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Abstract

We present methods for learning and tracking human motion in
video. We estimate a statistical model of typical activities from a
large set of 3D periodic human motion data by segmenting these
data automatically into \cycles". Then the mean and the princi-
pal components of the cycles are computed using a new algorithm
that accounts for missing information and enforces smooth tran-
sitions between cycles. The learned temporal model provides a
prior probability distribution over human motions that can be used
in a Bayesian framework for tracking human subjects in complex
monocular video sequences and recovering their 3D motion.

1 Introduction

The modeling and tracking of human motion in video is important for problems as
varied as animation, video database search, sports medicine, and human-computer
interaction. Technically, the human body can be approximated by a collection of
articulated limbs and its motion can be thought of as a collection of time-series
describing the joint angles as they evolve over time. A key challenge in modeling
these joint angles involves decomposing the time-series into suitable temporal prim-
itives. For example, in the case of repetitive human motion such as walking, motion
sequences decompose naturally into a sequence of \motion cycles". In this work,
we present a new set of tools that carry out this segmentation automatically using
the signal-to-noise ratio of the data in an aligned reference domain. This procedure
allows us to use the mean and the principal components of the individual cycles in
the reference domain as a statistical model. Technical di�culties include missing in-
formation in the motion time-series (resulting from occlusions) and the necessity of
enforcing smooth transitions between di�erent cycles. To deal with these problems,



we develop a new iterative method for functional Principal Component Analysis
(PCA). The learned temporal model provides a prior probability distribution over
human motions that can be used in a Bayesian framework for tracking. The details
of this tracking framework are described in [7] and are briey summarized here.
Speci�cally, the posterior distribution of the unknown motion parameters is repre-
sented using a discrete set of samples and is propagated over time using particle
�ltering [3, 7]. Here the prior distribution based on the PCA representation im-
proves the e�ciency of the particle �lter by constraining the samples to the most
likely regions of the parameter space. The resulting algorithm is able to track hu-
man subjects in monocular video sequences and to recover their 3D motion under
changes in their pose and against complex unknown backgrounds.

Previous work on modeling human motion has focused on the recognition of ac-
tivities using Hidden Markov Models (HMM's), linear dynamical models, or vector
quantization (see [7, 5] for a summary of related work). These approaches typically
provide a coarse approximation to the underlying motion. Alternatively, explicit
temporal curves corresponding to joint motion may be derived from biometric stud-
ies or learned from 3D motion-capture data. In previous work on principal com-
ponent analysis of motion data, the 3D motion curves corresponding to particular
activities had typically to be hand-segmented and aligned [1, 7, 8]. By contrast,
this paper details an automated method for segmenting the data into individual
activities, aligning activities from di�erent examples, modeling the statistical vari-
ation in the data, dealing with missing data, enforcing smooth transitions between
cycles, and deriving a probabilistic model suitable for a Bayesian interpretation. We
focus here on cyclic motions which are a particularly simple but important class of
human activities [6]. While Bayesian methods for tracking 3D human motion have
been suggested previously [2, 4], the prior information obtained from the functional
PCA proves particularly e�ective for determining a low-dimensional representation
of the possible human body positions [8, 7].

2 Learning

Training data is provided by a commercial motion capture system describes the
evolution of m = 19 relative joint angles over a period of about 500 to 5000 frames.
We refer to the resulting multivariate time-series as a \motion sequence" and we
use the notation Zi(t) � fza;i(t)ja = 1; : : : ;mg for t = 1; : : : ; Ti to denote the an-
gle measurements. Here Ti denotes the length of sequence i and a = 1; : : : ;m
is the index for the individual angles. Altogether, there are n = 20 motion
sequences in our training set. Note that missing observations occur frequently
as body markers are often occluded during motion capture. An associated set
Ia;i � ft 2 f1; : : : ; Tig j za;i(t) is not missingg indicates the positions of valid data.

2.1 Sequence Alignment

Periodic motion is composed of repetitive \cycles" which constitute a natural unit
of statistical modeling and which must be identi�ed in the training data prior to
building a model. To avoid error-prone manual segmentation we present alignment
procedures that segment the data automatically by separately estimating the cy-
cle length and a relative o�set parameter for each sequence. The cycle length is
computed by searching for the value p that maximizes the \signal-to-noise ratio":

stn ratioi(p) �
X
a

signali;a(p)

noisei;a(p)
; (1)
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Figure 1: Left: Signal-to-noise ratio of a representative set of angles as a function
of the candidate period length. Right: Aligned representation of eight walking
sequences.

where noisei;a(p) is the variation in the data that is not explained by the mean
cycle, �z, and signali;a(p) measures the signal intensity.1 In Figure 1 we show the
individual signal-to-noise ratios for a subset of the angles as well as the accumulated
signal-to-noise ratio as functions of p in the range f50; 51; : : : ; 250g. Note the peak
of these values around the optimal cycle length p = 126. Note also that the signal-
to-noise ratio of the white noise series in the �rst row is approximately constant,
warranting the unbiasedness of our approach.

Next, we estimate the o�set parameters, o, to align multiple motion sequences in
a common domain. Speci�cally, we choose o(1); o(2); : : : ; o(n) so that the shifted
motion sequences minimize the deviation from a common prototype model by anal-
ogy to the signal-to-noise-criterion (1). An exhaustive search for the optimal o�set
combination is computationally infeasible. Instead, we suggest the following iter-
ative procedure: We initialize the o�set values to zero in Step 1, and we de�ne a
reference signal ra in Step 2 so as to minimize the deviation with respect to the
aligned data. This reference signal is a periodically constrained regression spline
that ensures smooth transitions at the boundaries between cycles. Next, we choose
the o�sets of all sequences so that they minimize the prediction error with respect
to the reference signal (Step 3). By contrast to the exhaustive search, this operation
requires O (

Pn

i=1 p(i)) comparisons. Because the solution of the �rst iteration may
be suboptimal, we construct an improved reference signal using the current o�set
estimates, and use this signal in turn to improve the o�set estimates. Repeating
these steps, we obtain an iterative optimization algorithm that is terminated if the
improvement falls below a given threshold. Because Steps 2 and 3 both decrease the
prediction error, so that the algorithm converges monotonically. Figure 1 (right)
shows eight joint angles of a walking motion, aligned using this procedure.

2.2 Functional PCA

The above alignment procedures segment the training data into a collection of
cycle-data called \slices". Next, we compute the principal components of these
slices, which can be interpreted as the major sources of variation in the data. The
algorithm is as follows

1The mean cycle is obtained by \folding" the original sequence into the domain
f1; : : : ; pg. For brevity, we don't provide formal de�nitions here; see [5].



1. For a = 1; : : : ;m and i = 1; : : : ; n:

(a) Dissect zi;a into Ki cycles of length p(i), marking missing values at both

ends. This gives a new set of time series z
(1)
k;a

for k = 1; : : : ;Ki where

Ki = dTi�o(i)
p(i) e + 1. Let �Ik;a be the new index set for this series.

(b) Compute functional estimates in the domain [0; 1].

(c) Resample the data in the reference domain, imputing missing observations.

This gives yet another time-series z(2)k;a(j) := fk;a
�

j

T

�
for j = 0; 1; : : : ;T :

2. Stack the \slices" z
(2)
k;a obtained from all sequences row-wise into a

P
i
Ki �mT

design matrix X.

3. Compute the row-mean � of X, and let X(1) := X � 10�. 1 is a vector of ones.

4. Slice by slice, compute the Fourier coe�cients of X(1), and store them in a new
matrix, X(2). Use the �rst 20 coe�cients only.

5. Compute the Singular Value Decomposition of X(2): X(2) = USV 0:

6. Reconstruct X(2), using the rank q approximation to S: X(3) = USqV 0:

7. Apply the Inverse Fourier Transform and add 10� to obtain X(4).

8. Impute the missing values in X using the corresponding values in X(4).

9. Evaluate jjX � X(4)jj. Stop, if the performance improvement is below 10�6.
Otherwise, goto Step 3.

Our algorithm addresses several di�culties. First, even though the individual mo-
tion sequences are aligned in Figure 1, they are still sampled at di�erent frequencies
in the reference domain due to the di�erent alignment parameters. This problem
is accommodated in Step 1c by resampling after computing a functional estimate
in continuous time in Step 1b. Second, missing data in the design matrix X means
we cannot simply use the Singular Value Decomposition (SVD) of X(1) to obtain
the principal components. Instead we use an iterative approximation scheme [9] in
which we alternate between an SVD step (4 through 7) and a data imputation step
(8), where each update is designed so as to decrease the matrix distance between X
and its reconstruction, X(4). Finally, we need to ensure that the mean estimates and
the principal components produce a smooth motion when recombined into a new
sequence. Speci�cally, the approximation of an individual cycle must be periodic in
the sense that its �rst two derivatives match at the left and the right endpoint. This
is achieved by translating the cycles into a Fourier domain and by truncating high-
frequency coe�cients (Step 4). Then we compute the SVD in the Fourier domain
in Step 5, and we reconstruct the design matrix using a rank-q approximation in
Steps 6 and 7, respectively. In Step 8 we use the reconstructed values as improved
estimates for the missing data in X, and then we repeat Steps 4 through 7 using
these improved estimates. This iterative process is continued until the performance
improvement falls below a given threshold. As its output, the algorithm generates
the imputed design matrix, X, as well as its principal components.

3 Bayesian Tracking

In tracking, our goal is to calculate the posterior probability distribution over 3D
human poses given a sequence of image measurements, ~It. The high dimensionality
of the body model makes this calculation computationally demanding. Hence, we
use the learned model above to constrain the body motions to valid walkingmotions.
Towards that end, we use the SVD of X(2) to formulate a prior distribution for
Bayesian tracking.



Formally, let �(t) � (�a(t)ja = 1; : : : ;m) be a random vector of the relative joint
angles at time t; i.e., the value of a motion sequence, Zi(t), at time t is interpreted
as the i-th realization of �(t). Then �(t) can be written in the form

�(t) = ~�( t) +

qX
k=1

ct;kvk( t); (2)

where vk is the Fourier inverse of the k-th column of V , rearranged as an T � m-
matrix; similarly, ~� denotes the rearranged mean vector �. vk( ) is the  -th column
of vk, and the ct;k are time-varying coe�cients.  t 2 f0; T �1g maps absolute time
onto relative cycle positions or phases, and �t denotes the speed of the motion
such that  t+1 = ( t + �t) mod T . Given representation (2), body positions are
characterized entirely by the low-dimensional state-vector �t = (ct;  t; �t; �

g
t ; �

g
t )
0,

where ct = (ct;1; : : : ; ct;q) and where � g
t and �

g
t represent the global 3D translation

and rotation of the torso, respectively. Hence we the problem is to calculate the
posterior distribution of �t given images up to time t. Due to the Markovian
structure underlying �t, this posterior distribution is given recursively by:

p(�t j~It) / p(It j�t)

Z
p(�t j�t�1)p(�t�1 j~It�1) d�t�1 : (3)

Here p(It j�t) is the likelihood of observing the image It given the parameters and

p(�t�1 j~It�1) is the posterior probability from the previous instant. p(�t j�t�1)
is a temporal prior probability distribution that encodes how the parameters �t

change over time. The elements of the Bayesian approach are summarized below;
for details the reader is referred to [7].

Generative Image Model. Let M (It;�t) be a function that takes image texture
at time t and, given the model parameters, maps it onto the surfaces of the 3D
model using the camera model. Similarly, let M�1(�) take a 3D model and project
its texture back into the image. Given these functions, the generative model of
images at time t+1 can be viewed as a mapping from the image at time t to images
at time t + 1:

It+1 =M�1(M (It;�t);�t+1) + �; � � G(0; �);

where G(0; �) denotes a Gaussian distribution with zero mean and standard devia-
tion � and � depends on the viewing angle of the limb with respect to the camera
and increases as the limb is viewed more obliquely (see [7] for details).

Temporal Prior. The temporal prior, p(�t j�t�1), models how the parameters
describing the body con�guration are expected to vary over time. The individual
components of �, (ct;  t; �t; �

g
t ; �

g
t ), are assumed to follow a random walk with

Gaussian increments.

Likelihood Model. Given the generative model above we can compare the image
at time t � 1 to the image It at t. Speci�cally, we compute this likelihood term
separately for each limb. To avoid numerical integration over image regions, we
generate ns pixel locations stochastically. Denoting the ith sample for limb j as
xj;i, we obtain the following measure of discrepancy:

E �
nX
i=1

(It(xj;i)�M�1(M (It�1;�t�1);�t)(xj;i))
2: (4)

As an approximate likelihood term we use

p(Itj�t) =
Y
j

q(�j)p
2��(�j)

exp(�E=(2�(�j)2ns)) + (1� q(�j))poccluded ; (5)
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Figure 2: Tracking of person walking, 10000 samples. Upper rows: frames 0, 10, 20,
30, 40, 50 with the projection of the expected model con�guration overlaid. Lower row:
expected 3D con�guration in the same frames.

where poccluded is a constant probability that a limb is occluded, �j is the angle
between the limb j principal axis and the image plane of the camera, �(�j) is a
function that increases with narrow viewing angles, and q(�j) = cos(�j) if limb j
is non-occluded, or 0 if limb j is occluded.

Partical Filter. As it is typical for tracking problems, the posterior distribution
may well be multi-modal due to the nonlinearity of the likelihood function. Hence,
we use a particle �lter for inference where the posterior is represented as a weighted
set of state samples, �i, which are propagated in time. In detail, we use Ns � 104

particles in our experiments. Details of this algorithm can be found in [3, 7].

4 Experiment

To illustrate the method we show an example of tracking a walking person in a
cluttered scene in Figure 2. The 3D motion is recovered from a monocular sequence
using only the motion between frames. To visualize the posterior distribution we
display the projection of the 3D model corresponding to the expected value of

the model parameters: 1
Ns

PNs

i=1 pi�i where pi is the likelihood of sample �i. All
parameters were initialized manually with a Gaussian prior at time t = 0. The
learned model is able to generalize to the subject in the sequence who was not part
of the training set.

5 Conclusions

We described an automated method for learning periodic human motions from
training data using statistical methods for detecting the length of the periods in the



data, segmenting it into cycles, and optimally aligning the cycles. We also presented
a PCA method for building a statistical eigen-model of the motion curves that copes
with missing data and enforces smoothness between the beginning and ending of a
motion cycle. The learned eigen-curves are used as a prior probability distribution
in a Bayesian tracking framework. Tracking in monocular image sequences was
performed using a particle �ltering technique and results were shown for a cluttered
image sequence.
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