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Abstract

This paper presents a new model for optical flow
based on the motion of planar regions plus local de-
formations. The approach exploits brightness in-
formation to organize and constrain the interpre-
tation of the motion by using segmented regions of
piecewise smooth brightness to hypothesize planar
regions in the scene. Parametric flow models are
fitted to these regions in a two step process which
first computes a coarse fit and then refines it us-
ing a generalization of the standard area-based re-
gression approaches. Since the assumption of pla-
narity is likely to be violated, we allow local defor-
mations from the planar assumption. This para-
metric+deformation model exploits the strong con-
straints of parametric approaches while retaining
the adaptive nature of reqularization approaches.

1 Introduction

Estimating the motion of independent or articulate ob-
jects necessitates the segmentation of the scene into
regions of coherent motion. If the scene were seg-
mented into roughly planar surfaces then the motion
of each surface could be estimated using a parametric
flow model. These models provide strong constraints
on the motion within a region resulting in accurate
flow estimates. In contrast to recent parametric ap-
proaches which assume that the entire image, or an
arbitrary rectangular region, can be modeled by a sin-
gle motion, we independently model the motion of seg-
mented planar surface regions. But segmentation is
a hard problem in its own right and, in particular,
the recovery of segmented, or piecewise smooth, flow
fields is notoriously difficult. Instead, this paper makes
the simple hypothesis that image regions of piecewise
smooth brightness are likely to correspond to surfaces
in the world. These brightness regions are assumed
to be planar surfaces in the scene and their motion
is estimated using an eight-parameter flow model. In
this way, information from image brightness is used to
organize and constrain the interpretation of the opti-
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cal flow. Since the assumption of planarity may be
wrong, we allow local deformation from the planar as-
sumption in the same spirit as physically-based ap-
proaches which model shape using coarse parametric
models plus deformations [15]. The resulting model,
in which optical flow is represented by the motion
of planar image patches with local deformations, ex-
ploits the strong constraints of parametric approaches
while retaining the adaptive nature of regularization
approaches. Experiments with a variety of images in-
dicate that the parametrict+deformation model pro-
duces accurate flow estimates while the incorporation
of brightness segmentation provides precise localiza-
tion of motion boundaries.

The algorithm can be thought of as having low- and
medium-level processing. At the low level there is a
process which is always smoothing the image bright-
ness while accounting for brightness discontinuities.
There is another low-level process that is always pro-
viding coarse estimates of image motion. The medium
level tries to organize and make sense of the low-level
data by first finding connected regions of piecewise
smooth brightness and then by estimating the motion
of these regions. This medium-level motion-estimation
process has two steps. The first fits a parametric model
to the coarse motion estimates in each region. In the
second step, the parametric fit from the initial estimate
is used to warp the image regions into alignment. The
optical flow constraints derived from the registered re-
gions are used to refine the parametric fit by perform-
ing regression over each region. Finally, the planar
patches are allowed to deform at the low-level subject
to weak constraints from the optical flow constraints,
the spatial coherence of the neighboring flow estimates,
and the motion estimate for the planar patch.

2 Previous Work

Parametric Models of Image Motion. Paramet-
ric models of optical flow within an image region pro-
vide both a concise representation and enforce strong
constraints on the interpretation of the motion. These



IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Austin, Texas, Nov. 1994 2

techniques use regression or a Hough transform to es-
timate a few parameters (eg. two, six, or eight) given
hundreds or thousands of constraints computed over
the entire image or some pre-selected region [3, 13];
when the image motion conforms to the model as-
sumptions this produces accurate flow estimates. The
problem with this approach is that parametric motion
models applied over arbitrary regions are rarely valid
in real scenes due to surfaces at varying depths or the
independent motion of objects.

Approaches have been devised which ameliorate
some of the problems of global parametric models
[5, 10, 11], but these approaches can cope with only
a small number of motions and not with general flow
fields. As global approaches, they do not address how
to select appropriate image regions in which to apply
the parametric models.

Another set of approaches apply parametric mod-
els to coarse flow fields by grouping the flow vectors
into consistent regions [1, 17]. These approaches, like
the regression approaches, are essentially global tech-
niques in that they assume the image motion can be
represented by a small number of layers. Additionally
they fail to exploit information present in the image
brightness about the nature of surfaces in the scene.

Exploiting Image Brightness. To improve motion
segmentation a number of researchers have attempted
to combine intensity and motion information [6, 9, 16].
In focusing on motion boundaries these approaches use
weak models of optical flow (eg. regularization) and
hence neglect one of the benefits of having a segmen-
tation in the first place; that is, that the motion of a
segmented region can often be described using a simple
parametric model which allows many constraints to be
integrated across the region.

There are numerous feature-based schemes which es-
timate motion by tracking points, edges, or region con-
tours computed from the brightness image (eg. [18]).
These approaches use information about image bright-
ness to constrain the motion estimation, but bright-
ness contours alone are an impoverished representa-
tion. The motion information available over an entire
region, particularly if it is reasonably textured, pro-
vides additional constraints which can improve the ac-
curacy of the recovered motion.

In the context of stereo reconstruction, Luo and
Maitre [14] use a segmented intensity image to correct
and improve disparity estimates by fitting a plane to
the disparities within a region of uniform brightness.
This is similar to the first stage of our algorithm. The
accuracy of this approach is affected by the accuracy
of the initial disparity estimates. Koch [12] segments
regions using disparity and brightness and then regu-

larizes depth estimates within the regions. While this
approach preserves depth boundaries it uses a weak
model within regions instead of fitting a model with a
small number of parameters.

3 Early Processing

At the low level there are two processes which exam-
ine the input images: segmentation and coarse motion
estimation. The exact methods used for these early
process are not crucial to the optical flow model de-
scribed in this paper so the algorithms are described
only briefly and the reader is referred to [8] for a com-
plete description of the segmentation approach and to
[7] for the coarse flow estimation.

3.1 Segmentation

For the experiments described here we have used a
weak-membrane model of image brightness described
in [8]. The goal is to reconstruct a piecewise smooth
brightness image i given noisy data d by minimizing an
objective function using a continuation method. Both
spatial discontinuities and texture are treated as out-
lying measurements and rejected using analog outlier
processes.

The approach is applied to the image in Figure la.
Figure 1b shows the piecewise smooth reconstruction
while Figure lc shows the value of the spatial out-
lier processes (black indicates an outlier). The spa-
tial outliers will be used for region segmentation at the
medium level.

3.2 Coarse Optical Flow

Let I(z,y,t) be the image brightness at a point (z,y)
at time t and I, I,;, and I; be the partial derivatives of
I with respect to z, y, and t. To estimate the horizon-
tal and vertical image velocity u(x) = [u(x),v(x)]T at
a point x = (z,y) we minimize an objective function
Ejr(u) composed of data term and a spatial smooth-
ness term [7]:

S ((VI(x)u(x) + L(x)), op)

+% > plllu) —u(z),0s)], (1)

Zen(X)

where VI = [I;,I,], n(x) are the four nearest neigh-
bors of x on the grid, and where p is a robust error
norm. To obtain the coarse estimate, the values of the
o, are chosen so that the objective function is convex
and the function is minimized as described in [7]. A
coarse to fine strategy, with warping between layers, is
used to estimate large motions within the differential
framework.
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Figure 1: Hallway Sequence. (@) First image; (b) Piecewise smooth reconstruction; (¢) Spatial outliers; (d)
Connected component labels; (¢) Horizontal component of flow (leftward motion = black; rightward motion =
white); (f) Vertical component of flow (upward motion = black; downward motion = white).

Consider the hallway image sequence whose first im-
age is shown in Figure la. The sequence contains two
people walking in opposite directions while the camera
is rotating and translating. The horizontal and verti-
cal components of the coarse flow are shown in Figure
le and 1f respectively. The results are very inaccu-
rate and there is significant smoothing across motion
boundaries.

4 Medium-Level Processing

The low-level processes described in the previous sec-
tion are characterized by local processing and weak
models of the scene. Medium-level processes can be
seen as trying to find order and structure in the low-
level data and, in doing so, impose more powerful mod-
els for interpreting the data.

We make a very simple hypothesis (which may be
wrong) that regions of piecewise-smooth brightness in
the image correspond to planar surfaces in the scene.
The goal is to use information about image bright-
ness to organize our interpretation of the motion in
the scene. From the spatial outliers detected in the
piecewise-smooth reconstruction of the image bright-
ness (Figure 1c) we detect a set of connected regions R
using a standard connected-components labeling algo-
rithm. The connected components for the example im-
age are shown in Figure 1d. These regions become our
planar-surface hypotheses. Issues relating to under-
and over-segmentation are addressed in Section 7.

4.1 Fitting Parametric Models to Flow
Estimates

It is well known that the flow of a rigid planar region
of the scene can be described by an eight-parameter
model [1]. Using the notation from [3] let:

_ 1 2z y 22 zy 0 0 0
X(x) = 00 0 2y > 1 z vy
T
a = [ agp aq ay Qg a7 a3 a4 Qg :|

where the a; are constants and where u(x) = X(x)a is
the flow at the image point x = (z,y).

To robustly estimate the motion a, of a regionr € R
we minimize

min Y p(|IX(x)ar — un(x)],0), (2)

T

Xer

]T is the coarse flow

where um(x) = [um(m,y),vm(z,y)
estimate and o is a scale parameter. Since the coarse
optical flow estimates are expected to have gross er-
rors it is important that the estimation of the motion
parameters be performed robustly. For this reason we
take p to be a robust error norm with a redescending
influence function. For the experiments in this paper
the p-function was taken to be

72
o+ z2

(3)

p(z,0) =
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Figure 2: Hallway Sequence. (a) Horizontal component of flow; () Vertical component of flow; (¢) Flow outliers.

Eqn. (2) is simply minimized using a continuation
method in which o starts at a high value and is gradu-
ally lowered. For each value of o the objective function
is minimized using one step of Newton’s method. The
effect of this is to track the solution while gradually
rejecting outlying measurements.

The results of fitting the local parametric flow mod-
els to the coarse optical flow data for the Hallway im-
age are shown in Figure 2. For regions smaller than
a threshold, there is no attempt to fit a model to the
flow and the coarse optical flow data is unchanged. For
regions of size greater than or equal to 25, 500, or 1000
pixels we fit two-, six-, or eight-parameter low models
to the data respectively!. The parametric flow in these
regions is then projected onto the image to produce
the dense flow estimates in Figure 2. The results are
a significant improvement over the coarse flow. Outly-
ing coarse-flow vectors which are inconsistent with the
parametric low model are displayed in black in Figure
2¢. The outliers predominantly correspond to regions
where there was over-smoothing and to the reflections
of the people in the floor.

4.2 Local Parametric Models of Image
Motion

Fitting parametric models to the flow vectors in regions
significantly improves the subjective quality of the flow
field. Given the inaccuracy of the coarse flow estimates
we would like to refine the motion estimates in each re-
gion by going back to the optical flow constraint equa-
tions at each pixel. The approach is a straightforward
generalization of the approach described by Bergen et
al. [3] for fitting a single global parametric motion to
the entire image.

For each region r € R the brightness constancy as-
sumption is

I(x,t) = I(x —u(x;a,),t+1) Vxer

! Automatically choosing the right model for a given patch is
addressed in Section 7.

where u(x;a,) = X(x)a, and a, are the parameters
for region r. Given the current fit a, for a region we
warp the image at time ¢ 4+ 1 towards the image at
time ¢. The original region at time ¢ and this warped
region are used to estimate the spatial and temporal
derivaties I, I, and I;. Let VI = [I,, 1], then to
refine the current fit we minimize

win Y p((VIG)X (90a, + L(x)o), (4

and then the refined fit is a,. + da,..

To minimize Eqn. (4) we use exactly the same con-
tinuation method described above in which ¢ is grad-
ually lowered and at each stage we apply one step in
Newton’s method. Since the initial flow estimates are
fairly accurate we do not need to use a coarse-to-fine
strategy as in [3].

The results of refining the flow for the hallway se-
quence are shown in Figures 3e¢ and 3b. In this se-
quence it is difficult to see the improvement. Exper-
iments in Section 6 with the synthetic Yosemite se-
quence illustrate the quantitative improvement that
the region regression realizes.

One might ask “Why not start with this local-
regression approach and ignore the coarse flow com-
putation?” This approach will work for large, slow
moving, regions. The problem with such an approach
becomes apparent when trying to estimate the motion
of a small region which is moving quickly. To deal
with large motions using a differential technique, it is
necessary to use a coarse-to-fine approach. But small
regions may have little or no support at the coarse lev-
els making it impossible to recover their motion.

5 Local Deformations

Local models of planarity are likely to be violated often
in practice, particularly in natural scenes. For this rea-
son we would like to use parametric models to provide
a coarse description of the motion and allow deforma-
tions from the parametric model to account for errors



IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Austin, Texas, Nov. 1994 )

b

f

Figure 3: Hallway Sequence. (a) Refined flow: horizontal component; (b) Refined flow: vertical component of flow.
(¢) Horizontal flow deformation; (d) Vertical flow deformation. (e) Horizontal flow: Parametric plus deformations;

(f) Vertical flow: Parametric plus deformations.

in the assumption. This is done by using the robust
optical flow estimation technique described in [7] with
the addition of a new term now coupling the flow es-
timate to the parametric-prediction of the flow. The
flow estimate at each point can be thought of as being
connected, via non-linear springs, to its neighbors, the
data (optical flow constraint equation), and the motion
of the planar-patch. The estimateis pulled by all these
forces and the strength of the force is determined by
the robust p-function. If the estimate gets pulled too
far from its neighbors, the data, or the planar-patch
estimate, the spring essentially goes “slack”. This is
equivalent to rejecting that measurement as an outlier.

Given the predicted flow in the planar patches, the
image at time ¢ 4+ 1 is warped back towards the im-
age at time ¢t to register them. The deformation du is
estimated to account for the discrepancy between the
warped and original images. This physical model is
implemented as the minimization of E(du,u,a) with
respect to du:

> ((VIx)du(x) + I(x)),0p)
> Ie(ll(u(x;a) + du(x)-

Zen(X)

NN

=+

(u(z;a) + du(z))[], os)]
+p(0u(x),om)], (5)

where 7(x) are neighbors of X, p is a robust error norm

which rejects outlying measurements, u(x; a) is the re-
fined flow from the medium-level processing, and where
the spatial and temporal derivatives are computed with
respect to the warped image.

The first term in E is a robust formulation of the
standard optical flow constraint equation and enforces
fidelity to the data. The second term pulls the defor-
mation in a direction which minimizes the difference
in the neighboring flow vectors. The final term forces
the flow to be similar to the planar-patch estimate by
penalizing for deformations.

Given the accurate initial estimate there is no need
for a coarse-to-fine approach and in our experiments we
simply minimize the objective function using Newton’s
method. A continuation method may be exploited us-
ing the scale parameters o, as was done in the previous
section. We have not found this to be necessary since
the estimates from the patches start the minimization
near the global minimum.

The deformations from the refined parametric fit for
the hallway sequence are shown in Figure 3¢ and 3d
and the deformed flow is shown in Figure 3e and 3f.
The most obvious improvement is in the body of the
person on the left. Before deformation the body was
split at the waist into two distinctly different planar
motions. Local deformations bring the two motions
into alignment.
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Figure 4: Yosemite sequence. (a) First image; (b) Spatial discontinuities; (¢) Coarse horizontal displacement; (d)
Coarse vertical displacement. (c¢) Final horizontal displacement; (d) Final vertical displacement.

Average | Standard Percent of flow vectors with error less than:
Error | Deviation <1° | <2° | <3° ] <5° ] < 10°
Coarse: 8.0° 7.0° 3.6% 11.7% 21.4% 39.8% 72.6%
Parametric: 6.1° 4.6° 2.4% 10.8% 24.5% 53.5% 84.3%
Refined: 3.4° 3.2° 13.4% 36.5% 58.1% 81.5% 96.0%
Deformed: 2.5° 2.4° 21.5% 51.0% 71.6% 90.6% 98.5%

Table 1: Error results for the Yosemite fly-through sequence.

6 Experimental Results

The first experiment shows how the accuracy of the re-
covered flow is effected by each stage in the processing.
The second experiment provides another illustration
of the approach applied to scenes containing indepen-
dently moving objects.

6.1 Yosemite Sequence

While the synthetic Yosemite image sequence? (Figure
44) does not contain independently moving objects, it
does allow the quantitative evaluation of the paramet-
ric+deformation model.

The edges detected in the piecewise smooth bright-
ness image are shown in Figure 4b. The coarse flow
estimates are shown in Figures 4¢ and 4d.

We quantify the accuracy of the results using the
angular error measure of Barron et al. [2], with Ta-

2This sequence was generated by Lynn Quam.

ble 1 showing the performance at each stage of the
algorithm®. The accuracy of the initial coarse flow
is quite poor. By fitting local parametric models to
the coarse data some of the noisy estimates are re-
moved and the mean accuracy of the flow improves
but, given inaccurate estimates to start with, only a
small percentage of the flow vectors achieve high accu-
racy. Refining the flow using local regression markedly
improves the accuracy of the parametric fit, cutting the
mean error nearly in half. Allowing local deformations
to account for the coarse nature of the planar-patch
approximation brings the mean angular error down to
2.5° with over half the flow vectors having angular er-
rors less than 2.0°. These results are compared with
other published results for the Yosemite sequence in
Table 2.

3Error was not computed in the sky region since the Barron
et al. images contained moving clouds and ours did not.
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Technique Average | Standard | Density
Error | Deviation

Horn & Schunck 32.43° 30.28° 100%

Anandan 15.84° 13.46° 100%

Singh 13.16° 12.07° 100%

Fleet & Jepson 4.17° 11.28° | 34.1%

Weber & Malik [19] 3.42° 5.35° 45.2%

[ Black & Anandan [7] [ 4.47° | 3.90° | 100% |
[ Black [4] | 3.52° ] 3.25° | 100% |
Parametric4 2.55° 2.40° 100%

Deformation

Table 2: Comparison of various optical flow algorithms
(adapted from [2]).

6.2 Walking Sequence

The second experiment shows another example of the
approach applied to a sequence containing both camera
motion and an independently moving object. Figure 5b
shows the brightness discontinuities found in the first
image of the sequence (Figure 5a). The coarse flow
estimates are shown in Figures 5¢ and 5d. The final
parametric+deformation results are shown in Figures
5e and 5f; the parameter settings for this sequence are
the same as for the other examples.

7 Open Questions

Due to over-segmentation based on brightness, the lo-
calization of objects, as opposed to surfaces patches,
may require grouping patches together based on com-
mon motion. To some extent the local deformations
provide this merging at a low level. It may be desir-
able to re-examine the segmented regions based on the
deformed flow and group them into larger regions. Ad-
ditionally, having the motion of segmented image re-
gions means that the occlusion relationships between
the regions can be analyzed. Moreover, it may be pos-
sible to incorporate a layered representation which can
represent occluded portions of regions.
Under-segmentation is also an issue. For example,
in our experiments with moving people, their legs are
often segmented into a single region based on bright-
ness. We would like to be able to detect that a single
motion does not give a good fit to this region and break
it into parts in the appropriate places. One possibility
is to use the local deformation as a measure of strain
and introduce breaks when the strain is too great. An
alternative way to cope with undersegmentation is to
allow multiple motions within a region and use either
a robust estimation approach [5] or a mixture model
approach [11] to recover the multiple motions.
Another issue which was not addressed in this paper

4

Figure 5: A cluttered scene in which the camera
is panning and a person is walking. (a) First im-
age; (b) Spatial discontinuities; (¢) Coarse horizon-
tal displacement; (d) Coarse vertical displacement;
(e) Planar+Deformations: horizontal flow; (f) Pla-
nar+Deformations: vertical flow;

is how to decide what is the right motion model to use
for a particular region. The choice may be important to
prevent over- or under-fitting the data. A common ap-
proach in the surface fitting literature is to start with
simple surface models and, if their fit is poor, to fit
increasingly complex models. Additionally, there is a
tradeoff between model complexity and deformation;
for example, complex motions can be accounted for ei-
ther by using more expressive models or by allowing
greater deformation. The detection of large deforma-
tions (or strains) over a patch might suggest the need
to refit with a higher-order model; this issue deserves
further study.

8 Conclusion

This paper has presented a new model for optical flow
based on the motion of planar regions plus local defor-
mations. The approach exploits brightness information
to help organize and constrain the interpretation of the
motion by using segmented regions of piecewise smooth
brightness to hypothesize planar regions in the scene.
Parametric flow models are fitted to these regions in a
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two step process which first computes a coarse fit and
then refines it using a generalization of the standard

area-based regression approaches.

Since the planar-

patch assumption is likely to be violated, we allow
local deformations from the parametric flow using a
physically-based model in which a regularized optical
flow estimate is partially constrained by the parametric
motion estimate.
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