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Abstract. Principal Component Analysis (PCA) has been successfully applied to
construct linear models of shape, graylevel, and motion. In particular, PCA has
been widely used to model the variation in the appearance of people’s faces. We
extend previous work on facial modeling for tracking faces in video sequences
as they undergo significant changes due to facial expressions. Here we develop
person-specific facial appearance models (PSFAM), which use modular PCA to
model complex intra-person appearance changes. Such models require aligned vi-
sual training data; in previous work, this has involved a time consuming and error-
prone hand alignment and cropping process. Instead, we introduce parameterized
component analysis to learn a subspace that is invariant to affine (or higher order)
geometric transformations. The automatic learning of a PSFAM given a training
image sequence is posed as a continuous optimization problem and is solved with
a mixture of stochastic and deterministic techniques achieving sub-pixel accuracy.
We illustrate the use of the 2D PSFAM model with several applications including
video-conferencing, realistic avatar animation and eye tracking.

1 Introduction

Many computer vision researchers have used Principal Component Analysis (PCA) to
parameterize appearance, shape or mation|[3,[L0/23,30]. However, one major drawback
of this traditional technique is that it needs normalized samples in the training data. In the
case of computer vision applications, the result is that the samples have to be aligned or
geometrically normalized (we assume that other normalizations, e.g. photometric, have
already been done). Previous methods for constructing appearance or shapembdels [10,
16117.28,30,31] have cropped the region of interest by hand, or have used a hand-labeled
pre-defined feature points to apply the translation, scaling and rotation that brought each
image into alignment with a prototype. These manual approaches are likely to introduce
errors into the model due to inaccuracies which arise from labeling the points by hand.
In addition, manual cropping is a tedious, unpleasant, and time consuming task. This
paper automates this process with a general framework for learning low dimensional
linear subspaces while automatically solving for the alignment of the input data with
sub-pixel accuracy.

To illustrate the idea, Figuid 1 shows some frames from a training set for learning
an eigen-eye (a subspace for the eye’s variation). The images were captured by asking
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Fig. 1. Some frames of the original image sequence.
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Fig. 2. a) Original data. b) Reconstruction of the right eye without any alignment. ¢) Reconstruction
of the right eye with the proposed method.

the user to change the configuration of the eyes (open, close, look right, etc.) while
holding the head still. However, it is not a reasonable to assume that the person is
absolutely still during the training time, and in practical situations there are always
small motions between frames. Observe that in this kind of sequence it is difficult to
gather aligned data due to person’s motion and the lack of labeled points for solving the
correspondence problem between frames. The aim of the paper is illustrated in Figure
2, where Figur€l2.a shows some original images used for training. A low dimensional
linear model of the eye is constructed using PCA applied to the non-aligned images;
that is, assuming that the person is not moving, the spatial domain of the eyes does
not change over the sequence. Figure 2.b plots the reconstructed images computed with
the bases derived from the non-aligned images. Figlre 2.c shows the reconstructed
images obtained using the parameterized component analysis method described here.
This “eigen-registration” technique iteratively computes a linear subspace while aligning
the training images w.r.t. this subspace. That is, the algorithm that we propose in this
paper will simultaneously learn the local appearance basis, creating modular eigenspaces
(ME) [26/30] while computing the motion to align the images w.r.t. the ME. The masks
which define the spatial domain of the ME are defined by hand in the first frame (no
appearance model is previously learned) and after that the method is fully automatic.

In this paper we focus on the application of face modeling. Most of the previous work
on face tracking and modeling is focused on generic trackers, which are independent of
the person’s identity [519,10,23]24]. In particular, appearance based face trackers [10,26,
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34] make use of PCA in order to construct a linear model of the face’s subspace (variation
across people) rather than the intra-person variations due to changes in expression.
When working with person-specific models|[15.17,20,23], PCA will model the complex
intra-person appearance changes due mostly to variations of expression (eyes’ blinking,
wrinkles in the mouth area, appearance of the teeth, etc.) rather than modeling the
appearance changes due to identity. Although PSFAM are just valid for one person, they
remain useful in many vision related applications such as vision-based human computer
interaction (VBHCI), speech driven animation (to animate faces from audio), facial
animation in general, video-conferencing, face verification, etc, which usually involve

a particular user. In related but different work, Edwards et’all]19,20] have proposed
a method for approximately isolating the sources of image variation such as identity,
pose, lighting, etc[19] by using linear discriminant analysis. Edwards €t al. [20] use
this factorized basis to update some characteristics to personalize a model. In this paper,
we will apply Robust Parameterized Component Analysis to learn a PSFAM and will
illustrate the method with applications involving facial modeling. Preliminary results of
this paper were presented in[12].

2 PreviousWork

This paper is related to previous work on subspace learning methods and PCA. It is
beyond the scope of the paper to review all possible applications of PCA, therefore we
just briefly describe the theory and point to related work for further information.

2.1 SubspaceLearning

LetD = [d; dy ...dy] = [d* d? ... d%)T be a matrixD € R4V [, where each column
d; is a data sample (or imagéy, is the number of training images, adds the number
of pixels (variables) in each image. If the effective ranlDois much less thad, we can
approximate the column spaceldfwith £ << d principal components. Let the firkt
principal components dD be B = [by, ..., b;] € R?**. The columns o3 span the
subspace of maximum variation of the dfa

Although a closed form solution for computing the principal componeBjscan
be achieved by computing thelargest eigenvectors of the covariance malpb”
[18], here it is useful to exploit work that formulates PCA as the minimization of an
energy function[1#,18]. Related formulations have been studied in various communities

! Bold capital letters denote a matiiX, bold lower-case letters a column vectbid; represents
the j-th column of the matriXD andd’ is a column vector representing tlieth row of the
matrix D. d;; denotes the scalar in rowand column; of the matrixD and the scalai-th
element of a column vectat;. All non-bold letters represent scalar variablés. is thei-th
scalar element of the vectdf . diag is an operator that transforms a vector to a diagonal matrix,
or a matrix into a column vector by taking each of its diagonal componer{®.) is the trace
operator for a square matr® € R4, thatis,>"¢ , d;. ||d||3 denotes the.. norm of the
vectord, that isd” d. ||d||3y denotes the weighteH> norm of the vectod, that isd” Wd,
and||D||% is the Frobenius norm of a matriz;(D” D) = tr(DDT). D; o D, denotes the
Hadamard (point wise) product between two matrices of equal dimension.
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(see [14]): machine learning, statistics, neural networks and computer vision. In spirit,
all these approaches essentially minimize the following energy function (although with
different noise models, deterministic or Bayesian frameworks, or different metrics):

N d k

N
Epea(B,C) =[|ID = BC|[z = |ldi = Beill3 = > (dyp — Y bpjese)*(1)

i=1 t=1 p=1 j=1

whereC = [c; ¢ - - ¢,,] and eacle; is a vector of coefficients used to reconstruct the
data vectod;. It is interesting to note that the three equivalent previous equations can
give different insights into the subspace learning technique. The first matrix formulation
clearly poses PCA as a simple factorizatiodbinto B andC. The problem of subspace
learning translates to a bilinear estimation process of maticasd C. The second
equivalence shows more explicitly how each data samdples reconstructed with a
coefficientc; and a common basB. Finally the last equation expresses the subspace
constraint at a pixel level. Many methods exist for minimizing (1) (Alternated Least
Squares (ALS), Expectation-Maximization (EM), etc.), but in the case of PCA, share the
same basic philosophy. These algorithms alternate between solving for the coefficients
C with the base® fixed and then solving for the basBswith C fixed. Typically, both
updates are computed by solving a linear system of equations.

2.2 Adding Motion into the Subspace Formulation

Principal component analysis has been widely applied to the construction of facial mod-
els using linear subspacés|[34]. During recognition or tracking it is common to automat-
ically align the input images with the eigenspace using some optimization technique [4,
10,34]. In contrast, little work has addressed problems posed by facial misalignment at
the learning stage. Mis-registration introduces significant non-linearities in the manifold
of faces and can reduce the accuracy of tracking and recognition algorithms. While previ-
ous approaches have dealt with these issues as a separate, off-line registration processe:
(often manual), here it is integrated into the learning procedure.

Recently there has been an interest in the simultaneous computation (although the
existing algorithms compute ititeratively) of appearance bases and motion. This problem
is is a classical chicken-and-egg problem (like motion segmentation). Once the pixel
correspondence between theimages inthe training datais solved, learning the appearance
model is straightforward, and if the appearance is known, solving for the correspondence
is easy. De la Torre et al._[L5] proposed a method for face tracking which recovers affine
parameters using subspace methods. This method dynamically updates the eigenspace
by utilizing the most recent history. The updating algorithm estimates the parametric
transformation, which aligns the actual image w.r.t. the eigenspace and recalculates a
local eigenspace. Because the new images usually contain information not available in
the eigenspace, the motion parameters are calculated in a robust manner. However, the
method assumes that an initial eigenspace is learned from a training set aligned by hand.
Schweitzerl[33] has proposed a deterministic method which registers the images with
respect to their eigenfeatures, applying it to flesver garden sequence for indexing
purposes. However, the assumption of affine or quadratic motion models is only valid
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when the scene is planar. The extension to the general case of arbitrary 3D scenes and
camera motions remains unclear. As Schweitzer noticels [33] the algorithm is likely
to get stuck in local minima, since it comes from a linearization and uses gradient
descent methods. On the other hand, Rao [32] has proposed a neural-network which
can learn a translation-invariant code for natural images. Although he suggests updating
the appearance basis, the experiments show only translation-invariant recognition, as
proposed by Black and Jepson [4].

Frey and Jojic[[21] took a different approach and they introduce an Expectation
Maximization (EM) algorithm for factor analysis (similar to PCA) that is invariant to
geometric transformations. While their work represents a significant and pioneering
contribution, the proposed method can be problematic because it discretizes the space of
spatial transformations and the computational cost grows exponentially with the number
of possible transformations. Our work attempts to solve a similar problem but with a
continuous optimization framework that is more appropriate for common parameterized
transformations of the data (e.g. affine).

In a different direction, there has been intensive research on automatically or semi-
automatically aligning facial shape models using extracted landmarks[See [11] for
a good review of automatic 2D and 3D landmark placement. In contrast to previous
automatic landmark methods, we use parameterized matching with a low dimensional
model (e.g. affine) and generalize the matching by solving for both the subspace of the
appearance variation and the alignment of the training data with the subspace.

In this paper, unlike previous methods we use stochastic and multi-resolution tech-
nigues to avoid local minima in the minimization process. Also, we extend previous
approaches to multiple regions within a robust (to outliers) and continuous optimization
framework. We apply the method to learn 2D modular PSFAMs and several potential
applications of PSFAMs are proposed.

3 Generative Face Models: Motivation

Our eigen-registration algorithm will be introduced with examples from face modeling.

In this section we describe one possible generative model for dynamic faces. Similar to
the previous work of Black and Jepson [4], Blackakt[3] and Cootes eal. [10], the
generative model that we propose for image formation takes into account motion and
appearance, but in our case we also exploit predefined masks and learn the appearance
bases. Figuriel 3 shows some frames of a training set for learning a 2D PSFAM. Given this
training data as an input, the algorithm that we propose in this paper is able to factorize
the training data into appearance and motion of some predefined regions.

3.1 Modular Eigenspaces

The eyes and the mouth, while weakly correlated, can perform independent graylevel
changes (over a long sequence), so they should be represented in different eigenspaces
in order to facilitate interpretation, to allow a more flexible model and to generate a
more compact representation. Consider, for instance, a training set of people with both
eyes open or both eyes closed. If we consider the face as a unique region, it would no
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Fig. 3. Generative model for an image sequernaayers. binary masks or layers specified by hand
in the first frameAppearance: linear appearance model recovered in the mask akéason:
transformation between the eigenspace and the images.

longer be possible to accurately reconstruct one person with the left eye closed and the
right open. A similar example has been pointed out by Jebaah f26]. These facts
suggested the idea of constructing modular eigenspaces (ME), that is, performing PCA
on patches in the image, originally suggested by Pentlaald [26[30] in the context of

face recognition. Working with ME has a number of additional benefits: The first one is
that ME will provide more accurate reconstruction of the regions of interest (e.g. eyes
and mouth versus hair). Due to the reduction of the dimensionality of the space (the
images of each local training set are smaller) the estimation of the covariance is more
likely to be full rank and probabilistic appearance methods are better conditioned [30].
Also, the computational cost of computing the eigenspace is smaller.

In principle, the regions of support for independent appearance changes (the masks),
could be computed as an eigenspace based segmentation problem. That is, constructing
an algorithm which tries to divide the image into connected regions in order to minimize
some criterion (e.g. MDL). However, in the case of the face, these regions are quite
clear, and a rough approximation is sufficient. Therefore, we define the masks in the
firstimage and they will remain the same for the entire training image sequence (simply
performing rigid transformations). Figl 3 shows one example of how to divide the face
into non-overlapping regions (left eye, right eye, the mouth and the rest of the face).

Letd; € R¢*! be the region ofl pixels belonging to the face, defined by hand in the
firstimages! = [r} 7} ... 74]T € R¥*1 denotes the binary mask for the layeand it
has the same size as the face regibpikels). Each of the mask’s pixels takes a binary
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value, !, € {0,1} and there is no overlap between masks, thaf]g,, 7, =1 V p.
7! will containd; pixels with valuel, which define the spatial domain of the magkee
Fig.[3) and>> , d; = d.
Each of these masks will have an associated eigenspace. The graylevel of the patch,
or layer!, will be reconstructed by a linear combination of an appearance Béasis

1 1ol
d; B'c; I

d=|:|=| 1 | =) (x'eBlc) 2)

L L.L i=1
d; B*c;

whered! € R%*1 is the patch of the laydrandc! are the appearance coefficients of
the layerl attimet. B! = [b{ b} ... b} | € R%** are thek; appearance bases for the
layer. B! € R4k will be equal toB! for all pixels wherer!, = 1 (i.e. belonging to the
I*" mask) and otherwise can take an arbitrary value.

3.2 Motion

If the face to be tracked can be considered to be far away from the camera, it can
be approximated by a planél [5]. The motion of planar surfaces, under orthographic or
perspective projection, can be recovered with a parametric modebiof parameters.

The rigid motion of the face will be parameterized by an affine model:

! l l L
fioyoal) = | ot + [ o] o] ®

!
Qyy sy Qe Yp — Ye

whereal = [a}, dl, ... al,]T denotes the vector of motion parameters of the nhask
timet, x, = [z, y,|’ are the Cartesian coordinates of the image aptheixel and

xL = [ y!]T is the center of theé layer. Throughout the paper, we will assume that
the rigid motion of all the modular eigenspaces (w.r.t. the center of the face) is the same.
Thatis,a; = a?... =al.

Once the appearance and motion models have been defined, the graylevel of each
pixel of the imagel; is explained as a superposition of a layer-subspace plus a warping,
see Fig.[(B); thatisd, = >, (7! o Blcl) (fi(x,al)), wherex = [x1 xo -+ x4]”

The notation(w!oB'c!) (i (x, al)) means that the reconstructed image within the mask,

(w! o Blcl), is warped (or indexed) by the parameterized transform4tion a). Ob-

serve thatthisimage modelis essentially the same as previous appearance representation:
[4]10.16] but with the addition of modular eigenspaces.

4 Learningthe Model Parameters

Once the model has been established, in order to automatically learn the PSFAM, itis nec-
essary to learn the model parameters. In this section we describe the learning procedure;
thatis, given an observed image sequei@es R¢*) (N is the number of images) and

L masks in the firstimager(= {=!, ... ,w’}), finding the parameteis, C, A ando,
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which bestreconstruct the sequence. Whére {A', A% ... AL} isthe setof motion
parameters of all the layers in all the image fram&$.= [a! a) --- a¥] is the ma-
trix which contains the motion parameters for each image ir‘thiayer. Analogously,
C={C! C?, ..,CL}whereC! = [ci c} --- c]andB = {B!, B2, ... ,Bf}.

Atthis point, learning the model parameters can be posed as a minimization problem.
In this case the residual will be the difference between the image atttiamel the
reconstruction with the model. In order to take into account outlying data, we introduce
a robust objective function, minimizing,.,.,(B,C, A; o):

Brereg = S0 S p (s = S (1 S ) (B2 ) @)

wherebl,; is thep'™ pixel of the " basis ofB' for the layerl. Observe that the pixel
residual idiltered by the Geman-McClure robust error function[22] giverdfy, o) =

W' in order to reduce the influence of outlying datg.is a parameter that controls

the convexny of the robust function and is used for the deterministic annealing in a
Graduated Non-Convexity algorithm([4,7] (we do not minimizeg,.., overs,). Benefits

of the robust formulation in the subspace related problems are explained elséwhere [14].
Observe that the previous Ell (4) is similarEogentracking [4] but is applied in image
patches (masks). It is also similar to AAM [10] Btexible Eigentracking [16] without

shape constraints. However, in contrast to these approgche$ [4,10, 53],y the
appearance bas@sare now treated as parameters to be estimated.

4.1 Stochastic State I nitialization

The error function&,.,.4, EQ. [4), is non-convex and, without a good starting point,
gradient descent methods are likely to get trapped in local minima. When computing
the motion parameters, as in the case of optical flow, a coarse-to-fine stigtegy [4,11] can
help to avoid local minima. Although a coarse-to-fine strategy is helpful, this technique
is insufficient in our case, since in real image sequences the size of the face can be small
in comparison to the number of pixels in the background, and large motions can be
performed (e.g. in the sequences that we tried, the face can move more than 20 pixels
from frame to frame). In order to cope with such real conditions, we explore the use
of stochastic methods such as Simulated Annealing (SA) [2], Genetic Algorithms (GA)
[27/29] orConDENSsATION (particle filtering) [€,17] for motion estimation. Although the
techniques are very similar computationally speaking, here we make use of GA [29]
within a coarse-to-fine strategy.

Given the first image of the sequence, we manually initialize the layers or masks at
the highest resolution level and assign the graylevel to the first bases for each kayer
{bi, ..., bl}. Afterwards, we take the subset of theframes closest in time (typically
m=15), and use a GA for a first estimation of the motion parameters which minimize
Eqg. (@) (the least squares version). Given the genetic estimation of these parameters, we
recompute the baséswhich preservé0% of the energy. This initialization procedure
is repeated until all the frames in the image sequence are initialized. The procedure is
summarized as:
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— Manual initialization in the first frame.
e Initialize the mask in the imagé; .
e Initialize the base# = {b1, ..., bL} with the graylevel values a,.
— Stochastic initialization of the motion and appearance parametel3.for
e fori=2:m:N (Matlab notation)
e Run the GA for computing the motion and appearance parameters in
{d;, ... ,diym}
e Add basis and recompute the modular eigenspéciéeep the number of bases
which preservé&0% of the energy.
e end

The GA uses300 individuals over13 generations for each frame. The selection
function that we use is the normalized geometric ranking, which defines the probability
of one individual as?; = t—15m (1 — q)("=1) whereq is the probability of selecting
the best individualy is the rank of the individual, anf’ the population size. See]29]
for a more detailed explanation of the GA. At the beginnigdyas a low value, and
it is successively increased over generations acting as a temperature parameter in the
deterministic annealin@[4,7] for improving the local search. The crossover process is a
convex combination between two samples d.ecromosome; +(1—a)xcromosomes
wherel > « > 0. The genetic operator is a simple Gaussian random perturbation, which
also depends on the temperature parameter.

4.2 Robust Deterministic Learning

The previous section describes a method for computing an initial estimate of the pa-
rametersB3, C, A. In order to improve the solution and achieve sub-pixel accuracy,
a normalized gradient descent algorithm for minimizing Edy. (4) has been employed
in [12]. Alternatively (and conveniently) we can reformulate the minimization prob-
lem as one of iteratively reweighted least-squares (IRLS), which provides an approx-
imate, iterative, solution to the robust M-estimation problém [28]. For a givea
matrix W € RN which contains the positive weights for each pixel and each
image, is calculated for each iteration as a function of the previous residyals

dpt — () Ej L b ick) (f1(xp, a))). Each elementy,,; (p" pixel of thei'" image) of

. 2ep;02
W will be equal tow,; = (e, )/ epi, Where(ep;, 0,,) = 22eioe) — _Zeri%y

Deps (2, to2)2"

[?]. Given an initial error, the weight matri¥V is computed and the Edy](4) becomes

N L
Buereg(B,C, A;0) =Y [|dy = > (7' o Ble,') (fi(x, a})) 13w, (5)
t=1 =1
N L
=D > lldi(f(x,a5)) — Bleil[iy: (6)

“
Il
—

=1

wheref willwarp the image w.r.t. the eigenspace, whefgagarps the basis to the image.
Observe thaf will be approximately the inverse @f. Recall that|d||3, = A" Wd is
a weighted normW, € R%*? is a diagonal matrix, such that the diagonal elements are
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thet*” column of W. W' € R4 >4 is diagonal matrix, where the diagonal is created
by the elements of thecolumn of W which belong to thé'” layer. Observe that W
is a matrix with all ones we have the least-squares solution.

Eq. [6) provides the formulation for robiesgen-registration or robust parameterized
component analysis. Minimizin@l(6) with respect to the parameters gives a subspace
that is invariant to the allowed geometric transformations and robust to outliers on a
pixel level. Clearly, finding the minimum is a challenge and the process for doing so is
described below.

Notice that, if the motion parameters are known, computing the bB}iar(d the
coefficients €) translates into a weighted bilinear problem. In order to compute the
updates of the bases and coefficients in closed form in the simplest way, we use the
following observation:

N L

Euereg(B,C, A;a) =Y Y [[(dl,): — Bell[ay: @)
t=1 [=1
d L

=D II(dL)? = (YT (B IIEwy ®)

1

~

1

]
I

where(d.,), is the warped image! (f(x, a;)) and it is thet'" column of the matrix
D,, (just thed; elements corresponding to théayer). Recall thatd!,)” is a column
vector which corresponds to tp€" row of the matrixD,, and that W')? is a diagonal
matrix which contains thg*” row of the matrixW of the layer..

Minimizing Eqg. (8) is a non-linear optimization problem w.r.t. the motion parameters.
Following previous work on motion estimationl[[4]24], we linearize the variation of
the function, using d%¢ order Taylor series approximation. Without loss of generality,
rather than linearizing the transformation which warps the eigenspace towards the image
f1(x, a;), we linearize the transformation which aligns the incoming image w.r.t. the
eigenspacé(x, a;) (see Eq16). Expandingl.(f(x,al’ + Aal)) in the Taylor series
about the initial estimation of the motion paramet&fs(given by the GA):

di(f(x,al’ + Aal)) = d!(f(x,al?)) + I Aal + h.o.t. 9)

whereJ! is the Jacobian at timeof the /*" layer andh.o.t. denotes the higher order
terms. Observe that after the linearization the functign.,.,, Eqg. (8), is convex in
each of the parameters. For instang¥s; can be computed in closed form solving a
linear system of Equations:

((3H)TWLI) (ITW(d,(F(x,a%)) — B'c))

((32)"W232) (32)TW2(d, (F(x. a%)) - B%c?)
. [ Aat ] = .

(31)TWETE) (I WE(di(E(x, a0)) — BLch)

where recall thaW' is a matrix containing the weights for the layeat timet. In this
case, we have assumed tk®4. = Aa; V[ because the modular eigenspaces share the
motion parameters, therefore we drop the supersthipthe motion parameters.
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However,E,,.., is N0 longer convex as a joint function of these variables. In order
to learn the parameters, we break the estimation problem into two sub-problems. We
alternate between estimatidgand.4 with a Gauss-Newton schenié [4] and learning the
basisB and scale parameteyuntil convergence, see [14] for more detailed information.
Each of the updates fat, .4 and B are done in closed form. This multi-linear fitting
algorithm monotonically reduces the cost function, although it is not guaranteed to
converge to the global minimum. We also use a coarse-to-fine strategy [4,11] to cope
with large motions and to improve the efficiency of the algorithm. Towards that end,
a Gaussian image pyramid is constructed. Each level of the pyramid is constructed by
taking the image at the previous resolution level, convolving it with a Gaussian filter and
sub-sampling. Details of the learning method are given below.

— For each image resolution level until convergencé€ oft and3

¢ Until convergence of, A
x Until convergence af4, rewarpD to D,, and update the motion parameters
for each layer by computing:
()= (al)+Aa;, VI=1...L
x Update the appearance coefficients for each layer and each image
(BHYTW!BYH ! = (B)TWld,(f(x,al)) Vi=1...L,¥Vt=1...N
e UpdateB3 preserving35% of the energy, solving:
(CHWHP(CHT) (Y’ = CHWhHP(dL )P Vi=1...L,Vp=1...4q
e Recompute the error, weight8{) and the scale statisties [14].
— Propagate the motion parameters to the next resolution [€izel [4,11] (the translation
parameters are multiplied by a factor 2). Once the motion parameters are propagated
the bases are recomputed.

5 Experimentsand Applications

5.1 Automatic Learning of Eigeneyes

Eyes are one of the key elementsin Vision Based Human Computer Interaction (VBHCI).
In this experiment, we automatically learn a person-specific “eigeneye” without any
manual cropping, except in the firstimage. We assume that during the training process
the person is not moving far away (around 5-8 pixels) from the first frame.

Recall that Figldl illustrates the eigen-registration method and shows a few images
from a training set. In the first frame, we manually select the mask for the eyes, face,
and background (in Fidll 6 the regions are represented). In this case, because we are
assuming a small motion, the GA has not been applied for initializing the algorithm,
and we minimize EqL{6) with the robust deterministic learning method proposed, with
a coarse-to-fine strategy (2 levels) over the entire training set (around 300 frames). We
have presupposed that the data had few outliers, so wergavhigh value.

In Fig.[2 the reconstruction of some right eye training images are showr.JFig. 2.a
shows the original images, Figl 2.b plots the reconstructed images with non-aligned
basis (assuming that the person is not moving, each layer does not change over the
sequence). Fid.]2.c represents the reconstructed images after minimizirid Eq. (6). As
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Fig. 4. Normalized reconstruction error versus number of frames.

can be observed, the reconstruction is visually better when we align and simultaneously
learn the basis (with the same number of bases). We have chosen the number of bases
which preserv&5% of the energy (seven bases in this case).

Fig.[4 shows the normalized reconstruction error of the face for the original training
setD and the aligned training s#&,, with the same number of bases. The normalized
reconstruction error for the imagewillber; = W . Observe that, in general, due
to the warping proces§) andD,, have different energy. As can be observed, the recon-
struction error is lower in the case of iteratively warping the image w.r.t. the eigenspace
and computing the eigenspace itself (continuous line) than when this procedure is not
performed (dotted line).

Once the eigeneyes have been learned, tracking can be performed with deterministic
techniques [4,10] or stochastic ones|[17]. Elg. 5 shows some results of eye tracking, using
an eigen-eye model learned with the previous method. The tracking system exploits a
stochastic tracking framework, runs at 10 Hz, and is able to track the eye position and
configuration of the user (for further details seel[17]). Observe, that when the person
performs changes in pose the tracker eventually loses track. However, due to its stochastic
nature, the tracker can recover after a few frames. The method is being tested for driver
fatigue detection purposes.

5.2 Automatic Face Learning

In this experiment, we explore the possibility of learning the entire face model, including
modeling mouth changes. The modular face model is composéthgérs, see Fid.l6.

Some frames of the sequen@a({ x 320 pixels and320 frames) are shown in Fid.](7.a).

In this sequence, the person can suddenly move morethgairels from frame to frame,

along with large scale and rotation changes. In this case, we make use of the stochastic
initialization with the GA for an initial estimation of the parameters.
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Fig.5. Frontal eye-tracking using an eye model learned with parameterized component analysis.
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Fig.6. a) Mask for the whole face. b),c),d),e) Mask of the eyes, mouth and the rest of the face.

Fig. (@.b) shows the normalized face (w.r.t. the first frame) reconstructed with the
learned bases after the convergence of the algorithm. Recall that we have just initialized
the layers in the first image and no previous appearance model was given. The faces in
Fig.[4.b display variations due simply to appearance and not to motion. In this case we
preserves5% of the energy in each modular eigenspace. Each face imagélFig. 7.b) can
be reconstructed with3 parameters and further research needs to be done in order to
study the viability to apply it for video-conferencing.

5.3 Facial Animation

In this experiment we animate one face given another. In general it is hard to model and
animate faces, even when they are cartoon characters. Usually complex models encoding
the physical underlying musculature of the face are used (e.g. Candide model [8]). We
use a PSFAM to parameterize the expression using modular PCA, and parameterized
component analysis to learn the PSFAM.

Fig.[8 shows frames of a virtual female face animated by the appearance of the input
male face. The first column shows the original input streB)) the second onel), is



666 F. De la Torre and M.J. Black

Fig. 7. a) Original image sequence. b) Normalized face.

the result of animating the face with Asymmetric Coupled Component Analysis (ACCA)
[13] plus the affine motion of the head. As we can observe this approach allows us to
model the rich texture present on the face providing fairly realistic animations. See [13]
for further information.
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Fig.8. a) Original face. b) Animated virtual face.

6 Discussion and FutureWork

This paper has introduced robust parameterized component analysis to learn modular
subspaces that are invariant to various geometric transformations. The robust and con-
tinuous formulation of the problem extends previous work and has proven effective for
learning low dimensional models of human faces. We have illustrated the method with
several applications of face modeling, tracking, and animation. In particular we have
shown how the method can simultaneously construct an eigenspace while aligning mis-
registered training images. The resulting model better describes the training data and the
method can be applied to arbitrary parameterized deformations. Due to the complexity
of the objective function, a stochastic initialization of the algorithm has proven to be
essential for avoiding local minima.

Observe that parameterized component analysis, always improves the quality of the
appearance basis if some misalignment exists in the training set (due to manual cropping,
motion of the person, etc). Although we have presented a method for learning person-
specific models, the method may also be useful when improving the basis of a training
set containing faces from different people. As described here, the method is appropriate
for learning appearance models in an off-line process. The method could be extended
to be useful for on-line learning by simply replacing the closed form solution with a
gradient descent algorithm or any adaptive method. Based on the recent extension of
EigenTracking/[4] to deal with Support Vector Machingeks [1] it would also be interesting
to consider extending our method to other statistical learning techniques like SVM or
independent component analysis.
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Modeling the face with modular eigenspaces coupled by the motion can result in the
loss of correlations between the parts (e.g. when smiling some wrinkles appear in the eye
region). Now we are working on modeling the face with symmetric coupled component
analysis|[13] and are experimenting with hierarchical component analysis in which one
set of coefficients models the coupling between regions while each individual region has
its own coefficients for local variation.

Finally, the work presented in this paper on automatic learning of 2D PSFAMs has
the limitation of being applicable to some particular view of the face, in this case the
frontal view. We are working on extending the PSFAM to model 3D changes within
the same continuous optimization framework described here. Also, we are exploring
improving the 2D model (e.g. adding a more complex geometric transformation that
takes into account chin deformations).

Videos with the results for all the experiments performed in this paper can be down-
loaded from http://www.salleURL.eduftorre/.
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