
Dynamic Accumulators and Application to Efficient Revocation of
Anonymous Credentials

Jan Camenisch
IBM Research

Zurich Research Laboratory
CH–8803 Rüschlikon

jca@zurich.ibm.com

Anna Lysyanskaya
MIT LCS

200 Technology Square
Cambridge, MA 02139 USA

anna@theory.lcs.mit.edu

February 2002

Abstract

An accumulator scheme, as introduced by Benaloh and de Mare [BdM94] and further studied by
Barić and Pfitzmann [BP97], is an algorithm that allows one to hash a large set of inputs into one short
value, called the accumulator, such that there is a (short) witness that a given input was incorporated into
the accumulator. At the same time, it is infeasible to find a witness for a value that was not accumulated.

We put forward the notion of a dynamic accumulator, which is an accumulator that allows one to
dynamically add and delete inputs, such that the cost of an add or delete is independent of the number of
accumulated values. We achieve this under the strong RSA assumption. For this construction, we also
show an efficient zero-knowledge protocol for proving that a committed value is in the accumulator.

Dynamic accumulators enable efficient membership revocation in the anonymous setting. Our
construction is especially suitable for membership revocation in group signature and identity escrow
schemes, such as the one due to Ateniese et al. [ACJT00], and efficient revocation of credentials in
anonymous credential systems, such as the one due to Camenisch and Lysyanskaya [CL01a]. Applying
our method to these schemes enables membership revocation and yet does not significantly increase the
complexity of any of the operations. In particular, the cost of a membership verification or credential
showing increases by only a small constant factor, less than 2. All previously known methods (such as
the ones due to Bresson and Stern [BS01] and Ateniese and Tsudik [AT01]) incur an increase in these
costs that is linear in the number of members.

Keywords. Dynamic accumulators, anonymity, certificate revocation, group signatures, credential sys-
tems, identity escrow.

1 Introduction

Suppose a set of users is granted access to a resource. This set changes over time: some users are added, and
for some, the access to the resource is revoked. When a user is trying to access the resource, some verifier
must check that the user is in this set. The immediate solution is to have the verifier look up the user in
some database to make sure that the user is still allowed access to the resource in question. This solution
is expensive in terms of communication. Another approach is of certificate revocation chains, where every
day eligible users get a fresh certificate of eligibility. This is somewhat better because the communication
burden is now shifted from the verifier to the user, but still suffers the drawback of high communication

1

costs, as well as the computation costs needed to reissue certificates. Moreover, it disallows revocation at
arbitrary time as need arises. A satisfactory solution to this problem has been an interesting question for
some time, especially in a situation where the users in the system are anonymous.

Accumulators were introduced by Benaloh and de Mare [BdM94] as a way to combine a set of values
into one short accumulator, such that there is a short witness that a given value was incorporated into the
accumulator. At the same time, it is infeasible to find a witness for a value that was not accumulated.
Extending the ideas due to Benaloh and de Mare [BdM94], Barić and Pfitzmann [BP97] give an efficient
construction of so-called collision-resistant accumulators, based on the strong RSA assumption.

We propose a variant of the cited construction with the additional advantage that, using additional trap-
door information, the work of deleting a value from an accumulator can be made independent of the number
of accumulated values, at unit cost. Better still, once the accumulator is updated, updating the witness
that a given value is in the accumulator (provided that this value has not been revoked, of course!) can be
done without the trapdoor information at unit cost. Accumulators with these properties are called dynamic.
Dynamic accumulators are attractive for the application of granting and revoking privileges.

In the anonymous access setting, where a user can prove eligibility without revealing his identity, revo-
cation appeared impossible to achieve, because if a verifier can tell whether a user is eligible or ineligible,
he seems to gain some information about the user’s identity. However, it turns out that this intuition was
wrong! Indeed, using accumulators in combination with zero-knowledge proofs allows one to prove that a
committed value is in the accumulator. We show that this can be done efficiently (i.e., not by reducing to an���

-complete problem and then using the fact that
���������

[GMW87] and not by using cut-and-choose
for the Barić and Pfitzmann’s [BP97] construction).

From the above, we obtain an efficient mechanism for revoking group membership for the Ateniese et al.
identity escrow/group signature scheme [ACJT00] (the most efficient secure identity escrow/group signature
scheme known to date) and a credential revocation mechanism for Camenisch and Lysyanskaya’s [CL01a]
credential system. The construction can be applied to other such schemes as well. The idea is to incor-
porate the public key for an accumulator scheme into the group manager’s (resp., organization’s) public
key, and the secret trapdoor of the accumulator scheme into the corresponding secret key. Each time a user
joins the group (resp., obtains a credential), the group manager (resp., organization) gives her a member-
ship certificate (resp., credential certificate). An integral part of this certificate is a prime number 	 . This
will be the value added to the accumulator when the user is added, and deleted from the accumulator if the
user’s privileges have to be revoked. This provably secure mechanism does not add any significant com-
munication or computation overhead to the underlying schemes (at most a factor of 2). We note that both
our dynamic accumulator scheme and the ACJT identity escrow/group signature scheme rely on the strong
RSA assumption. While one could add membership revocation using our dynamic accumulator also to other
group signature and identity escrow schemes, such a combination would not make much sense as one would
get a less efficient scheme and might even require additional cryptographic assumption. We therefore do not
discuss the detail involved here.

1.1 Related Work

For the class of group signature schemes [CP95, Cam97] where the group’s public key contains a list of the
public keys of all the group members, excluding a member is straightforward: the group manager only needs
to remove the affected member’s key from the list. These schemes, however, have the drawback that the
complexity of proving and verifying membership is linear in the number of current members and therefore
becomes inefficient for large groups. This drawback is overcome by schemes where the size of the group’s
public key as well as the complexity of proving and verifying membership is independent of the number of
members [CS97, KP98, CM99, ACJT00]. The idea underlying these schemes is that the group public key

2

contains the group manager’s public key of a suitable signature scheme. To become a group member, a user
chooses a membership public key which the group manager signs. Thus, to prove membership, a user has
to prove possession of membership public key, of the corresponding secret key and of a group manager’s
signature on a membership public key.

The problem of excluding group members within such a framework without incurring big costs has
been considered, but until now no solution was satisfactory. One approach is to change the group’s public
key and reissue all the membership certificates (cf. [AT01]). Clearly, this puts quite a burden on the group
manager, especially for large groups. Another approach is to incorporate a list of revoked certificates and
their corresponding membership keys into the group’s public key [BS01]. In this solution, when proving
membership, a user has to prove that his or her membership public key does not appear on the list. Hence,
the size of the public key as well as the complexity of proving and verifying signatures are linear in the
number of excluded members. In particular, this means that the size of a group signature grows with the
number of excluded members.

Song [Son01] presents an alternative approach in conjunction with a construction that yields forward
secure group signature schemes based on the ACJT group signature scheme [ACJT00]. While here the
size of a group signature is independent of the number of excluded members, the verification task remains
computationally intensive, and is linear in the number of excluded group members. Moreover, her approach
does not work for ordinary group signature schemes as it relies heavily on the different time periods peculiar
to forward secure signatures. Ateniese and Tsudik [AT01] adapt this approach to the ACJT group signa-
ture/identity escrow scheme. Their solution retains the property that the verification task is linear in the
number of excluded group members. Moreover, it uses so-called double discrete logarithms which results
in the complexity of proving/signing and verifying to be rather high compared to underlying scheme (about
a factor of 90 for reasonable security parameters).

Finally, we point out that the proposal by Kim et al. [KLL01] is broken, i.e., excluded group members
can still prove membership (after the group manager changed the group’s key, excluded members can update
their membership information in the very same way as non-excluded members).

Thus, until now, all schemes have a linear dependency either on the number of current members, or
on the total number of deleted members. As we have noted above, this linear dependency comes in three
flavors: (1) the burden being on the group manager to re-issue certificates in every time period; (2) the
burden being on the group member to prove that his certificate is different from any of those that have been
revoked and on the verifier to check this; or (3) the burden being on the verifier to perform a computational
test on the message received from the user for each item in the list of revoked certificates.

In contrast, in our solution no operation is linearly dependent on the number of current or total deleted
members. Its only overhead over a scheme without revocation is the following: We require some public
archive that stores information on added and deleted users. Then, the public key (whose size depends only
on the security parameter) needs to be updated each time a user is added or deleted. Each user must read the
public key from time to time (e.g., prior to proving his membership), and if the public key has changed since
the last time he looked, he must read the news in the public archive and then perform a local computation.
The amount of data to read and the local computation are linear in the number of changes that have taken
place in the meantime, but not in the total number of changes. The additional burden on the verifier is simply
that he should look at the public key frequently (which seems unavoidable); the verifier need not read the
archive.

2 Preliminaries

Let
����� be an algorithm. By ����
������ we denote that � was obtained by running
 on input � . In case

is deterministic, then this � is unique; if
 is probabilistic, then � is a random variable.

3

Let � and � be interactive Turing machines. By ���������� �!#"$�%�� �!'&)(*! , we denote that � and (are
random variables that correspond to the outputs of � and � as a result of their joint computation.

Let (be a boolean function. By �,+-�$����./!102(#�,+3!4! we denote the event that (#�,+3! is true after + was
generated by running � on input . . The statement

Pr 5 .�63�7��68�,+96:!<;�.>=?�7�@=A�,+B=C!<;EDFDFD�;<.>GH�7�IG#�,+JG'!K0L(#��.CG*!NM/OQP
means that the probability that (#��.RGS! is TRUE after the value .AG was obtained by running algorithms
��6:TUDFDFDBT��IG on inputs +36:TUDFDFDBTV+WG , is P .

We say that XY�NZB! is a negligible function, if for all polynomials [%�NZB! , for all sufficiently large Z , XL�NZW!B\]F^ [Y�NZW! .
Let � be a real number. We denote by _��2` the largest integer (bac� , by d��2e the smallest integer (bfc� ,

and by d��2` the largest integer (gah�ji]F^lk . Let m be a positive integer. Sometime we need to do modular
arithmetic centered around n ; in these cases we use ‘rem’ as the operator for modular reduction rather than
‘mod’, i.e., �Vo rem m/!BOpo3qhdVo ^ m2`rm .

The flexible RSA problem is the following. Given an RSA modulus s and a random element tvuxwjyG
find z|{] and } such that ~�O�}9� . The strong RSA assumption states that this problem is hard to solve.
The strong RSA assumption [BP97, FO97] is a common number-theoretic assumption that, in particular, is
the basis for several cryptographic schemes (e.g., [ACJT00, CM98, CS98, GHR99]). By QR G we denote
the group of quadratic residues modulo s .

We use notation introduced by Camenisch and Stadler [CS97] for the various zero-knowledge proofs
of knowledge of discrete logarithms and proofs of the validity of statements about discrete logarithms. For
instance,

PK����P#TF�'T��Y!B0U+�OQ���>�1�g���jOx�����U�p����}�a�P�a�t/!V�
denotes a “zero-knowledge Proof of Knowledge of integers P , � , and � such that +�O�� � � � and �jO�� � � �
holds, where t�\7P�\�} ,” where +%T���T��3T4�RT�� , and � are elements of some groups ��O����2�EO����'� and� Oh�N�2�9Oh���l� . The convention is Greek letters denote quantities the knowledge of which is being proved,
while all other parameters are known to the verifier. Using this notation, a proof-protocol can be described
by just pointing out its aim while hiding all details.

3 Dynamic Accumulators

3.1 Definition

Definition 1. A secure accumulator for a family of inputs ���¡ ¢� is a family of families of functions £KOx�¥¤9 :�
with the following properties:

Efficient generation: There is an efficient probabilistic algorithm � that on input
] produces a random

element ¦ of ¤� . Moreover, along with ¦ , � also outputs some auxiliary information about ¦ , denoted
aux § .

Efficient evaluation: ¦Kux¤# is a polynomial-size circuit that, on input ��}YT�./!¨uª©«§@¬b�9 , outputs a value
tuH©L§ , where ©¡§ is an efficiently-samplable input domain for the function ¦ ; and �I is the intended
input domain whose elements are to be accumulated.

Quasi-commutative: For all Z , for all ¦®u¯¤1 , for all }�u°©¡§ , for all ./6:T�.>=�u¯�9 , ¦l��¦¢��}LT�.�68!±T�.A=C!|O
¦l��¦l��}YT�.A=A!±T�.�6²! . If ³vOv�´.�6:TUDFDFDWT�.2µ¨�'¶��9 , then by ¦¢��}LT�³L! we denote ¦l��¦¢��DFDFD¢��}YT�./68!±TUDFDFD:!±T�.2µ·! .

Witnesses: Let t¸u|©I§ and .¸u��3 . A value ¹ºu¼»¨§ is called a witness for . in t under ¦ if t·O�¦¢�,¹bT�./! .

4

Security: Let ½�¾¿@À�Á ¾Â denote the domains for which the computational procedure for function Ã¸Ä�Å Â is
defined (thus Æ ¿%Ç ½ ¾¿ , Á Â Ç Á ¾Â). For all probabilistic polynomial-time adversaries È Â ,

Pr É Ã¡Ê$Ë?Ì�Í ÂRÎ<Ï¥Ð ÊÑ½ ¿ Ï Ì�ÒJÓVÔÕÓ�Ö Î Ê×È Â Ì�ÃØÓÙÆ ¿ Ó ÐYÎBÚ
Ö�Û Á Â Ï ÔºÄ|½ ¾¿ Ï Ò¸Ä Á ¾Â Ï ÒÕÜÄ¼Ö Ï Ã¢Ì,ÔbÓ�Ò ÎWÝ Ã¢Ì Ð Ó�Ö ÎNÞJÝ neg ÌNß Î

Note that only the legitimate accumulated values, Ì�ÒSà8ÓUáFáFáWÓ�Ò2â Î , must belong to Á Â ; the forged value
Ò can belong to a possibly larger set Á ¾Â .

(This definition is essentially the one of Barić and Pfitzmann, with the difference that they do not require
that the accumulator be quasi-commutative; as a consequence they need to introduce two further algorithms,
one for generation and one for verification of a witness value.)

The above definition is seemingly tailored for a static use of the accumulator. In this paper, however,
we are interested in a dynamic use where there is a manager controlling the accumulator, and several users.
First, let us show that dynamic addition of a value is done at unit cost in this setting.

Lemma 1. Let Ã¸Ä�Å Â . Let ã Ý ÃlÌ Ð Ó�Ö Î be the accumulator so far. Let ã ¾ Ý ÃlÌ,ãJÓ�Ò ¾ ÎIÝ ÃlÌ Ð Ó�Ö ¾ Î be the
value of the accumulator when Ò*¾ is added to the accumulated set, Ö?¾ Ý Öbä�å´ÒW¾,æ . Let ÒHÄÖ and Ô be the
witness for Ò in ã . The computation of Ô ¾ which is the witness for Ò in ã ¾ , is independent on the size of Ö .

Proof. Ô�¾ is computed as follows: Ôª¾ Ý ÃlÌ,ÔbÓ�ÒW¾ Î . Let us show correctness using the quasi-commutative
property: ÃlÌ,Ô ¾ Ó�Ò ÎBÝ Ã¢Ì�ÃlÌ,ÔbÓ�Ò ¾ Î Ó�Ò ÎBÝ ÃlÌ�Ã¢Ì,ÔbÓ�Ò Î Ó�Ò ¾ ÎWÝ Ã¢Ì,ãJÓ�Ò ¾ ÎSÝ ã ¾ .

We must also be able to handle dynamic deletions of a value from the accumulator. It is clear how to do
that using computations that are linear in the size of the accumulated set Ö . Here, we restrict the definition
so as to make the complexity of this operation independent of the size of Ö :

Definition 2. A secure accumulator is dynamic if it has the following property:

Efficient deletion: there exist efficient algorithms ç , è such that, if ã Ý ÃlÌ Ð Ó�Ö Î , ÒJÓ�Ò1¾�Ä¸Ö , and Ã¢Ì,ÔbÓ�Ò ÎBÝ
ã , then (1) ç¼Ì aux ¿ ÓVãJÓ�ÒW¾ ÎSÝ ãB¾ such that ãB¾ Ý Ã¢Ì Ð Ó�Ö·éWå´ÒW¾êæ Î ; and (2) è×Ì�Ã¢ÓVãJÓVãB¾�Ó�Ò/Ó�ÒB¾ ÎWÝ Ô�¾ such that
ÃlÌ,Ô�¾¥Ó�Ò ÎBÝ ãW¾ .

Now, we show that a dynamic accumulator is secure against an adaptive adversary, in the following
scenario: An accumulator manager sets up the function Ã and the value

Ð
and hides the trapdoor information

aux ¿ . The adversary adaptively modifies the set Ö . When a value is added to it, the manager updates the
accumulator value accordingly. When a value Ò¸Ä¼Ö is deleted, the manager algorithm ç and publishes the
result. In the end, the adversary attempts to produce a witness that Ò1¾SÜÄ¼Ö is in the current accumulator ã .

Theorem 2. Let ë be a dynamic accumulator algorithm. Let ì be an interactive Turing machine set up
as follows: It receives input Ì�ÃØÓ aux ¿ Ó Ð%Î , where ÃEÄªÅ Â and

Ð Ä�½ ¿ . It maintains a list of values Ö which
is initially empty, and the current accumulator value, ã , which is initially

Ð
. It responds to two types of

messages: in response to the (“ADD”, Ò) message, it checks that Ò¸Ä Á Â , and if so, adds Ò to the list Ö and
modifies ã by evaluating Ã , it then sends back this updated value; similarly, in response to the (“DELETE”,
Ò) message, it checks that ÒªÄgÖ , and if so, deletes it from the list and updates ã by running ç and sends
back the updated value. In the end of the computation, ì outputs the current values for Ö and ã . Let
½ ¾¿ ÀHÁ ¾Â denote the domains for which the computational procedure for function Ã«ÄÅ Â is defined. For all
probabilistic polynomial-time adversaries È Â ,

Pr É,Ì4Ì�ÃØÓ aux ¿ Î Ê$Ë?Ì�Í ÂRÎ<Ï¥Ð ÊÑ½ ¿ Ï Ì�ÒJÓVÔ Î ÊºÈ Â Ì�ÃØÓÙÆ ¿ Ó ÐYÎ'í ì�Ì�Ã¢Ó aux ¿ Ó ÐYÎSî ÌNÖIÓVã ÎWÚ
ÔºÄ|½ ¾¿ Ï Ò¸Ä Á ¾Â Ï ÒÕÜÄ¼Ö Ï Ã¢Ì,ÔbÓ�Ò ÎWÝ Ã¢Ì Ð Ó�Ö ÎNÞJÝ neg ÌNß Î

5

Proof. Let us exhibit a reduction from the adversary that violates the theorem to the adversary that breaks the
collision-resistance property of a secure accumulator. The reduction will proceed in the following (straight-
forward) manner: On input ï�ð¢ñÙò?ó:ñ<ôYõ , feed these values to the adversary. To respond to an (“ADD”, ö) query,
simply update ÷ and compute ø�ù�ðlï�ôYñ�÷Lõ . To respond to a (“DELETE”, ö) query, compute ø·ù�ðlï�ôYñ�÷LúCû´ö2ü4õ ,
and then update ÷ . The success of the adversary directly corresponds to the success of our reduction.

Finally, in the application we have in mind we require that the accumulator allows for an efficient proof
that a secret value given by some commitment is contained in a given accumulator value. That is, we require
that the accumulator be efficiently provable with respect to some commitment scheme ï Commit õ .
Zero-knowledge proof of member knowledge: There exists an efficient zero-knowledge proof of knowledge

system where the common inputs are ý (where ý·ù Commit ï�öJñ�þrõ with a þ being a randomly chosen
string), the accumulating function ð and øÿbòjó , and the prover’s inputs are (þ , öÕÿ���� , ô�ÿÕò«ó) for
proving knowledge of ö , � , þ such that ý¨ù Commit ï�öJñ�þlõ and ø·ù�ð¢ï��bñ�ö/õ .

If by “efficient” we mean “polynomial-time,” then any accumulator satisfies this property. However we
consider a proof system efficient if it compares well with, for example, a proof of knowledge of a discrete
logarithm.

3.2 Construction

The construction due to Barić and Pfitzmann [BP97] is the basis for our construction below. The differences
from the cited construction are that (1) the domain of the accumulated values consists of prime numbers only;
(2) we give a method for deleting values from the accumulator, i.e., we construct a dynamic accumulator;
(3) we give efficient algorithms for deleting a user and updating a witness; and (4) we provide an efficient
zero-knowledge proof of membership knowledge.

��� � is the family of functions that correspond to exponentiating modulo safe-prime products drawn
from the integers of length 	 . Choosing ð ÿ � � amounts to choosing a random modulus
cù��� of
length 	 , where �bù���������� , ·ù��������� , and � ,��� , , �� are all prime. We will denote ð corresponding
to modulus
 and domain ��� � ! by ð#"$� � � ! . We denote ð%"$� � � ! by ð " and by ð when it does not cause
confusion.� �&� � ! is the û('�ÿ primes)*'�+ù����´ñ,-��.0/213'4165Bü , where / and 5 can be chosen with arbitrary
polynomial dependence on the security parameter 	 , as long as �879/ and 5372/;: . �<�� � ! is (any
subset of) of the set of integer from = � ñ>/<:�?��A@ such that ��� � !CBD�E�� � ! .� For ð3ù�ð " , the auxiliary information aux ó is the factorization of
 .� For ð3ù�ð " , F¡ó'ùxûVô�ÿ QR"):ôG+ùH�Uü and F;�ó ùJI�K" .� For ð3ù�ð " , ðlï�ôLñ�ö�õ*ùvôML mod
 . Note that ð¢ï�ðlï�ôYñ�öON8õ±ñ�ö : õSù�ðlï�ôLñ<ûVö$N8ñ�ö : ü4õBùxô�LQPRLTS mod
� Update of the accumulator value. As mentioned earlier, adding a value ˜ö to the accumulator value
ø can be done as ø � ù ðlï,øJñ ˜öJõYùcø ˜L mod
 . Deleting a value ˜ö from the accumulator is as follows.U ï4ï��%ñ,/õ±ñVøJñ ˜öWõBùgø ˜LWV P mod X Y[Z N#\ X^],Z N#\ mod
 .� Update of witness: As mentioned, updating the witness ô after ˜ö has been added can be done by
ô � ù¯ð¢ï�ôLñ ˜öJõIù ô ˜L . In case, ˜ö6+ù°ö®ÿ���� has be deleted from the accumulator, the witness ô can
be updated as follows. By the extended GCD algorithm, one can compute the integers _ , ` such that

6

acbedgf ˜bihHj and then kml h�npo k�q b q ˜b q�rsq�r�l�t h keuWr-l�v . Let us verify that w o kxl�q b t h k�lzy mod { h r�l :
o k u r l v t y h (1)o|o k u r l v t y ˜y t(}�~ ˜y h (2)o|o k y t u ˜y o r l ˜y t vAy t(}�~ ˜y h (3)o r u ˜y r vAy t(}�~ ˜y h r$}�~ ˜y h r l (4)

Equation (2) is correct because ˜b is relatively prime to � o {�t .
We note that adding or deleting several values at once can be done simply by letting b l be the product

of the added or deleted values. This also holds with respect to updating the witness. More precisely, let � v
be the product the b ’s to add to and �&� be the ones to delete from the accumulator value r . Then, the new
accumulator value r l�� h r*���A������ mod � ��� }#� ����� }#� mod { . If k was the witness that b was contained in r and b
was not removed from the accumulator, i.e., b�� ��� , then kmlzk v � � r-l u mod { is a witness that b is contained
in r l , where a and f satisfy acb<d�f ��� hHj and are computed using the extended GCD algorithm.

Theorem 3. Under the strong RSA assumption, the above construction is a secure dynamic accumulator.

Proof. Everything besides security is immediate- By Theorem 2, it is sufficient to show that the construction
satisfies security as defined in Definition 1. Our proof is similar to the one given by Barić-Pfitzmann for
their construction (the difference being that we do not require b l to be prime). The proof by Barić-Pfitzmann
is actually the same as one given by Shamir [Sha83].

Suppose we are given an adversary � that, on input { and kJ��� QR� , outputs � primes b } q,������q b* �¡&¢ £ ¤
and k l �¦¥�§� , b l � ¡ l¢ £ ¤ such that o k l t y[¨ h k�© yTª . Let us use � to break the strong RSA assumption.

Suppose { h¬«� that is a product of two safe primes, «8hD®�« l d¯j and °h�®� l d�j , is given. Suppose
the value kJ� QR� is given as well. To break the strong RSA assumption, we must output a value ±<² j , ³
such that ³ ´ h k .

We shall proceed as follows: Give o {mq�kµt to the adversary. Suppose the adversary comes up with a
forgery o kmlRq b l�q o�b } q,�����Mq bc t|t . Let b¶hG· ¸º¹ } b ¸ . Thus we have kml y ¨ h k y .
Claim. Let » h gcd o�b q b l t . Then either » hHj or » h�b�¼ for some jE½�¾�½ � .

Proof of claim: Suppose »s¿ b and »ÁÀhHj . Then, as b } q,������q b* are primes, it follows that » is the product
of a subset of primes. Suppose for some b ¸ and b*¼ we have b ¸ bc¼ ¿ » . Then b ¸ b*¼ ¿ b l . But this is a contradiction
as b ¸ b*¼ ² b l must hold due to the definitions of Â ¢ £ ¤ and Â l¢ £ ¤ : Because b l �CÂ l¢ £ ¤ we have b lÄÃJÅxÆ . For
any b ¸ q b*¼ �¦Â ¢ £ ¤ , b ¸ bc¼eÇ Å ÆE² b l , as b } q b Æ Ç Å .

Back to the proof of the theorem: Suppose that »HÀhÈj is not relatively prime to É o {�t . Then, by the
claim, for some ¾ , » h�b�¼ . Because » h�b*¼ � ¡&¢ £ ¤ , »¦² ® and » is prime. É o {�t h�ÊW« l l , therefore » h¬« l
or » h3 l . Then ® » d�j is a non-trivial divisor of { , so in this case we can factor { .

Suppose » is relatively prime to É o {�t . Then, because o k y ~ � t � hËo|o k�l�t y ¨ ~ � t � , it follows that k y ~ � ho k l t y[¨ ~ � . Let ˜b�hÌb*Í » , and ˜b l hÎb l Í » . Because gcd o�b q b l t h » , the equation gcd o ˜b q ˜b l t hÏj holds and
thus one can compute Ð , Ñ such that Ð ˜bgd Ñ ˜b l hÒj by extended GCD algorithm. Output o ³ � h ˜k�Ó|k�ÔWq ˜b l t .
Note that ³ ˜y ¨ hÎo ³ ˜y ˜y ¨ t }�~ ˜y o|o ˜k ˜y ¨ t Ó ˜y o k ˜y t�u ˜y ¨ t }�~ ˜y hÎo|o k ˜y t v ˜yTÕ u ˜y ¨ t }�~ ˜y k and thus ³ and ˜b l are a solution to the
instance o {mq�k�t of the flexible RSA problem.

7

3.3 Efficient Proof That a Committed Value Was Accumulated

Here we show that the accumulator exhibited above is efficiently provable with respect to the Pedersen com-
mitment scheme. Suppose that the parameters of the commitment scheme are a group Ö;× , and two generatorsØ and Ù . Recall that to commit to a value Ú , one picks a random Û;ÜÞÝ�× and outputs Commit ß�Úsà�Û�áeâäã Ø[å Ù�æ .
This information-theoretically hiding commitment scheme is binding under the discrete-logarithm assump-
tion.

For the definitions of ç�è é ê and the choice of ë , we require that ì-ícîðïzñ�î[ï ï�ñ�ò¦óõôxò�öø÷¦ópëTùúí holds,
where ûeü and ûeü ü are security parameters, i.e., û�ü is the bit length of challenges in the PK protocol below
and û ü ü determines the statistical zero-knowledge property of the same protocol. We set ç üè é ê the largest
possible set, i.e., to ý íÄà>ôEò�öJ÷Aþ .

Finally, we require that two elements ÿ and � of QR � are available such that log ��� is not known to the
prover, where � is the public key of the accumulator.

To prove that a given commitment ��� and a given accumulator � contain the same value 	 , the following
protocol is carried out. The common inputs to the protocol are the values � � , Ø , Ù , � , ÿ , � , � and 	 . The
prover’s additional inputs are the value
 such that
 � ã�� mod � and the value Û such that ���µã Ø � Ù æ .

The prover will form a commitment �� to
 and prove that this commitment corresponds to the 	 -th
root of the value � . This is carried out as follows:

1. The prover chooses Û���à�Û ò à�Û��ÞÜ�� Ý�� ������� , computes � � âäãÏÿ � � æ�� , ���âäã�
�� æ� , � æ âäãÒÿ æ� � æ�! , and
sends �"� , �#� , � , and � æ to the verifier.

2. The prover and verifier carry out the following proof of knowledge:

PK $$ß�%�à'&�à)(�à+*�à-,�à-.cà�/�à10 à)2&à-3-à54�á�â
� � ã Ø�6 Ù�798 Ø ãøß ���Ø á;:sÙ=<>8 Ø ã ß Ø � � á�?ðÙA@B8

� æ ãC�ED�ÿ�FG8H� � ãI� 6 ÿKJI8L�¶ãM� 6 ß ÷� áONP8 ÷�ãM� 6æ ß ÷� áRQ�ß ÷ÿ áONP8%ÁÜ�ý ö�ì-í î ï ñ�î ï ï ñ�ò à#ì-í î ï ñ�î ï ï ñ�ò þTS9U
The details of this protocol can be found in Appendix A.

Theorem 4. Under the strong RSA assumption the PK protocol in step 2 is a proof of knowledge of two
integers 	 ÜÞç üè é ê ãÎý íÄà>ô ò ö�÷Aþ and
 such that �WVC
 � ß mod ��á and � � is a commitment to 	 .
Proof. Showing that the protocol is statistical zero-knowledge is standard. Also, it is easy to see that � � ,� � , �T , and � æ are statistically independent from
 and 	 .

It remains to show that � � if the verifier accepts, then a value 	 and a witness X that 	 is in � can be
extracted from the prover. Using standard rewinding techniques, the knowledge extractor can get answers
ßZY 6 àOY N àOY : àOY Q àOY D à[Y F àOY J àOY 7 àOY < á and ßZYðü6 àOYðüN àOYðü: àOYðüQ àOYðüD àOY[üJ àOYðüF àOYðü7 àOYðü< á for the two different challenges \
and \�ü . Let]^%¬ã_Y 6 öCY[ü6 ,]`&Áã_Y N öIYðüN ,]�(�ã_Y : öIYðü: ,]a*iã_Y Q öIYðüQ ,]^, ã_Y D öIYðüD ,]^.4ã_Y F öIYðüF ,]�2¬ã_Y J öbY üJ ,]c/Gã_Y 7 öIY ü7 mod d ,]e0 ã9Y < öIY ü< ,]^3CãMY ? öbY ü? ,]f4°ã_Y @ öCY ü@ , and]g\gãM\ ü öC\ .
Then we have

�ih[j� ã Ø h 6 Ùkhl7Ëà Ø h[jµãøß � �Ø áZhm:-ÙKhn< à Ø h[j�ãøß Ø ���WáZhl?*Ùkho@ (5)

��h[jæ ãC�"h D ÿ�h F à ��h[j� ãC�"h 6 ÿmh J à (6)

� h[j ãM� h 6 ß ÷� á h N à ÷�ãM� h 6æ ß ÷� á h Q ß ÷ÿ á h N U (7)

8

We first show that pTq commits to an integer different from r and consider the first two equations (5). Lets tPuwvyx^tlxgzK{"|
mod } , s~ uwv_x ~ xgzk{�| mod } , s� uwv_x � xgzk{�| mod } , and

s� uwv_x � xgzk{�|
mod } . Then we

have p"q vb�n������� and
��v_� p�q��� �� � �� �[��� � {�|+� �� ���� �� � ����

Under the hardness of computing discrete logarithms, ra� �Os t�� r � s~ �
mod } � must hold and therefore

s tC�v r�
mod � � as otherwise

s~ would not exists. Similarly, from the first and third equation of (5) one can conclude
that

s tI�v�� r � mod � � .
We next show that

s t
is accumulated in � . From the next two equations (6) one can derive that

xgz
dividesx^t

,
x��

,
x^�

, and
x^�

provided the strong RSA assumption. (While we do not investigate this claim here,
one can show that if

xgz
does not divide

x^t
,
x��

,
x^�

, and
x^�

, then from the Equations (6) one can compute
a non-trivial root of � with probability at least r'��� . This, however, is not feasible under the strong RSA
assumption. We refer to, e.g., [DF01] for the details of such a reduction.) Let ˆ

t�v x^t � xgz , ˆ
�PvMx�� � xgz ,

ˆ
�`v9x^� � xgz and ˆ�¡v9x^� � xgz . Because ¢ z ¢¤£�¢ z�¥ ¢A¦I§ ¥ £�� ¥ , we get ¨�© v«ªn¬ ˆ � ˆ® for some

ª
such that

ª°¯¡v r .
Moreover, the value

ª
must be either r or

� r as otherwise rf¦ gcd
��ª`� rA£²± � ¦³± and we could factor ± .

Plugging ¨�© into the second equation of (7) we get

r vMªn´ � ¬T´ � ˆ � ´ � ˆ® � r¬ � ´[µ�� r� � ´T¶ £
where

ª ´ �
must be r as r , � , and

¬
are in QR · and

ª¸¯Wv r otherwise. Under the hardness of computing
discrete logarithms we can conclude that

x^t ˆ� � ˆ¹ �
mod ord

� � �O� and hence we get

� ´[º vy� ¨T»¬ ˆ® � ´ � and � vC¼E� ¨T»¬ ˆ® � ˆ�
with some

¼
such that

¼ ¯ v r . Again
¼½v¿¾ r as otherwise rÀ¦ gcd

�Á¼W¾ rA£²± � ¦I± and we could factor ± .
Let Â v�� r if ˆ

t ¦³Ã and Â v r . Thus we have � vbÄÆÅ ˆ� Å ,
ÄÇvÉÈÊ¤Ë �Á¼ÀÌmÍÎ ˆÏl�RÐ if ˆ

t
is odd� Ì ÍÎ ˆÏl�RÐ if ˆ

t
is even

�
The latter holds because �ÒÑ QR · and

� r �Ñ QR· and therefore
¼Óv�� r is not possible. Also note that ˆ

tC�v Ã
as � �v r . Because Â � £OÂ ¥� Ñ_Ô �^Õ �AÖ�×ÙØ�Ö�× ×�Ø | £ �^Õ �AÖ�×ÙØ�Ö�× ×ÙØ |�Ú we have

x^t £ ˆ
t ÑyÔ �^Õ �AÖm×ÙØ�Öm× ×ÛØ ¯ £ �^Õ �AÖm×ÙØ�Öm× ×ÙØ ¯�Ú .

Because
Õ � Ö�×�Ø�Öm× ×�Ø ¯ ¦Ü}=��� it follows that ˆ

tbvÝ�Áx^t
ˆ
z

rem } � � s t rem } � , and hence that the absolute value
committed to by p"q is indeed accumulated in � . As

Õ �mÖm×�Ø�Ö�× ×ÙØ ¯ ¦ Þ ¯�� r , ˆ
t¿�v_¾ r mod } and ˆ

t¿�v Ã we
can conclude that ¢ ˆt ¢mÑàß ¥áEâ ã . Therefore, due to Theorem 3, we can conclude that ¢ ˆt ¢ must be contained in
the accumulator value � .

4 Application to ID Escrow, Group Signatures and Credential Systems

In this section we describe how dynamic accumulators can be used to obtain membership revocation for
identity escrow, group signature and credential schemes. In particular, we provide an efficient identity
escrow scheme with membership revocation. However, we first informally discuss the properties of identity
escrow schemes with membership revocation. However, the translation to group signatures scheme and
credential systems is straightforward.

An identity escrow scheme with membership revocation consists of the following procedures:

9

Setup: An algorithm for the group manager to generate the system parameters, the group’s public key, and
her secret key.

Join: A protocol between a group member and the group manager. Their common input is the group’s
public key. Their common output is the user’s membership public key and membership certificate.
The user’s output is the member ship secret key. In addition, the group manager gets some information
to be made available in a public archive as well as an updated version of the group’s public key.

Prove membership: A protocol between a group member and a verifier (whose sole input consist of the
group’s public key) that allows the former to convince the latter of his membership in the group.

Anonymity revocation: A procedure that allows the group manager on input her secret key and a verifier’s
transcript of the membership-proof protocol outputs the membership public key of the user with whom
the verifier ran the protocol in question.

Membership revocation: A procedure for the group manager to remove a member from the group. This
procedure results in an updated group’s public key as well as some information to be made available
in a public archive.

Membership update: A procedure for the group members to update their membership certificates using the
information available in the public archives and the current public key of the group.

The scheme must provide the following properties.

Correctness: The scheme functions properly if all participants are honest.
Unforgeability and traceability: Upon revocation of its anonymity, each transcript of a successful

membership-proof reveals the identity of a user who was a member of the group at the time the
protocol in question took place.

Exculpability: It is infeasible (even to the group manager) to make it appear that an honest user participated
in a membership-proof if he did not.

Anonymity and unlinkability: Linking a transcript of membership-proof protocol (run with a possible dis-
honest verifier) to a user is computationally infeasible to everyone but the group manager and so is
determining whether two transcripts stem from the same or from different users. We stress that in
case a user’s membership is revoked, anonymity and unlinkability is retained for transcripts stemming
from the interaction with that user prior to his membership revocation.

All of the above properties must hold even in the presence of an adversary that is allows to run all the
protocols and procedures adaptively with the honest parties. This can be made formal in an ideal-world/real-
world model (c.f. [Can95, Can00, PW00]) similarly as is done by Camenisch and Lysyanskaya [CL01b] for
identity escrow schemes.

4.1 Overview of Efficient Group Signatures and Credential Systems

Recall the ACJT [ACJT00] identity escrow scheme. (Recall that the ACJT group signature scheme is ob-
tained from the ACJT identity escrow by applying the Fiat-Shamir heuristic to the protocol for proving
membership.) The group manager has a public key PK, consisting of a number ä , which is a product of two
safe primes, the values å , æ , ç , è , and é which are quadratic residues modulo ä , and two intervals ê and ë .
The value ìîí log ï"é is a secret key of the group manager used for revocation. A user ðòñ ’s membership
certificate consists of a user’s secret ó�ñ selected jointly by the user and the group manager (it is selected
in a secure manner that ensures that the group manager obtains no information about this value) from an
appropriate integer range, i.e., ë , and the values ômñ and õ'ñ , where õ'ñ is a prime number selected from another
appropriate range, i.e., ê , and ônöO÷ñ íøå�ù ÷ æ mod ä . The value å'ù ÷ is user ðfñ ’s public key. When ð^ñ proves

10

membership in a group, he effectively proves knowledge of a membership certificate úüûlý+þ�ý5ÿ�� . This proof
is as follows. The group member chooses ���� ý�����
	��	��
����������� and computes � ����� þ��! #"$, � �%���'& ("$, and�*) ���+&-,/. "0 . The group member sends � � , � � , and �*) to the verifier and carries out with the verifier the
protocol denoted

PK 1[ú�2eý43�ý65gý87�ý(9:� �<;=� �?>�A@CBDFECG @�B� EIHKJ B � �?>�L@�B& EIHKJ � �M�N&PO J �*) �N& > .�Q J
2 	SR J 3 	UT<VXW

As with all group signature and identity escrow schemes, only the group manager can assert a signa-
ture/protocol transcript to a group member, i.e., knowing Y , the group manager can compute the value
ˆþ � � �8Z � �4[that identifies the user.

The Camenisch and Lysyanskaya [CL01a] credential system has a similar construction. An organiza-
tion’s public key consists of a number \ , which is a product of two safe primes, and the values D , ; ,] , & and. which are all quadratic residues modulo \ . A user ^�_ ’s secret key û-_ , selected from an appropriate integer
range, is incorporated into all of ^`_ ’s credentials. A credential tuple for user ^�_ consists of his secret key ûa_ ,
a secret value b#_ selected jointly by the ^c_ and the organization (via a secure computation which ensures se-
crecy for the user) from an appropriate integer range, and the values þ-_ and ÿd_ such that ÿ4_ is a prime number
selected by the organization from an appropriate integer interval, and þ-_ is such that þ ,fe_ � D#g ;ih] mod j .
Proving possession of a credential is effectively a proof of knowledge of a credential tuple.

Variations of these schemes incorporate such features as anonymity revocation, non-transferability, one-
show credentials, expiration dates, and appointed verifiers. For all these variations, an integral part of a
group membership certificate and of a credential, is the prime number ÿC_ . Using one-way accumulators, we
can accumulate ÿd_ ’s into a single public value k . Proof of group membership will now have to include proof
of knowledge of a witness to the fact that ÿi_ was accumulated into k .

In the sequel, we will talk about augmenting the ACJT identity escrow scheme with the membership
revocation property; however, all our results and discussion applies immediately to the credential scheme
and group signature discussed above.

4.2 Incorporating Revocation into the ACJT Identity Escrow Scheme

To make certificate revocation possible, the additions outlined below have to be made to the usual operations
the ACJT identity escrow scheme.

Modifications to the group manager’s operations are as follows:

Setup: In addition to setting up the identity escrow scheme, the group manager creates the public modulusl for the accumulator, chooses a random kgý(moýon 	 QR p and publishes ú l ýqk ý(miýonr� . She sets up
(empty for now) public archives s add for storing values that correspond to added users and s delete for
storing values that correspond to deleted users. Set tu�vxw y � R and t vxw y to the interval from which the
group manager chooses ÿ in the ACJT scheme (t vxw y{z t �vxw y z}| ~ ýo� �L� B�� will be satisfied).

Join: Issue the user’s membership certificate, as in the identity escrow scheme. Add the current k to the
user’s membership certificate. (Denote it by kr_ .) Let ÿd_ be the prime number used in this certificate.
Update k in the public key: k ����� pEú�kgý5ÿ4_�� . Update s add: store ÿd_ there.

Revoke membership: Retrieve ÿ!_ which is the prime number corresponding to the user’s membership cer-
tificate. Update k in the public key: k ���K� úo�^ú l �+ýqkgý5ÿ!_d� . Update s delete: store ÿ4_ there.

We stress that the archives are s add and s delete are not part of the group’s public key, i.e., the verifier is
not required to read them for any verification purposes. Also, note that is it not necessary to restrict read
access to these archives only to group members.

11

A user ��� must augment the ACJT protocol as follows:

Join: Store the value �x� along with the rest of the membership certificate. Verify that �4�x�����(���4���A���r���� ��� .
Update membership: An entry in the archive is called “new” if it was entered after the last time �u� per-

formed an update.

1. Let � denote the old value of � .

2. For all new �/�*�
� add, ���A�����:�����(�����d�f������� �� � and �¡���¢� � �f
3. For all new �/�*�
� delete , ���A����£¤�����o���4�(�����d�8�¥�?�q�?� .

(Note that as a result �¦���C���*�(���4�(� .)
Prove membership: Proving membership is augmented with the step of proving that a committed value is

part of the accumulated value § (contained in the current public key). That is, in addition to ¨<© , ¨*ª ,
and ¨x« the group member computes the values ¬ � ���¤ ��®�¯I° , ¬²±����³� ®�¯o´ , and ¬ ¯ ���¤ ¯�´4®�¯oµ and
sends them to verifier, with random choices ¶P©/��¶#ªP��¶#«¦��·�¸�¹ ��ºo»q¼ . Then the verifier and the group
member engage in the protocol denoted

PK ½F��¾��4¿*�6ÀÁ�8Âa�(Ã���Ä�(ÅP�#Æc�ÈÇU�6É��*�
ÊÌË ¨?Í©AÎ�ÏÐÑ�Ò ÎCÏÓ Ñ8ÔÖÕ Ï Ë ¨?Íª×Î�ÏØAÑ8ÔÙÕ ¨*ª Ë ØPÚ Õ ¨*« Ë Ø Í�Û�Ü Õ
¬ ¯ � ®�Ý �Þ Õ ¬ � � ® Í iß Õ §à�X¬ Í± � Ï® �oá Õ Ï �â¬ Í¯ � Ï® �äãM� Ï �oá Õ

¾å�Sæ Õ ¿å�Uç<èXé
This protocol is already an optimized union of the PK protocol given in the previous section and the
ACJT PK protocol for proving group membership. That is, different from the previous section, we do
not require the group ê`ë for the commitment scheme because here the value ¨×« acts as commitment
to the value whose membership in the accumulator is claimed. Furthermore, as ì Ï ��í�� Ïàî�Sæ , we need
not show that ¾ î�Kì Ï ��í�� Ï .
The complexity of this augmented proof is about twice that of the original one. The definition of æ is
compatible with the accumulator and the proof that a committed value is contained in the accumulator
as presented in the previous section. Also, æ excludes Ï and hence it is not required to explicitly prove
that the committed value is not Ï .

Remark. Updates after a users joined the group can be avoided if the group managers chooses all the ��� at
setup-time and already accumulates them, i.e., �N���ï�#�����ð���ñ�4�I� . Note that the group manager can always
compute the witness for �!� as � © º ��� . If this is done, only deletion of member requires updates by the group
manager and the group members (or if the group manager runs out of �:� ’s).

Lemma 5. Under the strong RSA assumption the above is a secure identity escrow scheme with membership
revocation.

Proof (sketch). It is not hard to show the security of this lemma in a formal model given the security proofs
of the ACJT scheme and the proof of Theorem 4. Let us provide an informal argument here.

First of all, note that all the properties of the original ACJT scheme are retained as the amount of
information revealed by ¬ � , ¬ ± , and ¬ ¯ about the group member’s certificate is negligible (i.e., ¬ � , ¬ ± ,
and ¬ ¯ are statistically hiding commitments and the PK-protocol is statistical zero-knowledge). It remains
to argue that excluded group members can no longer prove group membership even if they collude in an

12

adaptive attack against the group manager. Similarly as in the proof of Theorem 4, one can show that the
above of a protocol is a proof of knowledge of a quadruple ò ˆó�ô ˆõ ô ˆö ô ˆ÷ðø such that ù ˆúaû=ü ˆõ ˆý and ˆ÷ ˆý ü ÷ hold,
i.e., such that ò ˆó�ô ˆõ ô ˆö ø is valid group membership certificate and ˆö is contained in the accumulator value ÷ .
In [ACJT00], Ateniese et al. show that under the strong RSA assumption an adaptive adversary controlling
all users cannot find a triple ò ˜ó�ô ˜õ ô ˜ö ø that is different from the ones legitimately obtained through the join
protocol. On other words, the values ù údþ and ö4ÿ are tightly linked. Therefore, the user with public key ù ú4þ
is no longer able to prove membership of the group once an öCÿ is removed from the accumulator value as
the accumulator is secure against an adaptive adversary (Theorem 2). We note that all these arguments hold
in spite of the fact that all members’ (current and past one) öCÿ ’s are public. It follows that anonymity and
unlinkability is retained for actions past members made prior to their exclusion from the group.

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Mihir Bellare, editor, Advances in Cryp-
tology — CRYPTO 2000, volume 1880 of LNCS, pages 255–270. Springer Verlag, 2000.

[AT01] Giuseppe Ateniese and Gene Tsudik. Quasi-efficient revocation of group signatures. http:
//eprint.iacr.org/2001/101, 2001.

[BdM94] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Tor Helleseth, editor, Advances in Cryptology — EUROCRYPT ’93, volume
765 of LNCS, pages 274–285. Springer-Verlag, 1994.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume
1233 of LNCS, pages 480–494. Springer Verlag, 1997.

[BS01] Emmanuell Bresson and Jacques Stern. Group signatures with efficient revocation. In Kwangjo
Kim, editor, Proceedings of 4th International Workshop on Practice and Theory in Public Key
Cryptography, PKC2001, volume 1992 of LNCS, pages 190–206. Springer, 2001.

[Cam97] Jan Camenisch. Efficient and generalized group signatures. In Walter Fumy, editor, Advances
in Cryptology — EUROCRYPT ’97, volume 1233 of LNCS, pages 465–479. Springer Verlag,
1997.

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute of Science, Rehovot 76100, Israel, June 1995.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[CL01a] Jan Camenisch and Anna Lysyanskaya. Efficient non-transferable anonymous multi-show cre-
dential system with optional anonymity revocation. In Birgit Pfitzmann, editor, Advances in
Cryptology — EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer Verlag, 2001.

[CL01b] Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with appointed verifiers.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of LNCS, pages
388–407. Springer Verlag, 2001.

13

[CM98] Jan Camenisch and Markus Michels. A group signature scheme with improved efficiency. In
Kazuo Ohta and Dinqyi Pei, editors, Advances in Cryptology — ASIACRYPT ’98, volume 1514
of LNCS, pages 160–174. Springer Verlag, 1998.

[CM99] Jan Camenisch and Markus Michels. Separability and efficiency for generic group signature
schemes. In Michael Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of
LNCS, pages 413–430. Springer Verlag, 1999.

[CP95] Lidong Chen and Torben Pryds Pedersen. New group signature schemes. In Alfredo De Santis,
editor, Advances in Cryptology — EUROCRYPT ’94, volume 950 of LNCS, pages 171–181.
Springer-Verlag, 1995.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. In Burt
Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of LNCS, pages 410–424.
Springer Verlag, 1997.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology —
CRYPTO ’98, volume 1642 of LNCS, pages 13–25, Berlin, 1998. Springer Verlag.

[DF01] Ivan Damgård and Eiichiro Fujisaki. An integer commitment scheme based on groups with
hidden order. http://eprint.iacr.org/2001, 2001.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Burt Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume
1294 of LNCS, pages 16–30. Springer Verlag, 1997.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without the
random oracle. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, volume
1592 of LNCS, pages 123–139. Springer Verlag, 1999.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP statements in zero-
knowledge and a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor,
Advances in Cryptology — CRYPTO ’86, volume 263 of LNCS, pages 171–185. Springer-Verlag,
1987.

[KLL01] Hyun-Jeong Kim, Jong In Lim, and Dong Hoon Lee. Efficient and secure member deletion
in group signature schemes. In D. Won, editor, ICISC 2000, number 2015 in LNCS, pages
150–161. Springer Verlag, 2001.

[KP98] Joe Kilian and Erez Petrank. Identity escrow. In Hugo Krawczyk, editor, Advances in Cryptology
— CRYPTO ’98, volume 1642 of LNCS, pages 169–185, Berlin, 1998. Springer Verlag.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reac-
tive systems. In Proc. 7th ACM Conference on Computer and Communications Security, pages
245–254. ACM press, nov 2000.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. In ACM
Transaction on Computer Systems, volume 1, pages 38–44, 1983.

[Son01] Dawn Xiaodong Song. Practical forward secure group signature schemes. In Proc. 8th ACM
Conference on Computer and Communications Security, pages 225–234. ACM press, nov 2001.

14

A Protocol to Prove that a Committed Value is Accumulated

This section provides the details of the protocol denoted

PK ���������	��
���������������������������! #"%$'&�(*),+.-/&0$1� "& �32#)546-87:9%$<;>=�?�@A-
7 " $<;>(*?CBD-FEG$.7H(I ��J; �LKM- J $N7H(9 ��J; �POQ�RJ? �LKM-8�TSVU W�XZYQ[R\^]*[R\ _]�`,��XZYQ[R_]�[R\ _]a`�bdc.e

that can be used (as described in f 3.3) to prove that value committed to in " is accumulated in E . The
values 7 I , 7 " and 7 9 are auxiliary commitments (c.f. f 3.3).

1. The prover chooses

g (S#hi�jW�XZY [\]�[\ \���e�e�e:��XZY [\]�[\ \��k�g 2 � g + � g 4 � gCl � gnm S#hporqs�g = � g B � g @ SZhA�jWit3u�vCwRx�YQ[,\y]*[R\ \���e�e�ed�Qt3u�vzw,x�YQ[R\{]�[,\ \��|� andg K � g O S#hA�jWit3u�vCw}xz~�Y [\]�[\ \���e�e�e:�Qt3u�vCw,xz~�Y [\]�[\ \��|�
computes

�L� ��$'& 9��) 9�� � � ` ��$�� "& � 9P�) 9�� � �j� ��$���&� " � 9��) 9�� �
� � ��$<; 9�� ? 9�� � � ` ��$'; 9�� ? 9P� � � � ��$.7 9��I �aJ; � 9�� � and

��� ��$N7 9��9 � J; � 9�� � J? � 9��
and sends

���
,
� ` , �j� , � � , � ` , � � , and

���
to the verifier.

2. The verifier chooses �pSdh������ J�� [and sends it to the prover.

3. The prover computes

� (��$ g (WV�R��� � B ��$ g K WM� g � � � + ��$ g + W�� g mod ~ �� K ��$ g K WV� g ` ��� � = ��$ g = WV� g ` � � 2 ��$ g 2 WV�a���%W J ��¡
�

mod ~'�� @ ��$ g @ WV� g � � � O ��$ g O WV� g � ��� � 4 ��$ g 4 WV� g ���HW J � ¡
�

mod ~ �� l ��$ gzl WV�a���%¢ J � ¡
�

mod ~'� and � m ��$ gnm WV� g ���%¢ J � ¡
�

mod ~
and sends them to the verifier.

4. The verifier accepts if the following equations hold:

�L�s£$¤ ¦¥" &�§ �)�§ � � � ` £$'&}¥�� "& �P§ �)z§ � � �j�M£$'&}¥���&� " �P§ �)�§ � �
� � £$N7 ¥9 ; § � ? § � � � ` £$N7 ¥" ; § � ? § � � � � £$�E ¥ 7 § �I � J; � § � �
��� £$N7>§ �9 � J; �P§ � � J? �P§ � � and � (

£SDU W!XZY [\]*[\ \] � ��XZY [\]�[\ \] � b�e

15

