - k) < \frac{\ell}{\ell - 1} (n - 1).$$

Now, we would like to verify the equality case. If G is a connected graph whose every block is C_{ℓ} , then using induction on the number of blocks we get the equality. For the other side suppose that $m = \frac{\ell}{\ell-1}(n-1)$. By the above inequalities, G is a connected graph. If G is a 2-connected graph, then by Theorem 1, $G = C_{\ell}$. Thus suppose that G is not a 2-connected graph and B' is a leaf block of G. Assume that G has the following form:

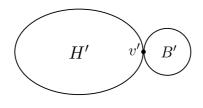


Figure 4

Let $H' = G \setminus (V(B') \setminus \{v'\})$. We have $m_{H'} \leq \frac{\ell}{\ell-1}(n_{H'}-1)$ and $m_{B'} \leq \frac{\ell}{\ell-1}(n_{B'}-1)$, where $m_{H'} = |E(H')|, n_{H'} = |V(H')|, m_{B'} = |E(B')|$ and $n_{B'} = |V(B)|$. Since $m = \frac{\ell}{\ell-1}(n-1)$, then $m_{H'} = \frac{\ell}{\ell-1}(n_{H'}-1)$ and $m_{B'} = \frac{\ell}{\ell-1}(n_{B'}-1)$. Now, by induction the proof is complete.

Theorem 3. Let G be a graph of order n and size m which is not a tree. If $\ell \geq 3$ is a natural number and G is a $(0 \mod \ell)$ -cycle graph, then $m \leq \frac{\ell}{\ell-2}(n-2)$, and the equality holds if and only if the following hold:

(i) ℓ is odd and G = C_ℓ,
(ii) ℓ is even and G is a generalized θ-graph with paths of length ^ℓ/₂.

Proof. If G is a forest, then $m \leq n-2 \leq \frac{\ell}{\ell-2}(n-2)$. So suppose that G contains a cycle. This implies that $\ell \leq n$. First assume that G is a connected graph. If ℓ is odd, then by Theorem 2,

$$m \leq \frac{\ell}{\ell-1}(n-1) \leq \frac{\ell}{\ell-2}(n-2).$$

If $m = \frac{\ell}{\ell-2}(n-2)$, then $\ell = n$ and $G = C_{\ell}$. Evidently, if $G = C_{\ell}$, then the equality in the statement of theorem holds.

Now, assume that ℓ is even. In this case by induction on the number of blocks of G we prove the assertion. If G is a 2-connected graph, then by Theorem 1, we are done. Hence one can assume that G has at least two leaf blocks. Clearly, G has a block B, such that $H = G \setminus (V(B) \setminus \{v\})$ is not a tree, see Figure 3. By induction hypothesis $m_H \leq \frac{\ell}{\ell-2}(n_H-2)$, where n_H and m_H denote the order and the size of H, respectively. If $B = K_2$, then we find $m = m_H + 1 \leq \frac{\ell}{\ell-2}(n_H-2) + 1 < \frac{\ell}{\ell-2}(n-2)$. If $B \neq K_2$, then by induction hypothesis we have

$$m = m_H + m_B \leq \frac{\ell}{\ell - 2}(n_H - 2) + \frac{\ell}{\ell - 2}(n_B - 2) < \frac{\ell}{\ell - 2}(n - 2),$$

where $m_B = |E(B)|$ and $n_B = |V(B)|$. Now, if $m = \frac{\ell}{\ell-2}(n-2)$, then G is a 2-connected graph and by Theorem 1, G is a generalized θ -graph with paths of length $\frac{\ell}{2}$. Obviously, if G is a generalized θ -graph with paths of length $\frac{\ell}{2}$, then the equality holds in the statement of theorem.

Now, assume that G is not a connected graph and G_1, \ldots, G_k $(k \ge 2)$ are the connected components of G. Let $v_i \in V(G_i)$, $i = 1, \ldots, k$. Join v_i to v_{i+1} for every $i, i = 1, \ldots, k-1$ and call the resultant graph by S. Since S is a $(0 \mod \ell)$ -cycle connected graph, we find $m < m + k - 1 = m_S \leq \frac{\ell}{\ell-2}(n-2)$, where m_S is the size of S. The proof is complete. \Box

Remark 3. If ℓ , $3 \leq \ell \leq n$ is a natural number, then the condition not being tree in the previous theorem is superfluous.

Corollary 1. Let G be a graph of order n and size m. If $\ell \ge 3$ is a natural number and G is a $(0 \mod \ell)$ -cycle graph, then $\frac{m}{n} < 2$. Moreover, for every $\varepsilon > 0$, there exists a $(0 \mod \ell)$ -cycle graph such that $\frac{m}{n} > 2 - \epsilon$.

Proof. If G is a tree, then clearly the assertion holds. Thus assume that G is not a tree. If $\ell \ge 4$, then by Theorem 3, $\frac{m}{n} < 2$. If $\ell = 3$, then by Theorem 2, $\frac{m}{n} < 2$. Now, suppose that $\epsilon > 0$ is given. Consider the generalized θ -graph with r paths of length 2 and call it by G_r . Obviously, G_r is a (0 mod 4)-cycle graph and we have

$$\frac{|E(G_r)|}{|V(G_r)|} = \frac{2r}{r+2}.$$

Now, if r is sufficiently large, then $\frac{2r}{r+2} > 2 - \epsilon$ and the proof is complete.

Acknowledgements. The first and the second authors are indebted to the Institute for Studies in Theoretical Physics and Mathematics (IPM) for support. The research of the first author was in supported by a grant from IPM (No. 86050212).

References

- L. Mei, Y. Zhengguang, Cycles of length 1 modulo 3 in graph, Disc. Appl. Math.113 (2001) 329-336.
- [2] A. Saito, Cycles of length 2 modulo 3 in graphs, Discrete Math. 101 (1992) 285–289.
- [3] A. Saito, N. Dean and L. Lesniak, Cycles of length 0 modulo 4 in graphs, Discrete Math. 121 (1993) 37–49.
- [4] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., 2001.