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Abstract

A framework for learning parameterized models of op-
tical flow from image sequences is presented. A class
of motions is represented by a set of orthogonal ba-
sis flow fields that are computed from a training set
using principal component analysis. Many complex
image motions can be represented by a linear com-
bination of a small number of these basis flows. The
learned motion models may be used for optical flow es-
timation and for model-based recognition. For optical
flow estimation we describe a robust, multi-resolution
scheme for directly computing the parameters of the
learned flow models from image derivatives. As exam-
ples we consider learning motion discontinuities, non-
rigid motion of human mouths, and articulated human
motion.

1 Introduction
Parameterized models of optical flow address the problems
of motionestimationand motionexplanation. They aid in
estimation by enforcing strong constraints on the spatial
variation of the image motion within a region. Because
these methods pool hundreds or thousands of motion con-
straints in a region to estimate a much smaller number of
model parameters, they generally provide accurate and sta-
ble estimates of optical flow. Likewise, the small number
of parameters provides a concise description of the image
motion that can be used for explanation or recognition. For
example, parameterized flow models have been used to rec-
ognize facial expressions from motion [7].

There are two main problems with parameterized motion
models. First, many image regions contain multiple image
motions because of moving occlusion boundaries, trans-
parency, reflections, or independently moving objects. A
great deal of work has been devoted to extending parame-
terized models to cope with these situations. The second
problem is that parameterized models make strong assump-
tions about the spatial variation of the image motion within

a region. Common motion models based on low-order poly-
nomials (e.g. affine motion) have limited applicability to
complex natural scenes.

Examples of complex motions include motion disconti-
nuities, non-rigid motion, articulated motion, and motion
“texture”. It may be impractical to devise and use explicit
mathematical models of the motion in these cases. There-
fore, here we “learn” models of optical flow from examples.
Given a training set of flow fields (e.g. Fig. 1), we use
principal component analysis (PCA) to learn a set of basis
flow fields that can be used to approximate the training data
(e.g. Fig. 2). Individual flow fields are then represented
as a linear combination of the basis flows (e.g. Fig. 3). In
this paper we apply this approach to motion boundaries, the
motion of a human mouth, and the motion of human legs
while walking.

To compute optical flow with a learned model wedirectly
estimate the coefficients of the linear combination of ba-
sis flows from derivatives of image intensity. These coeffi-
cients are estimated using a robust, coarse-to-fine, gradient-
based algorithm. This provides a flow field that is consistent
with the learned model and is optimal under the assumption
of brightness constancy. In this way one can estimate com-
plex optical flow fields more quickly and reliably than with
conventional techniques. Moreover, if the model provides
a good description of the spatiotemporal variation of image
intensity, then one can also use the estimated coefficients of
the model for subsequent recognition/interpretation of the
image motion.

2 Related Work
Much of the recent work on learning parameterized mod-
els of image deformation has occurred in the face recogni-
tion literature to model the deformations between the faces
of different people [3, 9, 11, 13, 18]. Correspondences
between different faces were obtained either by hand or
by an optical flow method, and were then used to learn
a lower-dimensional model. In some cases this involved
learning the parameters of a physically-based deformable
object [13]. In other cases a basis set of deformation vec-
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tors was obtained (e.g., see the work of Hallinan [11] on
learning “EigenWarps”). These methods have not been ap-
plied to the modeling of image motion in natural scenes.

Related work has focused on learning the deformation of
curves or parameterized curve models [2, 16]. Sclaroff and
Pentland [16] estimated modes of deformation for silhou-
ettes of non-rigid objects. They interpolated a sparse set of
correspondences between silhouette boundaries in consec-
utive frames to produce a basis set of flows, much like those
learned in this paper. The basis was then used to warp the
original images for synthesis and view interpolation. Un-
like our approach, they did not learn the basis flows from
optical flow data, and did not use them to estimate image
motion.

In addition to optical flow estimation, we are interested in
the use of parameterized models for motion-based recogni-
tion. Black and Yacoob [7] modeled the motion of a human
face and facial features using parameterized flow models
(planar, affine, and affine+curvature). They showed how
simple models could represent a rich variety of image mo-
tions, and how the motion parameters could be used to rec-
ognize facial expressions. However, their motion models
were hand-coded. In this paper we show how appropriate
models of facial feature motion can be learned.

Another application examined below is the learning of
motion models for the detection of motion discontinuities.
This application is similar to modeling step edges in static
scenes by learning a parameterized model from examples
of edges [14]. It differs from previous attempts to detect
motion discontinuities that applied edge detectors to optical
flow, checked for bimodality in local flow estimates, or used
energy-based methods [4, 15, 17].

3 Learning Parameterized Flow Models
Learning a parameterized model for a particular class of
motions requires that we have a “training set” of flow fields
containing representative samples of the class. For rela-
tively simple classes such as motion discontinuities we can
generate this training set synthetically. For more complex
motions of natural objects we will need to estimate the im-
age motion for training sequences. Since training is done
off-line, we can afford to use a computationally expensive
robust optical flow algorithm [5].

In either case, the training set from which we learn a
model of image motion is a set ofp optical flow fields. For
images withs = n × m pixels, each flow field contains2s
quantities (i.e., horizontal and vertical elements of the flow
at each pixel). For each flow field we place the2s values
into a vector of length2s by scanning the horizontal ele-
ments of the flow,u(x, y) in standard lexicographic order,
followed by the vertical elements,v(x, y). This gives usp
vectors that become the columns of a2s × p matrixF .

Principal Components Analysis (PCA) ofF can then be

θ
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Figure 1: Discontinuity training set. Left: model for gener-
ating synthetic flow fields. Right: samples from the training
set. The horizontal component is shown above the vertical
component. Black denotes pixels moving left or up oru and
v respectively. White denotes motion right or down.
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Figure 2: (a) The fraction of the variance in the training
set accounted for by the firstk principal components. (1-9)
The first nine basis flows depicted as in Fig. 1, along with
corresponding vector fields.

used to compute a low-dimensional model for the spatial
structure of the flow fields. Toward this end, the Singular
Value Decomposition (SVD) ofF can be written as

F = MΣV T , (1)

whereM = [~m1, ~m2, . . . , ~mp] is a 2s × p matrix. The
columns,~mi, form an orthonormal basis for the range of
F , Σ is a p × p diagonal matrix containing the singular
valuesλ1, λ2, . . . , λp sorted in decreasing order along the
diagonal, andV T is a p × p orthogonal matrix. We can
approximate a given flow field,~f , by a linear combination
of the firstk basis elements inM

~fk =
k
∑

i=1

ai ~mi. (2)

where theai are the parameters of the model to be esti-
mated. Let~u(~x;~a) = (u(x, y), v(x, y)) denote the flow
field that corresponds to the linear approximation,~fk,
where~x = (x, y) and~a = (a1, a2, . . . , ak)T .

The quality of the approximation provided by the firstk
columns ofM is easily characterized in terms of the frac-
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Figure 3: A motion field discontinuity can be represented
and detected with a linear combination of a small number
of the basis motions (cf. [16]).

tion of the variance of the training set that is accounted for
by the selected components. This fraction is given by

Q(k) =

(

k
∑

i=1

λ2
i

)

/

(

p
∑

i=1

λ2
i

)

. (3)

If the singular values,λi, rapidly decrease to zero asi in-
creases thenQ(k) rapidly increases towards1, and a low-
dimensional linear model provides an accurate approxima-
tion of the flow.

3.1 Example: Motion Discontinuities
For illustration, we applied this approach to learn a param-
eterized model of motion discontinuities. First, a synthetic
training set of 200 flow fields was constructed. Each con-
tained a motion discontinuity through the center of a32×32
pixel region (see Fig. 1). The orientation,θ, and the trans-
lational motions on either side of the boundary,~u0 and~u1,
were chosen randomly.

We then computed the SVD of the training set. The frac-
tion of the variance accounted for by the firstk components,
namelyQ(k), rapidly approaches1 (see Fig. 2a). Despite
the variability of the input flow fields, nine basis vectors
account for95% of the variance in the training set. These
basis flows are shown in Fig. 2(1-9). Note that the basis set
can also approximate translational motion since the random
training data contains flow fields in which~u0 is close to~u1.
Note the similarity between the basis vectors for a motion
discontinuity and those learned for an intensity edge in [14].

4 Direct Estimation of Motion Parameters
Given a learned set of basis flows, we now consider the
problem of estimating the optical flow in an arbitrary im-
age region,R, using the parameterized model. Our goal is
to find the coefficients~a that produce a flow field satisfying
the brightness constancy assumption

I(~x + ~u(~x;~a), t + 1) = I(~x, t) ∀~x ∈ R. (4)

Equation (4) states that the image,I, at framet + 1 is a
warped version of the image at timet.

To recover the parameters we formulate an objective
function to be minimized, namely

E(~b;~a) =
∑

~x∈R

ρ(I(~x+~u(~x;~a+~b), t+1)−I(~x, t), σ). (5)

Given an estimate,~a, of the motion parameters (initially
zero), the goal is to estimate the update,~b, that minimizes
(5). Here,σ is a scale parameter andρ(·, σ) is a robust
error norm applied to the residual errorr(~x,~a+~b) = I(~x+
~u(~x;~a), t+1)−I(~x, t). For the experiments below we take
ρ to be

ρ(r, σ) = r2/(σ2 + r2) ,

which was used successfully for flow estimation in [5].
To minimize (5) we first linearize the warped image in (5)

with respect to the update vector~b to give the approximate
objective functionẼ(~b;~a) =

∑

~x∈R

ρ(~u(~x;~b) · ~∇I(~x + ~u(~x;~a), t + 1) + r(~x,~a), σ), (6)

where ~∇I(~x + ~u(~x;~a), t + 1) = [Ix, Iy]T represents the
partial derivatives of the image at timet + 1 warped by
the current motion estimate~u(~x;~a). The search algorithm
described below typically generates small update vectors,
~b. Note that the objective function in (6) satisfiesẼ(~b;~a) =

E(~b;~a) + O(||~b||2), so the approximation error vanishes as
the update is reduced to zero.

The particular optimization scheme is a straightforward
extension of that used by Black and Anandan [5] for esti-
mating optical flow with affine and planar motion models.
This involves a coarse-to-fine iteration strategy, where the
motion parameters~aj determined at a coarser scale are used
in the estimation of̃E(~b;~aj+1) at the next finer scale. The
motion parameters,~aj, from the coarse level are used in (6)
to warp the image at timet + 1 towards the image at time
t. The basis flows at a coarse scale are simply smoothed
and subsampled versions of the basis flows at the next finer
scale. These coarse-scale basis vectors may deviate slightly
from orthogonality but this is not significant given our opti-
mization scheme.

At each scale a coordinate descent procedure is used to
minimize Ẽ(~b;~aj). To deal with the non-convexity of the
objective function, the robust scale parameter,σ, is initially
set to a large value and then slowly reduced. For the ex-
periments below,σ is lower from25

√
2 to 15

√
2 by a fac-

tor of 0.95 at each iteration. Upon completion of a fixed
number of descent steps (or when a convergence criterion
is met), the new estimate for the flow coefficients is taken
to be~aj + ~b. At the finest scale~aj+1 = ~aj + ~b is ac-
cepted as the solution for the flow parameters, otherwise
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Figure 4: Moving disk example. (a) Disk moves one pixel
down and to right over stationary background. (b) Esti-
mated image motion. (c) Motion-discontinuity orientation
can be computed from two orthogonal basis flows.

~aj+1 = 2(~aj +~b) is provided to the next finer scale as the
initial guess (the factor of2 reflects the doubling of the pixel
resolution).

Note that in (6) that the gradient term does not depend on
~b. This avoids the need to rewarp the image and recompute
the image gradient at each descent step. In fact, the image
gradient in (6) can be pre-multiplied by the basis flows since
these quantities will not change during the minimization of
Ẽ(~b;~aj). Hager and Belhuemer [10] used this fact for real-
time affine tracking.

5 Experimental Results
We now present experiments to illustrate the use of learned
models in two different applications. First, the models are
used to estimate dense optical flow. Second, learned motion
models are applied to a specific object in a known location.
We consider examples of human mouths and legs where
it is assumed that regions of interest have been found by
tracking of the face or torso (see [7, 12]).

5.1 Motion Discontinuities

The learned motion-discontinuity model is applied to a tex-
tured moving disk in Fig. 4. Nine basis vectors were used
and the motion coefficients were estimated in32×32-pixel
regions centered on each pixel in the image. The motion of
the center pixel in each region is used to produce the dense
flow field in Fig. 4(b). The coefficients of the orthogonal
basis flows can be used to compute the orientation of the
motion boundary at every pixel. The result is illustrated by
the gray-scale encoding of orientation in Fig. 4(c). The
images at the bottom of the figure show the value of the
coefficients at each pixel.

Figure 5 shows the application of the motion disconti-
nuity model to a natural image sequence. The camera is
translating to the right, yielding a roughly translationalvec-
tor field. The learned model, with nine basis vectors, was
applied at every fourth pixel in the image. The estimated

a b

c d

a1 a2 a3 a4

a5 a6 a7 a8

Figure 5: Flower-garden sequence. (a) First im-
age. (b) Estimated horizontal flow (darker pixels denote
greater leftward motion). (c) Detected motion boundary
(white=occlusion, black=disocclusion). (d) Estimated flow
field.

flow vectors from the4×4 pixel block in the center of each
patch are used to produce a dense flow field with a motion
estimate at every pixel. The horizontal component of the
flow is shown in Fig. 5(b) and the vector field is shown in
Fig. 5(d).

The detection of motion discontinuities here was
straightforward. To detect a vertical occlusion/disocclusion
boundary, we generated a synthetic occlusion flow field and
projected it onto the basis set. The coefficients of this pro-
totype occlusion boundary are then correlated with the co-
efficients estimated in each image region. A high correla-
tion indicates the presence of a vertical occlusion boundary
(shown as “white” in Fig. 5(c)) and a negative correlation
indicates a disocclusion boundary (“black” in Fig. 5(c)).

5.2 Non-Rigid Motion

Black and Yacoob [7] described a method for recognizing
human facial expressions from the coefficients of a param-
eterized model. They modeled the face as a plane and used
its motion to stabilize the image sequence. The motion of
the eyebrows and mouth were estimated relative to this sta-
bilized face using a seven parameter model (affine plus a
vertical curvature term). While this hand-coded model cap-
tures sufficient information about feature deformation to al-
low recognition of facial expressions, it it does not capture
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Figure 6: Example frames from the 600 image training set.

1 2 3 4

5 6 7

Figure 7: Basis flows for non-rigid mouth motion.

the variability of human mouths observed in natural speech.
Here we learn a parameterized model of mouth motion

from examples. We collected four 150 image training se-
quences of a single speaker. The sequences contain natural
speech, smiling, and a test word which was repeated three
times (see Fig. 6). Unlike the previous example, we did
not have ground-truth optical flow from which to learn a
model of mouth motion. Instead, we used the optical flow
method in [5] to estimate dense flow fields between con-
secutive pairs of frames. It should be noted that the esti-
mation of mouth motion is difficult since the lips are not
highly textured, they deform and move large distances be-
tween frames, and the appearance/disappearance of teeth,
tongue, and mouth cavity violates the brightness constancy
assumption (see [8]). We also note that estimation of the
dense training flow takes twice as long to compute as the
direct estimation using the learned models.

Since the image motion of the mouth is highly con-
strained, the optical flow structure in the 600 training flow
fields can be modeled by a small number of principal com-
ponent flow fields. In this case,90% of the variance in the
training flow fields is accounted for by the first seven com-
ponents (shown in Fig. 7). In contrast the seven-parameter
model in [7] only accounted for62% of the variance.

We evaluate the learned model with a 150-image test se-
quence in which the subject smiles and speaks the word
from the training set. A sample of the images from the smile
portion of the sequence are shown in Fig. 8. Below each
image is the estimated flow using the learned 7-parameter
model. The value of the first four coefficients of the model
at each frame are plotted above the images. Notice the sim-
ilarity between the training smile and the test smile. Similar
plots were used for recognition in [7].

Figure 9 shows every second frame corresponding to the

walk-1 walk-2

walk-3 walk-4

Figure 10: Articulated human motion. Top row: images
from training sequences. Bottom row: test sequences.

1 2 3 4

5 6 7 8

Figure 11: Basis flow fields for the walking sequences.

test utterance. Speech, unlike expression, is characterized
by large, rapidly changing motions. Without a highly con-
strained model such as the one learned here, it can be dif-
ficult to estimate motions of this kind. The same word was
uttered three times in the training set and once in the test
set. If the model is accurately capturing the motion of the
lips then the estimated coefficients of each utterance should
be similar. The plots of selected coefficients (a1, a4, a5,
anda6) are shown at the top of Fig. 9. While the plots
appear to be highly correlated, further studies with a range
of speakers are required to determine whether these motion
coefficients are useful for automated speech understanding.

5.3 Articulated Motion

Like mouths, the articulated motion of human limbs can
be large, varied, and difficult to model. We assume that
the subject is viewed from the side (though the approach
can be extended to cope with other views) and that the im-
age sequence has been stabilized with respect to the torso.
Two training and two test sequences (Fig. 10) of a subject
walking on a treadmill were acquired with slightly different
lighting conditions, viewing position, and speed of activity.
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Figure 8: Smile experiment. Coefficientsa1, a2, a3, anda4 are plotted over 80 frames for smile expressions in one training
sequence and in the test sequence. Selected images and the corresponding estimated flow field are shown. Numbers under
the images and flow fields correspond to frame numbers on the graphs.

SVD was performed on the 350-image training set. The
first nine basis vectors account for90% of variance in
the training data and are used in our experiments (see
Fig. 11.) Note that the first component essentially encodes
the scissors-like expansion/contraction of the legs (cf. [2]).

Figure 12 shows results of motion estimation using a
nine-parameter learned model for a 200-image training se-
quence (Walk-2) and a 200-image test sequence (Walk-4).
Each sequence contains approximately seven complete cy-
cles of the motion. Note the similarity of the two plots for
the first coefficient (a1). The magnitude of the parametera2

varies between the two sequences but is consistent within
a sequence. Further experimentation with additional sub-
jects will be necessary to determine the feasibility of activ-
ity recognition based on these parameters.

6 Conclusion

We presented a framework for learning parameterized mod-
els of image motion. Parameterized models provide strong
constraints on the spatial variation of the flow within an im-
age region and provide a concise description of the motion
in terms of a small number of parameters. The framework
described here extends parameterized flow methods to more
complex motions that can be approximated as a linear com-
bination of basis flow fields. It is important to note that
the coefficients of the motion models are estimated directly
from the image derivatives and do not require the prior com-
putation of dense image motion.

The methods can be used to learn generic flow models
that can be applied at every image location in the way that

current affine models are employed. In particular we are
exploring the representation and recognition of motion fea-
tures, such motion discontinuities and moving bars, and
their relationship to the detection of static image features
such as edges and line.

The approach can also be used to learn object-specific
models (e.g. mouth motion) that are applied in specific im-
age regions, and which may be useful for motion-based
recognition. Alignment of these models with the image is
important and it may be possible to refine this alignment
automatically (see [6]).

A number of other research issues remain unanswered.
Learned models are particularly useful in situations where
optical flow is hard to estimate, but in these situations it
is difficult to compute reliable training data. This problem
is compounded by the sensitivity of PCA to outliers. PCA
also gives more weight to large motions making it difficult
to learn compact models of motions with important struc-
ture at multiple scales. Future work will explore non-linear
models of image motion, robust and incremental learning,
and models of motion texture.
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optical flow fields. DJF thanks NSERC Canada and Xerox
PARC for their financial support.
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