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Abstract 

This paper explores the use of local parametrized mod- 
els of image motion for recovering and recognizing 
the non-rigid and articulated morion of human faces. 
Parametricjow models for example afine) are popu- 
lar for estimating motion in rigid scenes. We observe 
that within local regions in space and time, such mod- 
els not only accurately model non-rigid facial motions 
but also provide a concise description of the motion 
in terms of a small number of parameters. These pa- 
rameters are intuitively related to the motion of facial 
features during facial expressions and we show how 
expressions such as anger, happiness, surprise, fear, 
disgust, and sadness can be recognizedfrom the local 
parametric motions in the presence of signijcant head 
motion. The motion tracking and expression recogni- 
tion approach performs with high accuracy in exten- 
sive laboratory experiments involving 40 subjects as 
well as in television and movie sequences. 

1 Introduction 
This paper describes a new method for recognizing human 
facial expressions in image sequences. There are three main 
contributions of this work. First, we describe a method for 
tracking rigid and non-rigid facial motions using a collec- 
tion of local parameterized optical flow models. While pa- 
rameterized models of image motion (for example affine) 
have become popular for the recovery of image motion in 
rigid scenes, their application to non-rigid and articulated 
motion is unconventional. Second, we show how the image- 
motion parameters can be interprated to recover high-level, 
semantic, descriptions of facial-feature motions. The inter- 
pretation of optical flow parameters in this way is novel and 
illustrates how the flow models concisely capture the rele- 
vant aspects of the feature motions. Finally, we demonstrate 
a system for recognizing facial expressions in image se- 
quences containing significant head motion. The system has 
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undergone extensive experimentation with over 100 video 
sequences of facial expressions gathered in both a lab setting 
and from television talk shows, news, movies, etc. These 
experiments indicate that our approach has a recognition ac- 
curacy of over 90%. 

The approach can be thought of as having low, mid, and 
high levels. At the low level we take regions correspond- 
ing to the face, mouth, eyebrows, and eyes and model the 
rigid and non-rigid motions of these regions using a collec- 
tion of parametrized flow models. For example, the face re- 
gion, with the exception of the non-rigid features, is mod- 
eled as a plane. The motion of the plane is used to stabilize 
two frames of the image sequence and the motions of the 
features are then estimated relative to the stabilized face as 
illustrated in Figure 1. These feature motions are estimated 

Rigid Face 
Transformation - 
Non-ngid m= Facial Features 19 - 

U 
Figure 1 : Illustration showing an example of a face under- 
going a looming motion while smiling. 
over an image sequence using a robust regression scheme 
[2] that makes the recovered motion parameters stable un- 
der adverse conditions such as motion blur, saturation, loss 
of focus, etc. In this paper we do not address the problem 
of initially locating the various facial features; this topic has 
been addressed in [9, 101. 

The recovered image motion parameters correspond sim- 
ply and intuitively to various facial expressions and are used 
to derive mid-level predicates describing the image mo- 
tion of the facial features. High-level recognition rules de- 
scribe the temporal structure of a facial expression in terms 
of these mid-level predicates. Currently we have imple- 
mented recognition rules for the six universal facial expres- 
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sions (surprise, sadness, anger, happiness, disgust and fear). 
We also recognize eye blinking and a variety of simple head 

stretching) as combinations of the a;: 

motions. divergence = a1 + a 5  (3) 

Previous work. The recognition of facial expressions in 
image sequences with significant head motion is a challeng- 
ing problem with many applications for human-computer 
interaction. Yet, while the coincidence of head and facial 
feature motion is prevalent in human behavior, it has so far 
attracted only little attention as a motion estimation prob- 
lem. Previous work has typically focused on one part of the 
problem or the other: either rigid head tracking [ 1) with no 
facial expressions or expression recognition with either no 
motion at all [lo] or a roughly stationary head with a chang- 
ing ‘expression [7, 81. 

Models used in recognizing facial expressions vary in 
the amount of information about head shape and motion 
they contain. At one extreme are approaches which employ 
physically-based models of heads including skin and mus- 
culature [6,7]. Slightly weaker models use deformable tem- 
plates to represent feature shapes in the image [lo]. Ap- 
proaches that determine the expression by matching stored 
image templates to the current image [5] use even less ex- 
plicit spatial information. At the other extreme is the work 
of Yacoob and Davis [8] in which facial expressions are 
recognized in image sequences using statistical properties 
of the optical flow with only very weak models of facial 
shape. In this paper we explore a middle ground between the 
template-based approaches and the optical flow-based ap- 
proaches. The piecewise parametric models of image mo- 
tion explored here provide greater abstraction and robust- 
ness than the purely flow-based methods, are more gen- 
eral and robust than image template matching, and yet do 
not require detailed geometric or 3D information about face 
shape. 

2 Models of Image Motion 
Parameterized models of image motion make explicit the 
assumptions about the spatial variation of the optical flow 
within a region and typically assume that the flow can be 
represented by a low-order polynomial. Within small re- 
gions, an affine model of image motion is often sufficient 

where the ai are constants and where us( 2 ,  y)  andv( z, y)  are 
the horizontal and vertical components of the flow at an im- 
agepointx = (z.y). 

The parameters ui have simple interpretations in terms of 
image motion. For example, a0 and a 3  represent horizon- 
tal and vertical translation respectively. Additionally, we 
can express divergence (isotropic expansion), curl (rotation 
about the viewing direction), and deformation (squashing or 

curl = -a2 + a 4  (4) 
deformation = a1 - as. (5 )  

Divergence, curl, and deformation, along with translation, 
will prove to be useful for describing facial expressions and 
are illustrated in Figure 2. 

The affine model is not sufficient to capture the image mo- 
tion of a human face when it occupies a significant portion 
of the field of view. A more appropriate model (which is 
still a gross approximation to face shape) would assume that 
the face is a plane viewed under perspective projection. It is 
well known that the image motion of a rigid planar region of 
the scene can be described by the following eight-parameter 
model: 

u(z,y) = u 0 + a , l z + u 2 g + p 0 z ~ + ~ l z y  (6) 
z ( 5 .  y) = a3 + U 4 2  + a5.y + pozy + p l y 2  (7) 

where we have added two new terms pa andpl to the affine 
model. These parameters roughly correspond to “yaw” and 
“pitch” respectively and are illustrated in Figure 2. While 
we have experimented with more complex models of rigid 
face motion we have found that this planar assumption is 
both simple and expressive enough to robustly represent 
rigid facial motions in a variety of situations. 

Non-rigid motions of facial features such as the eyebrows 
and mouth however are not well captured by the rigid affine 
or planar models. Deformable models such as snakes pro- 
vide good tracking of these regions [7] but their distributed 
nature does not admit simple, intuitive, characterizations of 
the motions as we saw above. Deformable templates on the 
other hand [lo] encode information about shape but not mo- 
tion. We wish to stay within the paradigm of using paramet- 
ric models of image motion and so we augment the affine 
model to account for the primary form of curvature seen in 
mouths and eyebrows. This can be achieved by adding new 
parameter, c, to the affine model 

u ( z . y )  = a0 + a 1 z + a z y  (8) 
,u(z, y) = a3 + a42 + a5y + cz2 (9) 

where c encodes curvature and is illustrated in Figure 2. 
This curvature parameter only captures the very coarse cur- 
vature of the features and cannot deal with asymmetric cur- 
vatures, however as the experiments will demonstrate, this 
seven parameter model captures the essential image motion 
of the mouth and eyebrows necessary for recognizing the six 
universal facial expressions. 

Unfortunately this new curvature parameter is not invari- 
ant to head rotations. The curvature of the mouth and eye- 
brows should roughly be oriented with the principle axis of 
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Figure 2: The figure illustrates the motion captured by the various parameters used to represent the motion of the regions. The 
solid lines indicate the deformed image region and the --" and "+" indicate the sign of the quantity. 

the face. To estimate the curvature with respect to the coor- for some error norm p where U is a scale parameter. Since 
dinate frame of the face we compute the orientation of the the face is neither a plane nor is it rigid it is important to take 
principle axis of the face and transform the images and fea- p to be a robust error norm which can cope with some per- 
tures into the coordinate frame of the image plane. We then centage of gross errors or "outliers". For the experiments in 
estimate the curvature and transform the features back into this paper we take p to be 
the coordinate frame of the face for the purpose of tracking. 

(13) 
22 

P ( 2 , U )  = - 2.1 Robust regression U + 22' 
To recover the parameters above, we employ a robust re- 
gression scheme [2]. For convenience of notation we define 

0 0 0 1 2  y sy y2 22 O 1  [ 1 2  y 0 0 0 22 2y X(x) = 

A = [ a0 a1 a2 a3 a 4  a5 0 0 0 1' 
P = [ a0 a1 a2 a3 a4 a5 Po Pl 0 1' 
c = [ a0 01 a2 a3 U4 a5 0 0 c 1' 

such that u(x;A) = X(x)A, u(x;P) = X(x)P, and 
u(x; C) = X(x)C represent, respectively, the affine, pla- 
nar, and affine+curvature flow models described above and 

Let f be the set of image points corresponding to the face 
region (excluding the non-rigid features), and Pf be the pla- 
nar motion parameters of these points. The brightness con- 
stancy assumption for the face states 

U = [U,V]'. 

As the magnitudes of residuals VI(X(x)Pj) + It grow be- 
yond a point their influence on the solution begins to de- 
crease and the value of p ( - )  approaches a constant. The 
value U is a scale parameter that effects the point at which 
the influence of outliers begins to decrease. 

Equation 12 is minimized using a simple gradient descent 
scheme with a continuation method that begins with a high 
value for U and lowers it during the minimization (see [2,3] 
for details). The effect of this procedure is that initially no 
data are rejected as outliers then gradually the influence of 
outliers is reduced. To cope with large motions a coarse-to- 
fine strategy is used in which the motion is estimated at a 
coarse level then, at the next finer level, the image at time 
t + 1 is warped towards the image at time t using the current 
motion estimate. The motion parameters are refined at this 
level and the process continues until the finest level. 

Once the face motion is estimated it is used to register the - 
image at time t + 1 with the image at time t by warping the 
image at t + 1 back towards the image at t. Then the rel- (lo) I(x, t )  = I(x - X(X)Pf, t + 1). vx E f, 

where I is the image brightness function and t represents 
time. Taking the Taylor series expansion of the right hand 
side, simplifying, and dropping terms above fmt order gives 

(1 1) 

where V I  = [Iz, Iy] and the subscripts indicate partial 
derivatives of image brightness with respect to the spatial 
dimensions and time. 

VI(X(X)Pf) + It = 0, vx E f, 

To estimate the parameters Pf we minimize 

P(VI(X(X)Pf) + I t ,  a), (12) 
X € f  

ative motions of the facial features are estimated using the 
registered images in exactly the same way. 

2.2 lkacking facial features 
The motions of the face and facial features estimated be- 
tween two frames are used to predict the locations of the fea- 
tures in the next frame. The face and the eyes are simple 
quadrilaterals which are represented by the image locations 
of their four comers. We update the location x of each of 
the four comers of the face and eyes by applying the pla- 
nar motion to get X(x)Pf + x. Then the relative motion of 
the eye locations is accounted for and the comers become 
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(X(x)P)At, + x and (X(x)P)A,, + x where le and re stand 
for the motions of the left and right eyes respectively. In 
updating the eye region we do not use the full affine model 
since when the eye blinks this would cause the tracked re- 
gion to deform to the point where the eye region could no 
longer be tracked. Instead only the horizontal and vertical 
translation of the eye region are used to update its location 
relative to the face motion. 

The curvature of the mouth and brows means that a sim- 
ple quadrilateral is not sufficient for tracking. In our cur- 
rent implementation we use image masks to represent the 
regions of the image corresponding to the brows and the 
mouth. These masks are updated by warping them fmt by 
the planar face motion Pf and then by the motion of the 
individual features C,, Clb and C,b which correspond the 
mouth and the left and right brows respectively. This simple 
updating scheme works well in practice. 

To reduce noise in the parameters we use a simple tempo- 
ral filter. Let be the filtered parameters of the face and 
Pf be the current estimate of the face parameters; then we 
update P; as follows 

> 0.1 

1 
P; e z(P; + P f ) .  

Exactly the same treatment is applied to the relative fa- 
cial feature motions and these smoothed values are used 
for expression recognition. This simple tracking scheme 
works well for sequences of several hundred images with 
little accumulated error. The scheme also has the property 
of weighting current estimates more heavily than previous 
ones; this is appropriate for facial expressions which are typ- 
ically of short duration. For longer image sequences, more 
sophisticated tracking schemes could be used; for example, 
Kalman filtering [ 11, segmentation information, and spatial 
constraints on the feature locations might be added. 

3 Expression Recognition 
The deformation and motion parameters described in the 
previous section can be used to derive mid- and high-level 
descriptions of facial actions; this section discusses these 
representations. 

3.1 Mid-level representations 
The parameters (such as translation and divergence) esti- 
mated for each feature are used to derive mid-level predi- 
cates that characterize the motion of the feature. The param- 
eter values are first thresholded to filter out most of the small 
and noisy estimates. The mid-level representation describes 
the observed facial changes at each frame. Table 1 provides 
an example of the predicates for the ‘mouth’ (similar tables 
were developed for the eyebrows and eyes). 

The mid-level representation that describes the head mo- 
tions is given in Table 2. The planar model of facial motion 

Mouth downward 

I Param. [ Threshold I Derived Predicates 
an I > 0.25 I Mouthrightward 

Div 

Def 

Curl 

pc 

Pl 

I < -0.25 I Mouthleftward 
a? I < -0.1 I Mouth upward 

Head downward > 0.5 
> 0.01 Head expansion 
< -0.01 Head contraction 
> 0.01 Head horizontal deformation 
< -0.01 Head vertical deformation 

Head clockwise rotation > 0.005 
< -0.005 Head counterclockwise rotation 
< -0.00005 Head rotating rightward 

around the neck 
> 0.00005 Head rotating leftward 

around the neck 
< -0.00005 Head rotating forward 
> 0.00005 Head rotating backward 

Table 1 : The mid-level predicates of the mouth derived 
the motion parameter estimates. 

From 

is primarily used to stabilize the head motion so that the rela- 
tive motion of the features may be estimated. The motion of 
this plane also provides a qualitative description of the head 
motion. For example, we can qualitatively recover when the 
head is rotating or translating. To accurately recover the m e  
3D motion of the head would require a model more general 
than the planar assumption. 

I Param. I Threshold I Derived Predicates 
I an I > 0.5 I Head rightward 

I 
I < -0 .5 I Headleftward 

a3 I < -0.5 I Headupward 

3.2 High-level representations 
The high-level representation of facial actions (i.e., the fa- 
cial expression recognition procedure) considers the tempo- 
ral consistency of the mid-level predicates to minimize the 
effects of noise and inaccuracies in the motion and deforma- 
tion models. In developing the high-level models we rely on 
the classification of facial expressions described in the psy- 
chological literature [4]. 

Following the temporal approach for recognition pro- 
posed in [8], we divide each facial expressioninto three tem- 
poral segments: the beginning, apex and ending. Figure 3 
illustrates the temporal segments of a smile model. Notice 
that Figure 3 indicates that the change in parameter values 
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I Exar. IBh3 I Satisfactorv actions I 
Anger (B) ~ 

Anger (E) 

‘I A inward lowering of brows and 
mouth contraction 
outward raising of brows 

Surprise (B) 

Surprise (E) Figure 3: The temporal model of the ‘smile.’ 
raising brows and vertical 
expansion of mouth 
lowering brows and vertical 
contraction of mouth 

might not occur at the same frames at either the beginning 
or ending of actions, but it is required that a significant over- 
lap be detectable to label a set of frames with a “beginning” 
of a ‘smile’ label, while the motions must terminate before 
a frame is labeled as an “apex” or an “ending.” 

The detailed development of the ‘smile’ model is as fol- 
lows. The upward-outward motion of the mouth corners re- 
sults in a negative curvature of the mouth (i.e., the curvature 
parameter c is negative). The horizontal and overall vertical 
stretching are manifested by positive divergence @iv) and 
deformation @eo. Finally, some overall upward translation 
is caused by the raising of the lower and upper lips due to the 
stretching of the mouth (us is negative). Reversal of these 
motion parameters is observed during the ending of the ex- 
pression. 

The rules for detecting the beginning and ending of ex- 
pressions are given in Table 3. These rules are applied to the 
predicates of the mid-level representation and are similar to 
those proposed in the psychological literature [4]. Gener- 
ally, a beginnindending has to be detectable continuously 
over at least four consecutive frames for the action to be rec- 
ognized. 

The high-level representation of head motion is currently 
limited to detecting backward and forward motions, right 
and left rotations around the neck and looming. The motion 
estimation and recognition behavior are illustrated in the re- 
mainder of the paper. 

4 Motion Estimation Examples 
The results of tracking the facial features during an 

‘anger’ expression are shown in Figure 4 and some of the 
estimated motion parameters are shown in Figure 5 .  The 
‘anger’ expression is characterized by an initial pursing 
(or flattening) of the lips then, in this case, a long slow 
downward curvature of the mouth that ends abruptly around 
frame 150 when the mouth curves and deforms back to the 
relaxed position. In addition to the mouth motion, the brows 
play a significant role. Figure 5 shows how the brows move 
together and down while becoming flatter (negative curva- 
ture) during the initiation of the expression. The nasal edges 

Sadness (B) 

Sadness (E) 

I I and mouth expansion 
I mouth horizontal expansion 

I 
I Disgust (B) 

--I_ _ _  _._ - - . __._ - ... 
downward curving of mouth & upward- 
inward motion in inner parts of brows 
upward curving of mouth & downward- 

I and lowering of brows 
Dismrst (E) I mouth contraction & raising of brows 

. ,  I okward d o ;  in inner parts of brows I 
I Fear@) I expansion of mouth & raising-inwards I 

I inner parts of brows 
I contraction of mouth and lowering Fear (E) 

I I inner parts of brows 

Table 3: The rules for classifying facial expressions (B = be- 
ginning, E = ending). 

of the brows also dip downwards causing opposite curl (or 
rotation) for the two brows. These motions are reversed on 
cessation of the expression. 

The image sequence in Figure 6 illustrates facial expres- 
sions (‘smile’ and ‘surprise’) in conjunction with rigid head 
motion (in this case looming). The figure plots the regions 
corresponding to the face and the facial features tracked 
across the image sequence. The parameters describing the 
planar motion of the face are plotted in Figure 7 where the 
divergence due to the looming motion of the head is clearly 
visible in the plot of divergence. Analyzing the plots of the 
facial features in Figure 8 reveals that a ‘smile’ expression 
begins around frame 125 with an increase in mouth curva- 
ture followed by a deformation of the mouth. The curvature 
decreases between frames 175 and 185 and then a ‘surprise’ 
expression begins around frame 220 with vertical eyebrow 
motion, brow arching, and mouth deformation. 

5 Recognition Results 
We carried out a large set of experiments to verify and eval- 
uate the performance of the recognition procedure proposed 
in this paper. The first set of experiments focused on the ex- 
pressions of forty subjects who were asked to perform ex- 
pressions in front of a digital-camera. The second set of 
experiments involved digitizing video-clips from television 
and movies. 

Figure 9 shows the forty subjects who participated in our 
study; from these subjects we collected a database of 70 
image sequences. Each sequence is about 9 seconds long 
and contains 1-3 expressions. Images are 560 x 420 pix- 
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Figure 4: Anger Experiment: facial expression tracking. Features every 15 frames. 
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Surprise 32 
Aneer 18 

Happiness 58 
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Figure 5: The Anger motion parameters; solid line indicates the right brow while the dashed line indicates the left brow. 

False Alarm Missed Rate 
7 3 95% 
2 3 91% 

2 90% 
Disgust 
Fear 
Sadness 

14 2 1 93 % 
5 1 83% 
8 1 - 1 0 %  

Table 4: Recognition results on forty subjects 
The dynamic nature of facial expressions makes it diffi- 

cult to demonstrate the experiments in print. Therefore, we 
provide selected images that will, hopefully, convey our re- 

sults. Figure 10 shows four frames (taken as every fourth 
frame from the sequence) of the beginning of an ‘anger’ ex- 
pression of a six year old boy. The text that appears on the 
left side of each image represents the mid-level predicates of 
the facial deformations, and the text that appears on the right 
side represents the mid-level predicates of the head motion. 
The text below each image displays the high-level descrip- 
tion of the facial deformations and the head motions. Fig- 
ure 1 1  shows the beginning of a ‘smile’ expression while the 
head is rotating initially leftward and then rightward. 

In a second set of experiments, we digitized 36 video- 
clips recorded from talk shows, news, and movies. TV 
broadcasting, reception, video-recording and digitization 
makes the data quite noisy. Table 5 shows the details of our 
results on these video-clips. Only ‘smiles’ occurred with 
sufficient frequency to allow us to estimate classification ac- 
curacy. 

1 Exmession I Correct I False Alarm I Missed I Rate I 
I .  

I Hzooiness I 35 1 4 I 2 I 95% 1 

Anger 
Disgust 50% 
Fear 1 
Sadness 1 

Table 5: Recognition results on 36 video-clips 
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Figure 6:  Looming Experiment. Facial expression tracking with rigid head motion (every 24 frames). 
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Figure 7 :  The Looming face motion parameters. Translation: solid = horizontal, dashed = vertical. Quadratic terms: solid = 

P O ,  dashed = pl.  

BEGIN ANGER ANGER 

Figure 10: Four frames (four frames apart) of the beginning 
of an ‘anger’ expression displayed by a six year old boy. 

6 Conclusion 
In this paper we proposed local parameterized models of im- 
age motion that can cope with the rigid and non-rigid facial 
motions that are an integral part of human behavior. Facial 
features are modeled locally to allow for accurate recovery 
of their deformations. In a series of experiments we have il- 

:a-,a .. . . ..‘ . . .- ... . .  I .  . 

. .  -.. I 

, .  . .  
” . I. .-..- 

Ly 

SMILt HEAD ROTATE RIGHT SMILE HEAD ROTATE RIGHT 

Figure 11 : Four frames (four frames apart) of the beginning 
of a ‘smile’ expression. 

lustrated the effectiveness of these models in the presence 
of looming and considerable head rotations during facial 
deformations. Extensive experimentation with many sub- 
jects in natural situations, including television clips, indi- 
cates that expression recognition can be achieved accurately 
even in the presence of head motion. 
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