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Abstract. This paper proposes a solution for the automatic detection and
tracking of human motion in image sequences. Due to the complexity of the
human body and its motion, automatic detection of 3D human motion remains
an open, and important, problem. Existing approaches for automatic detection
and tracking focus on 2D cues and typically exploit object appearance (color
distribution, shape) or knowledge of a static background. In contrast, we exploit
2D optical flow information which provides rich descriptive cues, while being
independent of object and background appearance. To represent the optical flow
patterns of people from arbitrary viewpoints, we develop a novel representation
of human motion using low-dimensional spatio-temporal models that are learned
using motion capture data of human subjects. In addition to human motion
(the foreground) we probabilistically model the motion of generic scenes (the
background); these statistical models are defined as Gibbsian fields specified
from the first-order derivatives of motion observations. Detection and tracking
are posed in a principled Bayesian framework which involves the computation of
a posterior probability distribution over the model parameters (i.e., the location
and the type of the human motion) given a sequence of optical flow observations.
Particle filtering is used to represent and predict this non-Gaussian posterior
distribution over time. The model parameters of samples from this distribution
are related to the pose parameters of a 3D articulated model (e.g. the approximate
joint angles and movement direction). Thus the approach proves suitable for
initializing more complex probabilistic models of human motion. As shown by
experiments on real image sequences, our method is able to detect and track
people under different viewpoints with complex backgrounds.

Keywords:Visual motion, motion detection and tracking, human motion analysis,
probabilistic models, particle filtering, optical flow.

1 Introduction

The extraction and the tracking of humans in image sequences is a key issue for a variety
of application fields, such as, video-surveillance, animation, human-computer interface,
and video indexing. The focus of a great deal of research has been the detection and
tracking of simple models of humans by exploiting knowledge of skin color or static
backgrounds [10,15,22]. Progress has also been made on the problem of accurate 3d
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tracking of high-dimensional articulated body models given a known initial starting
pose [9,11,25]. A significant open issue that limits the applicability of these 3d mod-
els is the problem of automatic initialization. Simpler, lower-dimensional, models are
needed that can be automatically initialized and provide information about the 3d body
parameters. Towards that end, we propose a novel 2d view-based model of human mo-
tion based on optical flow that has a number of benefits. First, optical flow provides some
insensitivity to variations in illumination, clothing, and background structure. Second,
the dimensionality of the model is sufficiently low to permit automatic detection and
tracking of people in video sequences. Third, the parameters of the model can be related
to the pose of a 3d articulated model and are hence suitable for initializing more com-
plex models. Finally, we develop a probabilistic formulation that permits our motion
estimates to be exploited by higher level tracking methods.

The key idea behind our view-based representation is summarized in Figure 1. Mo-
tion capture data of actors performing various motions is used to generate many idealized
training flow fields from various viewpoints. For each viewpoint, singular value decom-
position (SVD) is used to reduce the dimensionality of the training flow fields to give
a low-dimensional linear model. Training motions are projected onto this linear basis
and temporal models of the linear coefficients for different activities are learned. It is
worth noting that there is some psychophysical evidence for the existence of view-based
representations of biological motions such as human walking [6,27].

Given this model, the automatic detection and tracking of human motion in image
sequences is formulated using a principled Bayesian framework. In addition to the view-
based human motion model, we learn a model for the optical flow of general scenes
which is used to distinguish human motions from general background motions. Both
foreground (person) and background statistical models are defined as Gibbsian fields
[12,32] specified from the first-order statistics of motion measurements. Hence, we can
exactly evaluate the likelihood of given motion observations w.r.t. learned probabilistic
motion models. Therefore, the detection and tracking of human motion can be stated
as Bayesian estimation, which involves the evaluation of the posterior distribution of
model parameters w.r.t. a sequence of motion observations. For tracking, the prediction

Fig. 1. The motion of a 3d articulated model is projected to derive the 2d image motion (optical
flow) of a person from a variety of views. Natural 3d human motions are acquired with a commercial
motion-capture system.



478 R. Fablet and M.J. Black

in time of this posterior distribution is derived from a prior distribution on the temporal
dynamics of model parameters. Since we exploit general non-parametric probabilistic
models, the posterior distribution is non-Gaussian and has no straightforward analytic
form. Thus, we represent it explicitly using a discrete set of samples in a particle filtering
framework [13,16].

2 Problem Statement and Related Work

In this paper, we focus, on the automatic detection and tracking of human motion in image
sequences, without the complete recovery of the 3d body motion. While recent advances
have been obtained for the tracking of 3d human motion using 2d image cues from
monocular image sequences [14,25,30] or multi-view image sequences [4,9,11], these
techniques require manual initialization (see [20] for a more complete review). Despite
these successes, the complete recovery of 3d body motion is not always necessary and
the detection and tracking of 2d human motion is sufficient for numerous applications.
Furthermore, this 2d stage can also be regarded as a primary step towards the automatic
initialization of more complex 3d schemes.

View-based models for object recognition are not new but here we apply these ideas
to biological motion recognition [6,27]. We see these models as existing within a hier-
archy from low-level image measurements to 3d motion models. Bregler [5] proposed
a similar probabilistic hierarchy of models but the approach lacked powerful mid-level
representations of human motion such as those proposed here and hence attempted to
interpret at a high level, very low-level motion measurements. There have been other
proposed intermediate representations such as the “cardboard” person model [19] and
the scaled prismatic model [7] but these proved too high dimensional for automatic
initialization.

Current approaches for the detection and the tracking of people in images and videos
mainly rely on human appearance analysis and modeling. For instance, pedestrian de-
tection has been achieved using low-resolution wavelet images of people [22] or body
shape [10]. In [18], a Bayesian framework is also developed for object localization based
on probabilistic modeling of object shape. The most successful of recent tracking meth-
ods exploit statistical models of object appearance (color or grey-level histograms [8],
mixture models of color distributions [17], background subtraction [15], or edge-based
models of object shape [16,29]).

Among all the methods developed for object detection and tracking, Bayesian ap-
proaches appear the most attractive, since they provide a principled probabilistic frame-
work to combine multiple cues and to introduce a priori knowledge or constraints related
to the class of objects to detect and track in the scene. For these statistical schemes, the
key point is to provide appropriate statistical characterization of the entities of interest
(foreground) and of the background. Recent work on Bayesian tracking has focused on
this problem of foreground/background modeling [17,24,26,28].

In this paper, we also consider such a Bayesian approach. Unlike previous work, our
main focus is on the definition of appropriate probabilistic models of dynamic informa-
tion for human motion. As previously mentioned, whereas motion cues provide generic
and rich information independent of object appearance, they are rarely exploited for
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the detection and tracking of predefined types of objects. Motion information is indeed
mainly exploited in motion detection schemes [21,23], when no a priori information is
available about the class of entities to extract. This is due to the lack of generic prob-
abilistic models of object motion, which could be used as alternatives or complements
to statistical modeling of object appearance. However, in the context of human motion
analysis, recent studies [2,31] targeted at motion estimation and activity recognition
have stressed that human motion examples share specific characteristics, which make
the definition and the identification of generic models of human motion feasible.

We further exploit and extend these previous approaches to handle the automatic
detection and tracking of human motion in image sequences. Similarly to [2,31], we rely
on learned bases of human motion. However, instead of considering only one motion
basis set as in [2,31], we use a set of these motion bases. Consequently, our probabilistic
modeling can be viewed as a mixture of human motion models. Moreover, unlike these
previous approaches, our main concern is to design well-founded probabilistic models
of human motion. Instead of assuming particular noise distributions such as Gaussian
or some more robust distribution [2], our models are defined as Gibbsian fields [12,32]
specified from the first-order statistics of motion measurements, and are directly learned
from training examples. These probabilistic models are then used as the foreground
motion models in our approach. In the same fashion we construct a statistical background
model that accounts for generic motion situations (cf. [17,24,26]). Both models are
exploited in the Bayesian framework for detection and tracking. These motion models
could be combined with more traditional probabilistic models of appearance in this
Bayesian framework. It would be straightforward to extend this work to detect and track
other kinds of objects for other applications.

3 Human Motion Modeling

To detect and track human motion in image sequences, we rely on generative mod-
els, which are computed from training examples for different view angles using PCA
(Principal Component Analysis). What is critical is that these models be sufficiently
low-dimensional so as to permit efficient search and sufficiently expressive so as to be
useful for initializing more complex models. Given these linear human motion bases, we
build probabilistic likelihood models from the statistical analysis of the reconstruction
error and of the distribution of the projection onto basis vectors.

In this section, we first present the training stage used to learn human motion bases.
Then, the different features of the probabilistic human motion models are introduced.

3.1 Learning Human Motion Bases

The learning of motion bases from training examples has already been successfully
exploited for parameterized motion estimation and activity recognition [2,31]. Similarly,
we learn bases for full-body human motion from synthetic training examples generated
from motion capture data. Here we focus on walking motions but the approach can be
extended to more general human motion.
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view angle θ = π/2
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Fig. 2. Learning human motion models

Our training set consists of multiple walking sequences from four professional
dancers (two men and two women). Given the 3d position of the body and its mo-
tion at any time instant we can predict the actual 2d flow field that this motion would
generate from any viewing direction. To our knowledge, complex motion models such
as those described here have never been used before because of the lack of reasonable
training data. Here however, with 3d “ground truth” we can generate high-quality train-
ing flow fields from any desired viewpoint. Fig. 2 displays two example flow fields from
the training set. To cope with the changes in optical flow as a function of viewing angle,
we adopt a view-based model and separately learn motion bases for different viewing
directions. Specifically, we generate a training set of 480 flow fields for each of twelve
view angles {0, π/6, ..., 11π/6}. For each view, we perform PCA and keep as motion
bases the first fifteen eigenvectors accounting on average for 0.95 of the total variance.
Fig.2 shows the two first basis vectors for the view angles 0 and π/2. For a given human
motion model M, θ(M) denotes the associated view angle, NB(M) the number of
basis vectors and B(M) = {Bk(M), k ∈ {1, ..., NB(M)}} the eigenvectors for the
human motion basis.

These learned motion bases constrain the spatial configuration of the detected and
tracked human motion. Additionally we model the temporal characteristics of human
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motion. In this work, we use the method described in [1]. However, other kinds of tem-
poral models could be employed (e.g. Hidden Markov Models (HMM), auto-regressive
models or other time series models). The exploited temporal model is specified by a
sequence τ(M) = [a1(M), ..., aφmax(M)], where aφ(M) is a vector of linear coef-
ficients at phase φ of the cyclic walking gait [2]. Given the motion basis B(M), we
learn the temporal model τ(M) using the method described in [1]. For each model M,
we compute the associate trajectories of the motion coefficients of the projection of
the associated training examples onto basis B(M) and the mean trajectories form the
temporal models. In Fig. 2, the temporal models for θ = 0 and θ = π/2 are displayed.1

Hence, given a model M, a phase φ and a magnitude γ, we can generate an optical
flow field w(M, φ, γ) corresponding to the human motion:

w(M, φ, γ) = γ

NB(M)∑
k=1

aφ,k(M)Bk(M). (1)

3.2 Statistical Modeling of Human Motion

Now, let w(W) be an observed flow field in a window W . Our generative model states
that w(W) equals w(M, φ, γ) plus noise for some setting of the model parameters M,
W , the phase φ and magnitude γ. Rather than assume an arbitrary noise model (e.g.
Gaussian), here we learn it from training data.

We note that we can reduce the dimensionality of the model further by computing
the optimal magnitude term γ′ that minimizes the reconstruction error

E(w(W), φ,M}) = w(W) − γ′
NB(M)∑

k=1

aφ,k(M)Bk(M) (2)

where γ′ is given by

γ′ =

NB(M)∑
k=1

αkaφ,k(M)

 /
NB(M)∑

k=1

α2
k

 (3)

where {αk} are the coefficients of the projection of w(W) onto the bases B(M).
The likelihood PHM (w(W)|φ, γ,M) of the flow field w(W) given the model pa-

rameters (φ, γ,M) is then specified from the reconstruction errorE(w(W), φ,M) and
magnitude γ′ as follows:

PHM (w(W)|φ, γ,M) = P (E(w(W), φ,M), γ′|φ, γ,M) . (4)

We can rewrite this as:

PHM (w(W)|φ, γ,M) = P (E(w(W), φ,M)|γ′, φ, γ,M)P (γ′|φ, γ,M) . (5)
1 Observe that we have chosen to separately compute the spatial and temporal models for each

view. This simplifies the learning and estimation problems compared to building a single spatio-
temporal model for each view.
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Since the magnitude of the reconstruction error obviously depends on the magnitude of
the human motion, the likelihood P (E(w(W), φ,M)|γ′, φ, γ,M) is evaluated from
the normalized reconstruction error Ẽ(w(W), φ,M) defined by:

Ẽ(w(W), φ,M) = E(w(W), φ,M)/[γ′‖aφ(M)‖], (6)

as γ′‖aφ(M)‖ is the magnitude of the human motion. Thus, further simplifying condi-
tional dependencies, the likelihood PHM (w(W)|φ, γ,M) is defined as the product of
two terms as follows:

PHM (w(W)|φ, γ,M) = P
(
Ẽ(w(W), φ,M)|M

)
P (γ′|φ, γ,M) . (7)

The first term, P (Ẽ(w(W), φ,M)|M), represents the likelihood distribution and will
be learned from training examples. The second term, P (γ′|φ, γ,M), is exploited to
specify the minimum motion magnitude of the motion to be detected and tracked and to
smooth the temporal evolution of the magnitude γ of the tracked area.

3.3 Likelihood Distribution of the Reconstruction Error
The definition of the likelihood distribution P

(
Ẽ(w(W), φ,M)|M

)
is based on the

first-order statistics of Ẽ(w(W), φ,M). Let Λ denote the quantization space of these
flow field differences and Γ (Ẽ(w(W), φ,M)) = {Γ (λ, Ẽ(w(W), φ,M))}λ∈Λ the
histogram of Ẽ(w(W), φ,M) quantized over Λ. The computation of the likelihood
P (Ẽ(w(W), φ,M)|M) must be independent of the size of the window W in order
to compare the likelihoods of the projection error over a set of windows with different
sizes. This leads us to consider the normalized histogram Γ (Ẽ(w(W), φ,M)) as the
characteristic statistics of Ẽ(w(W), φ,M).

Based on the Maximum Entropy criterion (ME) [32], P (Ẽ(w(W), φ,M)|M) is
expressed using the following Gibbsian formulation:

P
(
Ẽ(w(W), φ,M)|M

)
∝ exp

[
ΨM • Γ (Ẽ(w(W), φ,M))

]
, (8)

where ΨM = {ΨM(λ)}λ∈Λ are the Gibbsian potentials which explicitly specify the
distribution P (Ẽ(w(W), φ,M)|M). ΨM • Γ (Ẽ(w(W), φ,M)) is the dot product be-
tween model potentials ΨM and normalized histogram Γ (Ẽ(w(W), φ,M) defined by:

ΨM • Γ (Ẽ(w(W), φ,M)) =
∑
λ∈Λ

ΨM(λ)Γ (λ, Ẽ(w(W), φ,M)). (9)

Since we will compare values of the likelihoodP (Ẽ(w(W), φ,M)|M) for different
windows W and models M, the normalization constant ZM defined by:

ZM =
∑

(w(W),φ)

exp
[
ΨM • Γ (Ẽ(w(W), φ,M))

]
, (10)

has to be explicitly known and computable. Let us stress that this issue was not handled
in [2,31] since only one motion basis was considered. It can be rewritten as:

ZM =

(∑
λ∈Λ

exp

[
ΨM(λ)

|W|
])|W|

. (11)
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Fig. 3. Potentials ΨM specifying the likelihood of the reconstruction error
P (Ẽ(w(W), φ, M)|M). We give the plots of {−ΨM(λ)}λ∈Λ for the view angles θ = 0 and
θ = π/2.

Thus, the exact expression of the likelihood P (Ẽ(w(W), φ,M)|M) is

P
(
Ẽ(w(W), φ,M)|M

)
=

(∑
λ∈Λ

exp
[
ΨM(λ)

|W|
])−|W|

exp
[
ΨM • Γ (Ẽ(w, φ,M))

]
.

(12)
In this expression, only the first term depends on |W| whereas it is by definition indepen-
dent of the observed motion error Ẽ(w(W), φ,M). Therefore, to make the comparison
of the likelihoods according to different window sizes feasible, we will compute the
expression (12) for a reference window size |W|ref . In practice, we use the window size
of the training examples.

We learn the potentials ΨM for a model M from the training examples used to
compute the motion basisB(M). More precisely, given the normalized histogramΓ (M)
of the reconstruction error for this training set, the potentials ΨM estimated w.r.t. the
Maximum Likelihood (ML) criterion are given by:

ΨM(λ) = log

(
Γ (λ,M)/

∑
λ′∈Λ

Γ (λ′,M)

)
. (13)

Fig. 3 displays the plot of the potentials ΨM for the view angles θ = 0 and θ = π/2.
These two distributions are non-Gaussian. Besides, it is also worth mentioning that
the main peak does not necessarily occur in 0. Thus, there can be a weak bias in the
reconstruction from the learned motion basis.

3.4 Prior Distribution of Magnitude

To further constrain the detection and tracking of human motion, we exploit the fact
that we aim at identifying moving entities with a motion magnitude greater than a given
motion detection level µ. In addition, the magnitude γ′ is more likely to evolve smoothly
over time. Therefore, P (γ′|φ, γ,M) is written as:
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P (γ′|φ, γ,M) ∝ δµ(‖w(M, φ, γ′)‖)N (γ′ − γ, σ2
mag), (14)

where‖w(M, φ, γ′)‖ is the norm of the reconstructed floww(M, φ, γ′)given by relation
(1). δµ(.) is a smooth step function centered in µ and N (., σ2

mag) a normal distribution
with variance σ2

mag.

4 Generic Motion Modeling

In the Bayesian framework described in Section 5, the detection and the tracking of
human motion exploits the ratio of the likelihood of the observation within a given
window explained, on the one hand, by a human motion model (foreground model) and
on the other hand by a generic motion model (background model). Since no ground truth
exists for the flow fields of general scenes, we cannot directly derive this model using
observed statistics of the flow field w. As an alternative, it is defined from the statistics
of temporal image differences. Thus, it allows us to handle noise on a static background
but also dynamic situations which do not correspond to human motion.

The probabilistic distribution attached to this model is specified using the first-
order statistics of the difference of pairs of successive images. Given a window W
and an image difference ∆I , we evaluate its normalized histogram Γ (∆I(W)) =
{Γ (n,∆I(W))}n∈{−N,...,N} whereN is the number of grey-levels in the images. Simi-
larly to the statistical modeling of the reconstruction error in ubsection 3.3, the likelihood
PGM (∆I(W)), that the image difference∆I(W) within window W is a sample of the
generic motion model, is expressed as:

PGM (∆I(W)) ∝ exp
[
ΨGM • Γ (∆IW)

]
, (15)

with ΨGM • Γ (∆I(W)) =
N∑

n=−N

ΨGM (n)Γ (n,∆I(W)). (16)

We cope with the normalization issue in a similar way as in Subsection 3.3. To estimate
the potentials ΨGM , we consider a set of image sequences acquired with a static camera,
involving different kinds of moving objects (pedestrians, cars, trees) and backgrounds.
The normalized histogram ΓGM of the image differences is evaluated from this set of
sequences and the estimation of the potentials ΨGM w.r.t. the ML criterion leads to:

ΨGM (n) = log

(
ΓGM (n)/

N∑
n′=−N

ΓGM (n′)

)
. (17)

Fig. 4 displays the plot of the estimated potentials ΨGM of the generic motion model.
While this distribution is obviously non-Gaussian, it is similar in spirit to the robust
function as used for robust motion estimation [3].

5 Bayesian Formulation

The detection and the tracking of human motion is stated as a Bayesian inference prob-
lem. More precisely, given a sequence of observations, i.e. a sequence of observed flow
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Fig. 4. Plot of the potentials ΨGM of the generic motion model.

fields and image differences, we aim at evaluating the posterior distribution of the model
parameters which are in our case the location (i.e., the window W) and type of human
motion (i.e., model M, phase φ and magnitude γ of the sought human motion sample).

In this Section, we detail this Bayesian formulation which exploits the statistical
motion models, that we have previously defined, in a data-driven likelihood. We will
define prior distribution over model parameters appropriate for detection and tracking.
Then, we will briefly outline how we evaluate in practice the posterior distribution using
particle filtering.

5.1 General Overview

Let us denote by wt = {w0, w1, ....., wt} and ∆It = {∆I0, ∆I1, ....., ∆It} the se-
quences of flow fields and image differences up to time t. The flow fields {wt} are
estimated using the robust technique described in [3].

The goal of detecting and tracking human motion at time t is regarded as the eval-
uation of the posterior distribution P (φt, γt,Wt,Mt|wt,∆It). Below, we will denote
by Θt the model parameters [φt, γt,Wt,Mt]. Using Bayes rule and assuming that ob-
servations at time t are independent from observations at previous instants given model
parameters Θt, we obtain:

P (Θt|wt,∆It) = k P (wt, ∆It|Θt)︸ ︷︷ ︸
data-driven likelihood

P (Θt|wt−1,∆It−1)︸ ︷︷ ︸
prior at time t−1

, (18)

where k is a constant independent of Θt.

5.2 Data-Driven Likelihood

The data-driven distributionP (wt, ∆It|Θt) evaluates the likelihood that the observations
at time t account for human motion model Mt within the window Wt. Assuming the
motion characteristics within the window Wt are independent on those of the background
R\Wt, where R is the image support, P (wt, ∆It|Θt) is explicitly given by:

P (wt, ∆It|Θt) = k′PHM (wt(Wt)|φt, γt,Mt)PGM (∆It(R\Wt)|Wt), (19)
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where k′ is a normalization factor. Exploiting the independence between R\Wt and
Wt, PGM (∆It(R\Wt)|Wt) can be rewritten as the ratio of PGM (∆It(R)|Wt) and
PGM (∆It(Wt)|Wt). Further simplifying conditional dependencies, we obtain:

P (wt, ∆It|Θt) = k′PHM (wt(Wt)|φt, γt,Mt)
PGM (∆It(R))
PGM (∆It(Wt))

, (20)

Since PGM (∆It(R)) does not depend on model parameters Θt, this simplifies into the
following expression:

P (wt, ∆It|Θt) = k′′PHM (wt(Wt)|φt, γt,Mt)
PGM (∆It(Wt))

, (21)

where k′′ is a normalization factor.
Thus, the data-driven term P (wt, ∆It|φt, γt,Wt,Mt) is completely determined

from the expression of the likelihoods PHM (wt(Wt)|φt, γt,Mt) and PGM (∆It(Wt))
given by relations (12), (14) and (15).

5.3 Prior Distribution on Model Parameters

The prior distributionP (Θt|wt−1,∆It−1) describes the temporal dynamics of the model
parameters Θt. For the detection task at time t = 0, this prior reduces to P (Θ0). Since
we have neither a priori knowledge about the location of the human motion in the image
nor the human motion type, the initial prior distribution is chosen to be uniform.

For tracking purpose, the prior distribution P (Θt|wt−1,∆It−1) is expressed as the
marginalization of the joint distribution over all model parameters up to time t over all
observations up to time t. Adopting a first-order Markov assumption on model parame-
ters, this leads to the following integral formulation:

P (Θt|wt−1,∆It−1) =
∫
P (Θt|Θt−1, wt−1,∆It−1)P (Θt−1|wt−1,∆It−1)︸ ︷︷ ︸

posterior at time t− 1

dΘt−1.(22)

This integral involves the product of two terms: P (Θt−1|wt−1,∆It−1) the posterior
distribution at time t−1 andP (Θt|Θt−1, wt−1,∆It−1) the prior distribution over model
parameters describing their temporal dynamics. Assuming conditional independence of
model parametersφt,γt and Mt w.r.t. to [Θt−1, wt−1,∆It−1], the latter term is rewritten
as:

P (Θt|Θt−1, wt−1,∆It−1) = P (Mt|Θt−1, wt−1,∆It−1)

× P (φt|Θt−1, wt−1,∆It−1)

× P (γt|Θt−1, wt−1,∆It−1)

× P (Wt|γt, φt,Mt, Θt−1, wt−1,∆It−1).

(23)

P (Mt|Θt−1, wt−1,∆It−1) defines the evolution of the human motion model assigned
to the tracked window. It is directly related to the temporal evolution of the view angles
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between the tracked entity and the camera. We can assume that Mt depends only on
Mt−1. We thus resort to the specification of the first-order Markov chainP (Mt|Mt−1).
Assuming the view angle evolves smoothly over time, these transitions are defined by:

P (Mt|Mt−1) =


α, if Mt = Mt−1

1 − α
2

, if θ(Mt) = θ(Mt−1) ± π/6[2π]
. (24)

Typically, we set in practice α = 0.7.
Concerning phase φt, it can be assumed that it evolves smoothly along time and

P (φt|Θt−1, wt−1,∆It−1) is taken to be a wrapped Gaussian distribution centered in
φt−1 modulo the length of the walk cycle. For the magnitude γt, we exploit that we have
estimated at time t−1 the magnitude which leads to the lowest reconstruction error. We
then assign this value to γt.

The prior distribution P (Wt|Θt−1, wt−1,∆It−1) over the window position Wt is
assumed to be Gaussian around the predicted window Wpred

t .

P (Wt|φt, γt,Mt, Θt−1, wt−1,∆It−1) = N (Wt − Wpred
t , σpos), (25)

where N (., σpos) is a Gaussian distribution with diagonal covariance σpos. The location
of the predicted window Wpred

t is computed from the displacement of the center of the
previous window Wt‘1 according to the reconstructed flow w(Mt−1, γt, φt−1).

5.4 Computation of the Posterior Distribution

The direct computation of the posterior distribution P (Θt|wt,∆It) is not feasible, since
no analytic form of this likelihood function over the whole model parameter space can
be derived. However, for any values of the model parameters Θt, we can evaluate the
likelihood of the observations formed by the flow field and the image difference at
time t given these model parameter values. Therefore, we can approximate the posterior
distribution P (Θt|wt,∆It) by a set of samples using a particle filtering framework [13,
16].

At time t, we first drawNpart particles {sn}, each one being assigned model param-
eter valuesΘsn

t−1. We propagate this set of particles at time t using the temporal dynamics
specified by the prior distributions P (Θt|Θt−1, wt−1,∆It−1). This supplies us with a

new set of particles {s′n}, for which we compute the likelihoods P (wt, ∆It|Θs′
n

t ) using
(21). When normalized to sum to one, these likelihoods (or weights) associated with
each particle s′n approximate the posterior distribution at time t.

At time t = 0, for detection purposes, we need to perform a global search over
model parameters (i.e., position, motion type, phase and scale).We exploit an hierarchical
strategy to approximate the posterior distribution by subsampling at different resolutions
the space of the model parameters. This scheme provides a coarse location of the detected
human motion, which will be refined by tracking.
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Fig. 5. Tracking a human walking in a straight line. We display the location of the expected window
at frames 0, 10, 20, 30, 40 and 50.

6 Experiments

Parameter setting. We present preliminary results of detection and tracking of human
motion in different real image sequences acquired with a static camera. In order to
visualize the posterior distribution in the frame at time t, we display the expected location
< Wt|wt,∆It > of the detected and tracked window including human motion, which
is approximated by the following sum over the set of particles {sn}n∈{1,...,Npart} at

time t:< Wt|wt,∆It >=
∑Npart

n=1 πsnWsn
t where πsn is the normalized version of the

likelihood P (wt, ∆It|Θsn
t ).

In the subsequent experiments, we used the following parameter settings. As far the
data-driven likelihood is concerned, the main parameter to set is the motion detection
level µ. Since this parameter has a physical meaning in terms of average displacement
within the expected window comprising the human motion, it is easy to set. We will
use µ = 1.0. Besides, the variance of the prediction for the magnitude γ is taken to be
σ2

mag = 1.0. These parameters could be learned from training data.
For the prior distribution specifying the temporal dynamics, we set α = 0.7 for

the Markov chain characterizing the transitions between human motion models, and the
covariance σpos has diagonal terms equaling 5.0 for the square root of the variance on
the position of the center of the tracked window, and 1.0 for the variance in terms of
window scaling.

Human walking in a straight line. The first processed example is an sequence of 60
frames involving a human walking in a straight line. We display in Fig. 5 the results
for frames 0, 10, 20, 30, 40 and 50. Our method accurately recovers the window size
and the location of the walking pedestrian with no manual initialization. As previously
mentioned, the initialization provides a coarse estimate of the location of the human
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Fig. 6. Tracking a human walking in a straight line. Plot of the estimated values of scale and view
angle parameters.

Fig. 7. Tracking a human walking in a straight line. We display the location of the expected window
at frames 0, 10, 20, 30, 40 and 50.

motion, since the coarse-to-fine strategy is not iterated until the finest resolution. Also,
as shown in Fig. 6, the expected value of the viewing angle stabilizes around 10π/6,
whereas one could expect to obtain 3π/2. Even though there is a bias (corresponding
to the quantization step of the view angles), it provides us with correct direction of the
human motion. This bias might be due to differences in magnitude between the observed
human motion and the training examples.

Walking pedestrian in presence of background motion. The second processed ex-
ample is a video of a street acquired from the top a building. Therefore, it does not
exactly refer to the kind of motion situation learned from the training examples. In this
sequence, the tree in the upper right corner is slightly moving in the wind. In spite of
these difficulties, our approach recovers the location of the walking pedestrian and the
expected view angle is estimated to be approximately 8π/6, which gives a correct guess
of the direction of the human motion.

Note further, that with the position, scale, viewing direction, and phase of the gate,
that we could now predict the 3d configuration of the body (since we knew this during
training). Thus our posterior distribution provides the basis for a probabilistic proposal
distribution for more detailed tracking. In future work, we will use our 2d models for
initialisation of 3d human motion tracking.

7 Conclusion

We have presented a Bayesian framework for the automatic detection and tracking of
human motion in image sequences. It relies on the design of probabilistic generative
models of human motion learned for training examples. We also define a statistical
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model accounting for generic motion situations. These two motion models enable us to
define the likelihood of observing a particular example flow field given the parameters of
the human motion model. Then, the detection and the tracking of human motion involves
the evaluation of the posterior distribution over the model parameters w.r.t. a sequence of
motion observations. The computation of this posterior distribution exploits a model of
the temporal dynamics of the model parameters and is achieved using a particle filtering
framework. We have demonstrated the effectiveness of our methods for different real
image sequences comprising human walking.

Future research directions will involve different issues. First of all, the probabilistic
human motion models provide complementary tools to appearance modeling usually
considered for the detection and tracking of people. The Bayesian framework exploited
in our work could be easily extended to combine both appearance and motion models.
Additionally, we could enrich the characterization of human motion by learning more
complex temporal models of human motion using time series analysis tools such as
HMMs or linear and non-linear auto-regressive models. With a more varied training
set, we could learn more general models of 2d image motion. Finally, the proposed
probabilistic human motion models could also be used to characterize and analyze other
categories of dynamic events, not necessarily human related, such as dynamic phenom-
ena occurring in meteorological image sequences.
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