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Abstract. Correspondence between non-rigid deformable 3D objects
provides a foundation for object matching and retrieval, recognition,
and 3D alignment. Establishing 3D correspondence is challenging when
there are non-rigid deformations or articulations between instances of
a class. We present a method for automatically finding such correspon-
dences that deals with significant variations in pose, shape and resolu-
tion between pairs of objects. We represent objects as triangular meshes
and consider normalized geodesic distances as representing their intrinsic
characteristics. Geodesic distances are invariant to pose variations and
nearly invariant to shape variations when properly normalized. The pro-
posed method registers two objects by optimizing a joint probabilistic
model over a subset of vertex pairs between the objects. The model en-
forces preservation of geodesic distances between corresponding vertex
pairs and inference is performed using loopy belief propagation in a hier-
archical scheme. Additionally our method prefers solutions in which local
shape information is consistent at matching vertices. We quantitatively
evaluate our method and show that is is more accurate than a state of
the art method.

1 Introduction

Finding correspondences between non-rigid 3D deformable objects is a critical
task for many applications. Examples include object recognition and retrieval,
shape deformation and morphing, 3D surface registration, etc. By defining corre-
spondences using a structure preservation criterion, we can assess the similarity
between two objects based on the amount of structure distortion. For applica-
tions involving search for similar 3D object models, it may be critical to have
a measure of similarity that is invariant to common variations within a class
(e.g. body pose and identity variation). Additionally, mesh alignment, for exam-
ple of laser scans of human bodies, typically employs surface registration methods
like ICP [3], [15] which require an initial set of correspondences. Here we describe
a fully automated method for obtaining such correspondences between meshes
that vary in shape, pose, and resolution.

Although the problem of establishing correspondences among rigid objects
has been addressed in the literature adequately, finding correspondences between
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Fig. 1. Local optima in a combinatorial optimization problem for matching objects
varying in pose and shape. Previous work, Generalized Multi-Dimensional Scaling
(GMDS) [5], relies only on the preservation of geodesic distances and can yield non-
meaningful correspondences; e.g. the chest of the body in the left pose is mapped
to the back of the body in the right pose (corresponding regions are shown with the
same color). Our method, Probabilistic Geodesic Surface Embedding (PGSE), achieves
more intuitive results by combining geodesic distances with local surface descriptors in
a coarse-to-fine probabilistic optimization framework.

non-rigid deformable objects is still a challenge. Variations in pose and shape
change the local geometry of the object’s surface increasing the likelihood of
a false match. In addition, matching two objects entails solving a combinato-
rial problem in the exponential space of possible pairwise correspondences. Such
an optimization may get stuck in local optima resulting in non-meaningful cor-
respondences. Figure 1 shows an example of non-meaningful correspondences
produced by related work, Generalized Multi-Dimensional Scaling (GMDS) [5],
where the chest is mapped to the back of the human model and vice versa.
This effect is significantly diminished using our method, Probabilistic Geodesic
Surface Embedding (PGSE).

Previous methods for matching nonrigid deformable objects with signifi-
cant variation in pose aim at providing global consistency of correspondences
by preserving intrinsic properties of the objects. Usually these methods find
deformation-invariant representations of the objects and match the objects in
the representation domain. Examples include the use of geodesic distances [5],
diffusion distances [6] or representations in the Möbius domain [13].

Although preservation of the intrinsic properties of the objects may be suf-
ficient to assess their similarity, intrinsic-only matching criteria are oblivious
to object self-symmetries and may yield non-meaningful correspondences. To
overcome this weakness, previous work has explored the use of local surface
properties and/or costs of surface deformation. Previous local surfaces proper-
ties are either geometric or based on the intrinsic characteristics of the shape or
both. For instance, the work in [2] uses oriented histograms describing the dis-
tribution of points in local neighborhoods along the object surface (spin images
[11]). Dubrovina et al. [7] use a local surface descriptor based on the eigenval-
ues of the Laplace-Beltrami operator which is related to the flow in the mesh
representation of the object. Wang et al. [16] use descriptors based on curvature
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and surface normals targeted towards a specific class of surfaces (brain surfaces).
Efforts that also take into account object deformation include [10], [18].

Most previous work considers pose variations of the same object. To the
best of our knowledge, only the work in [18] considers variations in shape, but
the objects to be matched do not have significant differences in pose. We are
concerned with finding correspondences among objects of the same category
varying in shape, pose, and resolution. Extending previous approaches for global
matching, we rely on preserving normalized geodesic distances to account for
the additional variation in shape. We also employ a probabilistic framework for
optimization similar to the one in [2]. We enforce stricter geodesic preservation
constraints and use alternative local surface descriptors that are invariant to
shape, pose, and resolution variations.

Our main contributions can be summarized as follows:

– A method for finding surface point correspondences of a non-rigid object
undergoing significant deformation due to pose and shape variation.

– A method for finding surface point correspondences between objects differ-
ing in global/local resolution and triangulation, containing up to a small
proportion of holes.

– Correspondence search that effectively explores the space of possible corre-
spondences and is more robust to local optima than previous work. It relies
on a discriminative probabilistic model that preserves properties related to
geodesic distances and uses loopy belief propagation (LBP) for inference.

2 Probabilistic Geodesic Surface Embedding

We consider the problem of finding correspondences between two triangular
meshes, a model mesh X and a data mesh Z. The model mesh X = (V X , EX)
is a complete surface consisting of a set of vertices V X = (x1, . . . , xNX ) and a
set of edges EX . The data mesh Z = (V Z , EZ) may contain a modest num-
ber of holes (missing data); the vertices and edges are V Z = (z1, . . . , zNZ ) and
EZ respectively. Typically the data and model meshes differ in shape, pose,
and resolution. Each data mesh vertex zk, k = 1, . . . , NZ is associated with a
correspondence variable ck ∈ {1, . . . , NX} that specifies the model mesh vertex
it corresponds to. The task of finding correspondences is one of estimating the
most likely set of all correspondence variables C = (c1, . . . , cNZ ) given a specific
pair of model and data meshes X, Z.

2.1 Probabilistic Model

We cast the problem of finding correspondences as one of finding the most likely
embedding of the data mesh Z into the model mesh X encoded as an assignment
to all correspondence variables C = (c1, . . . , cNZ ). More specifically we take a
discriminative approach where our goal is to find a configuration of C that max-
imizes the distribution p(C|X,Z) over all correspondence variables conditioned
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Fig. 2. Conditional Random Field (CRF) model for finding correspondences. The ob-
served variable in the model is a pair of a model mesh X = (V X , EX) and a data mesh
Z = (V Z , EZ). The latent variables are the correspondence variables C = (c1, . . . , cNZ )
of all data mesh vertices. Edges in the model between latent and observed variables
favor correspondences that preserve the intrinsic properties of the data mesh vertices.
Geodesic constraints between all possible pairs of correspondence variables are enforced
through the edges between latent variables.

on a pair of mesh instances X, Z. Writing this distribution as an undirected
graphical model, we get the Conditional Random Field (CRF) model depicted
in Figure 2. Each latent variable node in the model denotes the correspondence
variable ck of vertex zk, k = 1, . . . , NZ , in the data mesh. The observed variable
is a pair of model and data meshes X, Z.

We approximate the conditional distribution of the correspondence variables
using potential functions, ψ, linking all pairs of latent variables and unary po-
tentials, φ, linking each latent variable with the data. Formally we approximate
the conditional distribution as: p(C|X,Z) ∝

∏
k φ(ck, X, Z)

∏
k,l ψ(ck, cl, X, Z).

The main idea behind our approach is that the geodesic distances between
points in the data mesh Z should be the same as the geodesic distances between
the corresponding points in the model mesh X. Our method searches for cor-
respondences that satisfy this property. At the same time we want to preserve
in the embedding the intrinsic geodesic properties (geodesic signature) of the
data mesh vertices. All the abovementioned constraints are enforced using the
potentials described below.
Pairwise geodesic potential ψ(ck, cl, X, Z): We consider normalized geodesic
distances as the invariant used to match meshes that deform non-rigidly due
to changes in shape and pose. We calculate exact geodesic distances using the
the Fast Marching method described in [12]. For each pair of data mesh vertices
zk, zl, we define a potential function ψ(ck, cl, X, Z) that constrains the pair of
correspondences ck, cl in the model mesh X to be geodesically consistent with
vertices zk, zl in the data mesh Z. Let M = (V,E) be a mesh with vertices
V and edges E and h : V × V → < be a geodesic distance function. Then
h(j,m;M) represents the normalized geodesic distance between two vertices j
and m in mesh M . The normalization is done by dividing the geodesic distance
by the maximum geodesic distance over all pairs of vertices in M. The geodesic
potential between a pair of data mesh vertices zk, zl is defined as

ψ(ck, cl, X, Z) = N(h(ck, cl;X);h(k, l;Z), σ2
kl) (1)

where σkl is a user defined parameter; here σkl = 0.1 · h(k, l;Z).
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Geodesic signature potential φ(ck, X, Z): We encode a potential that en-
forces that corresponding vertices ck in the model mesh have similar intrinsic
properties as those in the data mesh zk. Our goal is to distinguish spatially dif-
ferent areas in the model and data meshes as much as possible. The intrinsic
property we use is the mean normalized geodesic distance of vertex zk over all
possible vertices in the data mesh (geodesic signature). The resulting potential
can be written as

φ(ck, X, Z) = N(g(ck;X); g(k;Z), σ2
k) (2)

where g(j;M = (V,E)) = 1
|V |
∑

m∈V h(j,m;M) is the mean normalized geodesic

distance from j to all other vertices m in the mesh M and σk is a user defined
parameter. The use of geodesic signatures is important because it biases the
embedding of the data mesh to the model mesh to match spatially similar areas
between the meshes. In practice we observe that this also improves convergence
of the optimization procedure described below.

2.2 Inference

Our goal is to find an assignment of the correspondence variables that maxi-
mizes the probability p(C|X,Z) as represented by the graphical model. Exact
inference is computationally infeasible due to the large number of variables and
loops in the graph. Instead we use max-product loopy belief propagation (LBP)
[17] for approximate inference. Running LBP until convergence yields a set of
probabilities over model mesh vertices for each correspondence variable ck. We
compute the optimal correspondence for each data mesh vertex zk as the model
mesh vertex that maximizes the probability distribution of the correspondence
variable ck.

Our inference scheme is performed in two rounds as shown in Figure 3. In
the first round, the data mesh is sampled at a coarse level (Figure 3 (a)) using
the farthest point sampling method [8]. In a similar way, the model mesh is
sampled at a coarse level (Figure 3 (b)) and an initial set of correspondences is
obtained using LBP. In the second round, the initial correspondences are refined
by restricting the domain for each correspondence variable to be geodesically
close to the solution of the first round of inference (Figure 3 (d)). Here we
restrict the search to vertices with a geodesic distance up to 1/2 the average
geodesic distance between nearby samples in the model mesh. The complexity
of each round is O(K2L2) where K is the number of samples in the data mesh
and L the number of corresponding samples in the model mesh.

3 Results

3.1 Data

We evaluate our algorithm on triangular meshes from the TOSCA nonrigid world
database [4] and human bodies generated using the SCAPE model [1]. All the
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Fig. 3. Illustration of the sampling process during the inference procedure. In the first
round, a data mesh and a model mesh are sampled at a coarse level. A coarse sampling
of the data mesh to e.g. 75 markers (a) and a coarse sampling of the model mesh to
e.g. 150 samples (b) produce an initial set of correspondences. In the second round, for
each individual marker in the data mesh (c), the domain of possible correspondences
is obtained from finer sampling around the solution found in the first round (d)

objects are represented as triangular meshes and they are simplified to have
2000-4000 vertices to aid comparison with related work. For each pair of meshes
we find correspondences of 75-100 surface points. For the following experiments
our method requires around 5GB of RAM per pair of meshes. The running time
is approximately 1h on a 2.66GHz Intel Xeon processor.

3.2 Evaluation

The meshes we use do not come with any ground truth information about cor-
respondences between their vertices. Typical error metrics in this case measure
the degree that geodesic distances are preserved between the data mesh and
the model mesh. However, preservation of geodesic distances does not ensure
that the correspondences are qualitatively meaningful. The smaller the number
of markers used and the larger the number of self-symmetries in the object,
the larger the number of possible correspondence configurations with geodesic
distances similar to the geodesic distances between data mesh markers. We find
that comparing Voronoi regions around the markers and their optimal correspon-
dences provides a more intuitive measure than comparing the degree in which
geodesic distances have been preserved. Similar Voronoi regions between the
data and model meshes also lead to similar geodesic distances among markers
and their optimal correspondences. The opposite is not necessarily true. Com-
paring Voronoi regions does not only include how well the geodesic distances
are preserved, but also how similar the neighborhoods around markers and their
optimal correspondences are.

Let vs(i) be the area of the Voronoi region around marker i and vm(c∗i ) the
area of the Voronoi region around the optimal correspondence c∗i of marker i
in the model. We define the following error metric, Te, representing the average
change in the Voronoi area over all markers and their correspondences.

Te =
1

|U |
∑
i∈U

∣∣∣vs(i)− vm(c∗i )

vs(i)

∣∣∣ (3)
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where U is the set of markers in the data mesh.

Correspondences in meshes with same topology. We compare our method,
PGSE, to the GMDS method presented in [5] using triangular meshes of the same
topology. For each object in the TOSCA nonrigid world database, we find corre-
spondences to the canonical object of the category it belongs to. For the SCAPE
bodies, we find correspondences between the mean SCAPE body in the canoni-
cal pose as defined in the CAESAR dataset [14] and SCAPE bodies varying in
pose, shape, and pose and shape together.

Figure 4(a) illustrates the correspondences found with GMDS and PGSE.
Evaluating the correspondences using the error metric defined above, we get the
error plots shown in Figures 4(b, c, d). For the parameterized bodies generated
using the SCAPE model, we sort the results based on pose or shape variation.
Pose variation is measured as the average joint angle deviation from the joint
angle configuration in the canonical pose. It is weighted by the percentage of
mesh vertices each joint controls and it is measured in radians. Shape varia-
tion is measured based on the L2-norm of the shape coefficients in the SCAPE
model. Given the variety of categories in the TOSCA nonrigid world database,
we present only summary statistics of the error over the database. For the case
of PGSE, the average Te error is 0.1410 with standard deviation 0.1059. For the
case of GMDS, the average Te error is 0.2799 with standard deviation 0.1564.

In all cases we see that the error increases as we vary the pose or the shape.
Although not reported with error metrics, GMDS performs better on average at
preserving geodesic distances; this is not surprising as the GMDS method min-
imizes exactly this error. In contrast, our method combines the preservation of
geodesic distances with local shape matching constraints. Our approach, PGSE,
performs better in terms of the maximum discrepancy in geodesic distances
between pairs of markers and their correspondences. Evaluating the correspon-
dences using the Te error (Figure 4), we see that PGSE performs better in all
cases. Statistical significance values for the errors per dataset are shown in Table
4(e). Changing the pose yields a bigger increase in the mean error than changing
the shape. Changing both shape and pose yields the biggest increase in error as
expected.

Correspondences in meshes with different topology. Next we evaluate the
effects of changing the global and local resolution of the triangulated meshes used
above. We use QSLIM [9] to change the global resolution of the meshes generated
based on the SCAPE model and we observe an almost uniform reduction in
resolution across the surface of the SCAPE bodies. In this case, we find no
significant difference in performance between GMDS and PGSE as a function of
mesh resolution.

Often one wants to align an artist-generated template mesh with higher-
resolution meshes created by a laser scanner or other structured light system. In
this case the meshes have very different topology and resolution. Consequently
we find correspondences between the SCAPE bodies varying in shape and pose
as above and a custom made template mesh shown as the right mesh in Figure
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(a)

(b) (c) (d)

TOSCA SCAPE SCAPE SCAPE
nonrigid 3D world pose shape shape/pose

Te 3 · 10−16 0.013 3 · 10−4 3.15 · 10−4

(e)

Fig. 4. (a) Visual correspondences between meshes in the TOSCA nonrigid world
database and SCAPE bodies varying in pose and/or shape. Corresponding areas are
shown with the same color. Areas where our method, PGSE, performs better than
GMDS are circled. Note that correspondences are defined up to intrinsic symmetries
in the meshes. (b) Mean Voronoi error plot for the SCAPE bodies varying in pose, (c)
shape, and (d) pose and shape. The data points in figures (c,d) are ordered based on
shape variation. Table (e) shows the results of the Wilcoxon signed rank test on the
errors induced by the GMDS, PGSE correspondences. All the p-values displayed in the
table are below the default significance level of 5%.



Probabilistic Geodesic Surface Embedding 9

(a) (b)

Fig. 5. (a) An example pair of meshes with significant differences in local resolution
and mesh topology: a SCAPE body and our template mesh. (b) Mean Voronoi-based
error for correspondences between the SCAPE bodies varying in shape & pose and
the template. To simplify visualization the SCAPE bodies are ordered only based on
shape variation. A Voronoi-based error cannot be defined for the case of GMDS due
to markers collapsing at the same vertex.

5 (a). This template mesh exhibits significant differences in local resolution and
topology compared with the SCAPE bodies. We are unable to quantitatively
evaluate GMDS because in most cases the markers collapse to the same vertex
on the data mesh surface resulting in Voronoi regions with zero area. In contrast,
we observe that even large differences in local resolution between the surface of
the data and model meshes does not influence the performance of our algorithm
(the error in Figure 5 (b) is similar to the error in Figure 4 (d)) .

4 Conclusions

We present a method that finds correspondences between non-rigid articulated
objects varying in pose, shape, and global or local resolution. Our method pre-
serves pairwise normalized geodesic distances between a pair of objects as well
as local surface properties also based on geodesic distances. We show improved
correspondence over previous work on widely varying mesh models. Addition-
ally using the SCAPE model we are able to separately evaluate accuracy as a
function of pose, shape, and resolution variation. We also define a Voronoi-based
error measure that better measures correspondences that are intuitively “good.”
Future work involves making our method robust to noisy surfaces as well as
surfaces with missing information. Learning the parameters of our CRF model
from training data is another direction for future work.
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