A Note on Graceful Graphs with Large Chromatic Numbers

Ahmad Mahmoody

Department of Mathematical Sciences, Sharif University of Technology,

Azadi Street, P. O. Box 11365-9415, Tehran, Iran

 $Email\ address:\ ahmadmahmoody@yahoo.com$

Abstract

A graceful labeling of a graph G with m edges is a function $f: V(G) \rightarrow \{0, \ldots, m\}$ such that distinct vertices receive distinct numbers and $\{|f(u) - f(v)| : uv \in E(G)\} = \{1, \ldots, m\}$. A graph is graceful if it has a graceful labeling. In [1] this question was posed: " Is there an n-chromatic graceful graph for $n \ge 6$?". In this paper it is shown that for any natural number n, there exists a graceful graph G with $\chi(G) = n$.

For a graph G we denote the set of vertices and the set of edges of G with V(G) and E(G), respectively. The chromatic number of a graph G, denoted by $\chi(G)$ is the minimum number of independent subsets into which V(G) can be partitioned. A graceful labeling of a graph G with m edges is a function $f: V(G) \to \{0, \ldots, m\}$ such that distinct vertices receive distinct numbers and $\{|f(u) - f(v)| : uv \in E(G)\} = \{1, \ldots, m\}$. A graph is graceful if it has a graceful labeling. The label of an edge is the difference between the labels of its ends. In [2, p. 266] it has been conjectured that

Conjecture. Graceful graphs with arbitrary large chromatic number do not exist.

In the following theorem we give a negative answer to the above conjecture. **Theorem.** For any natural number n, there exists a graceful graph G such that $\chi(G) = n$.

Proof. For n = 1 the assertion is trivial, thus suppose that $n \ge 2$. Let v_1, \ldots, v_n be the vertices of the complete graph K_n . For each $i, 1 \le i \le n$, consider 2^i as the label of v_i . First, we show that all edges of K_n in this labeling have different labels. Suppose $v_i v_j$ and $v_k v_l$ are two edges with the same labels. First assume that i > j and k > l. Thus the labels of $v_i v_j$ and $v_k v_l$ are $2^i - 2^j$ and $2^k - 2^l$, respectively, and clearly they are distinct unless i = k and j = l. This implies that two edges $v_i v_j$ and $v_k v_l$ are the same.

Now the greatest label of the vertices is 2^n and it is obvious that for each natural number n, we have $2^n > \frac{n(n-1)}{2}$. Add $2^n - \frac{n(n-1)}{2}$ new vertices to the complete graph K_n and join all of them to v_n . Let us call this graph by G. We claim that G has a graceful labeling. For each $x, x \in \{1, \ldots, 2^n\}$

which does not occur as a label of an edge in K_n label one of the new vertices with $2^n - x$. It is obvious that all edges have different labels. Moreover the labels of vertices are contained in $\{1, \ldots, 2^n\}$ and they are distinct. Indeed if the labels of two vertices are the same, then we conclude that the labels of two edges (of which one end is v_n) are the same, a contradiction. Note that n is an arbitrary number, and $\chi(G) = n$ ($n \ge 2$).

Acknowledgement. The author wishes to thank Dr. Saieed Akbari for introducing the conjecture and for his fruitful comments.

References

 G. Chartrand, H. Hevia, O. R. Oellermann, The Chromatic Number of a Factorization of a Graph, Bull. Inst. Combin. Appl. 20(1997), 33-56.

[2] G. Chartrand and L. Lesniak, Graphs & Digraphs, CHAPMAN & HALL/CRC, Fourth Edition, 2005.

3