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Abstract 

111 thi.) puper, we present un uutomutic. system fi,r U I I -  

ulyzing and unnotuting video sequences of trchnicrd 
tulks. Our method uses U robust motion estiniution 
tec,hnique tci detect k e ~  frunzes und segment the video 
sequence into subsequences cmtuining a single over- 
head slide. The subsequences ure stabilized to re- 
move motion that o m m  when the speukeradjusts their 
slides. Any chunges remuining between frunzes in the 
stubilized sequencxs muy be due to speuker gestures 
such us pointing or writing and we use uc-tive c~intour.~ 
to automaticdl~ truck these potential gestures. Given 
the construined domuin we dejine U simple “voc-ubu- 
1un.” cguctions which ~ ’ u n  eusily be recognized bused 
on the active c~intour shupe and motion. The recog- 
nized actions provide U rich unnotution ofthe sequence 
that cun be used to ucces.s a condensed version of the 
tulk from U web puge. 

1 Introduction 
In recent years. researchers have been increasingly inter- 
ested in the problem of browsing and indexing video se- 
quences. The majority of work has focused on the detection 
of key frames and scene breaks in general, unconstrained, 
video databases [ l l ,  14. 151. For these methods to work on 
general video sequences they use simple image processing 
techniques and do not attempt any high-level analysis of the 
content of the sequence. In our work we have chosen to con- 
strain the domain of video sequences that we wish to analyze 
and look specifically at video-taped presentations in which 
the camera is focused on the speaker’s slides projected by 
an overhead projector. By constraining the domain we are 
able to define a “vocabulary” of actions that people perform 
during a presentation. By automatically recognizing these 
actions we can provide an annotation of the video sequence 
that can be used, for example. to access a summarized or 
condensed version of the talk from a web page. 

Figure I shows a simple example of a video browsing and 
indexing system [IO]. The original video stream is summa- 
rized and annotated first. In previous versions of the sys- 
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Figure 1 : A example system of video browsing and indexing 

tem (cf. [ IO])  this was a manual process and the present pa- 
per addresses the automation of this process. The outputs of 
the process are indices of the events and the images corre- 
sponding to these events. This information is used to make 
a summary web page containing images of each event and 
their time indices. Our current system makes use of real- 
time JPEG decoding hardware and a fiber-optic ATM net- 
work to permit access of real-time audio and video from the 
web page. 

Generally speaking. the goal of automatic \ ideo annota- 
tion is to save a small set of frames that contain most of the 
relevant information in the video sequence. In our restricted 
domain of overhead presentations a number of “changes” 
can occur in the image sequence. There are two classes 
which we will call “nuisances” and “affordances.”’ 

Nuisance changes are those which we define to hake no 
relevant semantic interpretation (Figure 2). Examples of 
this are when the speaker occludes the slide with their hand 
or body or when the speaker moves the slide (an action that 
we observe to be very common). These nuisance changes 

‘The actual distinction between thcsc classcs is soincwhat arbitrary and 
is defined relative to the spccific domain fo~mulation and prohlem ttr bc 
solved. 
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Figure 3,: Nuisance changes. 
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Figure 3 Affordances 

are ones that M;e Mish to ignore in  the anal! sis and >tiinma 
rization of the \.ideo sequence. 

Affordances. on the other hand. are changes in the \ideo 
sequence that ha1.e a semantic interpretation m ith respec.t 
to the presentation (Figure 3 j. For example. speakers often 
urite. point. or make repetitil e gestures at locations on the 
slide to which they arc referring. Another common action is 
to cover a portion of the slide and gradtiall! re\ ea1 the tin- 
derlying text. We call these changes "affordances" because 
we can take advantage of them to acquire more infomiation 
about the presentation.'? Automatic recognition of the affor- 
dances can pro\.ide a rich description of the 1 ideo As M'e 
will show. recognition of the affordances  ill allon. tis to 
produce annotated key-frames from the video that U i l l  allou 
users to later access portions of the talk where the speaker 
gestured at a particular location on his or her slides. 

In this paper we propose a novel approach for the auto 
matic annotation of video from meetings in U hich a cani- 
era is focused on overhead transparencies. First. we esti- 
mate the global image motion between e\.ery two consecu- 
tive frames using a robust regression method. The motion 
information is used to compute a warped sequence where 
the slides are stabilized Second. the stabilized sequence is 
processed to extract .vli& leinpiut~~,v. or key frames. Third. 
we compute a pixel-wise difference image between the slide 
templates and the corresponding frames in the stabilized im- 
age sequence. These difference images contain on11 oc- 

cluded/disoccluded objects: that is. potential gestures. Then 
n e  track these gestures tising a defomiable contotir model. 
B! analyzing the shape of the contour and its motion mer  
time. we can recognize pointing gestures and reco\.er the lo- 
cation on the slide to which the speaker is referring. Finally. 
the key frames and gesture information are integrated to an- 
notate the \-ideo. We will describe the first three steps in Sec- 
tions 3 through 6. In Section 3. we briefl! re\,iew pre\ ious 
uork on \ ideo summarization 

2 Related Work 
I'he two main themes explored in pre\ ious work on auto- 
matic \ ideo summarization can be broadly described as sex- 
~ i i e m t i o i i  and unuly.sis. The worh on segmentation focuses 
on finding scene changes or key frames in the video while 
work on analysis focuses on understanding actions or events 
(typical11 in a more restricted domain). Both types of anal- 
ysis are important to pro\ ide useful video summarization. 

Scene-break detection is a first step towards the automatic 
annotation of digital video sequences. There are two basic 
types of algorithms for wene-break detection. The first uses 
image-based methods. such as image differencing and color 
histograniing [ I  1 .  151. The second. feature-based meth- 
ods. use image edge pixels [ 131. These algorithms typically 
compute the differences between two consecutive images 
and. when the difference is larger than a threshold. there 
may be a scene break. 

Simple image-based differencing tends to over-segment 
the t ideo sequence when there i s  motion present in the scene 
or U hen the camera is mo\,ing since many pixels will change 
their color from frame to frame. Zabih et ol. [ 141 recently 
proposed a feature-based method. They detected the appear- 
ance of intensity edges that are distant from edges in the pre- 
vious frame. A global motion computation is used to han- 
dle camera or object motion. Their method can detect and 
classify scene breaks that are difficult to detect with image- 
based methods. However their motion estimation technique 
(the correlation method and the Hausdorff distance method j 
can not handle multiple moving objects well. Generally 
speaking. the image- and feature-based methods are naive 
approaches that use straightform,ard measurements of scene 
change. For simply detecting scene changes however. these 
methods are very efficient. 

There has been somewhat less attention paid to the se- 
mantic analysis o f \  ideo and arzuably this is a tremendously 
hard problem in general and previous work has focused on 
narrow' domains. Intille and Bobick 171 refer to these re- 
stricted domains as "closed-worlds" and their work focuses 
on the tracking and analysis of players in a football game. 
As in our work. they must register multiple frames in a video 
sequence in m;hich other changes are occumng. They man- 
ually register the frames while we use an automatic robust 
estimation technique to perfomi this tash. rheir domain did 
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not require them to address the segmentation of the \ideo 
into multiple scenes (cut detection). Like us. they define a 
narrow domain in which they can express prior assumptions 
about the semantics of changes in the scene. 

Other recent attempts to provide an automated analysis 
of \ ideo in restricted domains include the work of Mann er 
ul. [9] who propose a method for analyzing the physical 
interactions between objects in a \ideo sequence and that 
of Brand [4] who looks at understanding human actions in 
\ideo for the purpose of video summarization, Earlier work 
on the linguistic analysis of action in video focused on gen- 
erating descriptions of a soccer match given manually gen- 
erated motion information [ 1 .  121. 

We will present a robust motion estimation method in the 
following section. which can recover the motion of over- 
head slides accurately. This will be used to automatically 
~tabilize the image sequence and to reliably detect slide 
changes in the sequence. We then present a method for ges- 
ture tracking and recognition. 

3 Motion estimation 
Image motion between two frames can be estimated using 
a parametric model. Parametric models of image motion 
make explicit assumptions that the image flow can be repre- 
sented by a low-order polynomial. For example. we assume 
that the slides are always perpendicular to camera's viewing 
axis, and they can be modeled as a rigid plane. Therefore. 
the image motion can only be translation. scaling. or rota- 
tion. For small motions. these can be described by the fol- 
lowing four-parameter model: 

\%here a = [(I,,. (I1. (12. (131 denotes the Lector of parameters 
to beestimated.andu(x.a) = [u( . i .y ) .  u(.r.g)]arethehor- 
izontal and vertical components of the flow at image point 
x = [ . I .  U]. The coordinates ( . I .  y)  are defined with respect 
to a particular point: here this is taken to be the center of the 
image. 

To estimate the motion parameters. a. for a given patch 
we mahe the assumption that the brightness pattem within 
the patch remains constant while the patch may translate. 
scale. or rotate. This brighmess constancy assumption is 
formulated as 

I (x  + u(x. a).  t -+ 1 ) = I(x. t ) .  'fx E R (3) 

where a denotes the motion model for patch R. I is the im- 
age brightness function and t represents time. This equation 
simply states that the motion u(x. a )  can be used to warp 
image at time f + 1 to make it look like the image at time f .  

Note that the brightness constancy assumption is often 
violated in practice due to changes in lighting. occlusion 

boundaries. specular reflections. etc. In our domain of 
\ iew-graphs. violations will occur in situations in which the 
speaker occludes their slides. Robust regression has been 
shown to provide accurate motion estimates in a variety of 
situations in which the brightness constancy assumption is 
violated [2]. To estimate the slide motion. a. robustly. we 
minimize 

E,, = p ( ~ ( x  t u(x.a) . t  + I )  - I (x . f ) .c r i .  (4) 

mith respect to the parameters a for some robust error norm 
p where m is a scale parameter (see [2] for details). Viola- 
tions of the brighmess constancy assumption can be viewed 
as "outliers" [6] and we need to choose the function p such 
that it is insensitive to these large errors. 

Equation 4 is minimized using a simple gradient descent 
scheme [ 2 ] .  The robust formulation of Equation 4 means 
that the algorithm estimates the dominant motion in the 
scene (i.e. the slide motion) and automatically ignores the 
image points that belong to other motions (the gestures). 
Gestures will be tracked using a different technique de- 
scribed in the Section 5 .  In the following section we will 
use the motion information to stul~ilize the image sequence 
with respect to ke!, jrumes. 

4 Key-Frame Detection 
Given an image sequence corresponding to a particular 
slide. stabilization is just a process of warping each of the 
images towards a refererzcr itiiuge by taking into account the 
cumulative motion estimated between each of the frames in 
the sequence. Since minimizing Equation 4 can only esti- 
mate small image motions between two consecutive images. 
we need to compute the motion between the ref2renc.e imugr 
and each following frame. Given a,, .. 1. the motion between 
the reference inzugr and frame ' I t  - 1. and a,;, . the motion be- 
tween frame 7 1 ,  - l and 'tt,. image motion between the refkr- 
eizce image and frame t t  is: 

a 7 1  = a,, 1 t ab t (la 

X E R  

where - ~. for example. represents the paramter (13  from 
the previous frame n - 1. 

We use a simple heuristic that the reference frame is the 
first non-blank image for which the motion is smaller than 
a threshold. For subsequent images, if the motion estima- 
tion method succeeds (has low error) then the image belongs 
to the same subsequence as the reference frame. When the 
motion estimation method fails. it means that two consecu- 
tive frames are significantly dissimilar and can not be mod- 
eled by Equations 1 and 2. Thus.  it typically corresponds 
to a change of slides, and we use this frame to end the sub- 
sequence and we begin looking for the next stable reference 
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(b) 

Figure 5 :  The key frames of: (a )  slide 1 ( b )  slide 2 (c )  slide 3 

Figure 7: Snake Tracking at frame 1220. 1240. I280 and 
1312. 

boundary of the image (because the hand has entered the 
slide) then the snake will deform around the region until 
P(:r. y)  is small enough along the contour and both the in- 
temal andextemal forces are balanced. The scalar K is used 
at all image pixels except those at the boundary thus creat- 
ing a preference for the snake to stay at the image boundary. 
If the hand leaves the frame this default expansion force will 
push the snake back out to the image boundary. 

Minimizing the energy function of Equation 5 gives rise 
to two independent Euler equations [8]. The tracking be- 
havior of the snake is achieved by numerical, iterative so- 
lution of these two equations using techniques from varia- 
tional calculus (See [8] for details). 

It is well known that if the initial snake position is not cho- 
sen properly. the contour will fail to converge to desirable 
features. We can initialize a closed snake to be at the po- 
sition of the image boundary. and avoid the hard problem 
of automatic initialization of snakes. Figure 7 shows snake 
tracking for the first slide. The external image is the abso- 
lute difference image between a stabilized frame and its cor- 
responding key frame. Bright areas stand for regions where 

Figure 8: Finding the contour of the object 

pointing 
sturt position 

longest line 

Figure 9: Pointing position 

the extemal forces are large White dots in the images indi- 
cate the snake nodes. 

There is a problem of using the difference images for the 
extemal potential. If the entering object has a color simi- 
lar to that of the slide. the snake b i l l  not trach it since the 
extemal image force m i l l  be too small. In our experiments. 
the snahe model failed to trach a gesture cequence in\ ol\ - 
ing pointing with a pen which was relatiLely small and of 
similar color to the slide 

6 Recognizing Pointing Gestures 
From the snake nodes. we can detect if. and where. the 
speaher is pointing on the slides Our method has three 
steps. First. we fit  a bounding quadrilateral to the snake 
nodes by finding the four comers The nodes that are not 
close to any edge of the quadrilateral belong to the deformed 
part of the Snake. that is. the contour of the object (Figure 
8). 

Second. we define a starting point to be the middle point 
between the first node and the last node of the contour (Fig- 
ure 9) Among all the snake nodes on the contour. the one 
that is furthest from this starting point is defined as the point- 
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Figure 4: The key frame detection: filtering the stabilized 
sequence. 

image. In the domain of overhead presentations this simple 
strategy works well. 

Since we only estimate the dominant (slide) motion in 
the scene, the warped sequence contains both the stabilized 
slide and moving objects. such as the hand of the speaker. 
To get a template image that contains no gestures. we use a 
median temporal filter to remove the moving objects in the 
sequence [ 131. At each image position. we take all the val- 
ues at this position in the stabilized frames, find the median 
value, and use it as the intensity value of the slide template. 
The median filter can filter out the gestures, hand motions. 
and partial occlusion. Finally we find which of the stabilized 
frames is most similar to the template. and use this particu- 
lar frame as the “key frame” which is representative of the 
corresponding video segment (see Figure 4). 

4.1 Experimental results 
We collected a short image sequence to simulate a talk (ap- 
proximately 3200 frames over 105 seconds of video) in 
which the camera is focused on the speaker’s slides on a 
desktop. The speaker used three slides during the talk. They 
put the first slide on, moved it up then down, pointed to a 
few bullets on the slide, and then took it away. The second 
slide was partly covered at first. then the cover sheet was 
moved down to reveal the slide. The speaker also wrote a 
few words on the third slide. During the “talk”, the speaker 
frequently adjusted the position of their slides. 

Figure 5 shows the three automatically recovered key 
frames. Since we warp all the frames backward toward the 
first reference frame, the slides should be put roughly in the 
center of the viewing area at first. Note that, while it did not 
occur with this sequence. the median filter could produce 
unexpected results. For instance, if the speaker puts their 
hand on the slide for the majority of frames in a given seg- 
ment, the hand will be considered as part of the key frame or 
template. More sophisticated techniques would be required 
to distinguish hands from slides but it is not clear whether 
this is necessary or desirable. 

5 Gesture Tracking 
If we compute the absolute difference between the slide 
template and images in the warped sequence, the non-zero 

Figure 6: Gesture Tracking: a deformable image boundary. 

pixels in the image must correspond to gestures. covered 
data. or written text. Since all the gestures must enter the 
scene or leave the scene from the image boundary. new ma- 
terial can not suddenly appear in the middle of the image. 
Therefore. we can let the image boundary deform when a 
“thing” enters. such that it tracks the contour of the enter- 
ing object. If the object leaves. the deformable contour will 
expand to the image boundary (See Figure 6). 

We use controlled continuity splines. or “Snakes” [8]. to 
model the deformable contour. The idea is to have the snake 
lock on to features of an image structure by minimizing 
an integral measure which represents the snake’s total en- 
ergy. Due to the dynamic property of the snake model. we 
can achiebe automatic tracking of a contour from frame to 
frame. 

The behakior of a snake is controlled by intemal and ex- 
temal forces. The intemal forces serve as a smoothness con- 
straint. and the extemal forces guide the active contour to- 
wards image features. Following the notation from the orig- 
inal model proposed by Kass et ul. [8]. given a parametric 
representation of an image curve v(  s )  = (1 ( 5 ) .  y( s ) ) .  the 
energy function is defined as 

E u r , u ~ t  = f , r , t ( ~ ( \ ) )  t & , , (v (c \ ) )d*5  ( 5 )  1;’ 
The function &lnt represents the intemal energy of the acthe 
contour and is composed of first and second order derivative 
terms (v, and v, respectively): 

Ihe first-order term makes the snake act like a string and 
the second-order term makes it act like a rod. Adjusting the 
weights f v  and ,b’ controls the relative importance of the firqt 
and second terms. 

E, represents the extemal potential 

&, If = P (  I .  g )  - K = [G, = *( I .  y) ]  - K.  

where K is a constant expansion energy, ( is a constant 
weight, @ is a difference image, and G, * Q denotes the 
difference image convolved with a Gaussian smoothing fil- 
ter. The active contour model in Equation ( 5 )  attempts to 
find a contour which is both smooth and which minimizes 
the value of P(.r. y) at every snake node ( L .  y). P ( z .  y )  
is a scalar potential function defined over image plane. If 
the value of P is large over some region that overlaps the 
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Figure 10: Good and bad pointing. 

ing position. The line which connects the starting point and 
the pointing position will give us the rough pointing direc- 
tion. 

Finally, we will recognize the pointing gesture. Two 
heuristics are used to filter out the non-gestures. The first is 
a constraint on the spatial smicture of the gesturing object: 
we want it to have a definite “point”. The pointing positions 
that are too close to the first or last node in the segmented 
gesture are therefore eliminated (Figure 10. row one). 

The second heuristic models the expected temporal pat- 
tem of gestures. We only recognize an action as a pointing 
gesture if the speaker points at one position for a time longer 
than a threshold (e.g.. longer than 0.5 second). In the sec- 
ond row of Figure 10, a hand moves continuously from left 
to right in the sequence. We will not classify this gesture as 
pointing. In the third row. on the other hand, the finger stays 
at roughly the same position for a while. and it will be recog- 
nized as a pointing gesture. More sophisticated techniques 
could be employed for recognizing more complex gestures 
(cf [31). 

On the first slide of our experimental sequence, the 
speaker pointed to the two top boxes and the two following 
bullets. Figure 11  shows a few images from this portion of 
the experimental sequence. During this portion of the talk 
the speaker moved the slides a number of times. 

Figure 12 shows the resulting analysis of our system for 
this portion of the sequence. Four distinct pointing gestures 
were recognized and the estimated pointing positions are 
marked on the slide template by a pointing-hand icon. These 
four slides become part of the web-based interface to the talk 
allowing the user to access the original video and audio at 
those points in the talk relevant to their interests. Note that 
nuisance gestures corresponding to the speaker moving the 
slides have been correctly eliminated. 

7 Conclusion 
We propose a fully automatic method that can robustly de- 
tect key frames of a video captured in a meeting. The 
method is robust with respect to slide motions, occlusions 
and gestures. It can also provide richer description of the 
slides. such as where the speaker is pointing. This automatic 
video annotation and analysis system will help the user ac- 
cess meeting videos intelligently. 

Note that this is an off-line process. The original digitized 
video sequence is saved in JPEG format and must be de- 
compressed before processing. The decompression. motion 
estimation and key-frame detection parts of our algorithm 
take approximately 20 minutes to process the near 2 minute 
video of our simulated talk. This time is highly dependent 
on whether or not there are a lot of changes in the scene. 
Since the sequence we use has a large number of motions 
and gestures in short period of time, the cost of motion es- 
timation is high. With gesture tracking, the algorithm takes 
nearly 50 minutes in total for the 2 minute sequence. 

In future work we would like to match the low resolu- 
tion slide template image with a stored postscript file of the 
slides. This would provide an automatic correspondence be- 
tween the low-resolution video and a postscript version of 
the talk and would allow a user to view or print specific 
slides at high resolution. We also leave the detection of re- 
vealing and writing affordances for future work. 
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